文档库 最新最全的文档下载
当前位置:文档库 › 古典概率中的摸球模型的解法及应用

古典概率中的摸球模型的解法及应用

古典概率中的摸球模型的解法及应用
古典概率中的摸球模型的解法及应用

古典概率中的摸球模型的解法及应用

摘要:摸球问题是古典概率中一类重要而常见的问题。本文通过对古典概型中

两种摸球模型的探讨,提供了一些有用的解题思路和方法,并试图以明确的公式

形式表达特定问题的解。

关键词:古典概型;摸球模型;事件;概率

一、引言

摸球问题是古典概率中一类重要而常见的问题。由于摸球的方式、球色的搭

配及最终考虑的问题不同,其内容可以说是形形色色、千差万别。历史上曾有人

把浩翰繁杂的古典概率问题归纳为摸球问题、占房问题及随机取数问题,又有人

把其归纳为摸球问题、投球问题及随机取数问题。可见,“球文化”确是古典概率

中的一朵奇葩。本文通过对古典概型中摸球模型的探讨,提供了些有用的解题思

路和方法。

二、古典概率定义

若把黑球作为废品,白球作为正品,则摸球可以描述产品抽样.假如产品分

为若干等级,一等品、二等品、三等品等,则可用有多种颜色的摸球模型来描述.产品抽样检奁技术,在各个生产部门中有着广泛的应用,大型工厂每天生产

的产品数以万计,对这些产品的质量进行全面的逐件检查是不可能的.在有些情

况下,产品的检验方法带有破坏性(如灯泡寿命检验,棉纱强度试验等),最适宜

的检验方法是采取不放回的抽样检查。当然有些产品检验无破坏可以采取有放回

的抽样检查,对此本文没有涉及,有兴趣的读者可以自行解决。

2.有放回地摸球模型

(1)摸球模型三

2.投球问题

例2.把4个球放到3个杯子中去,求第1、2个杯子中各有2个球的概率,其中

假设每个杯子可放任意多个球。

五、结束语

本文通过对古典概率中的两种摸球模型——有放回摸球、无放回摸球模型的

解题方法的探讨,并结合几种常见的实例,提供一些有用的解题思路和方法,并

试图以明确的公式形式表达特定问题的解。

参考文献:

[1]梁之舜,邓集贤,杨维权,司徒荣,邓永录.概率论及数理统计[上].北京:高等教育出版社,2005.

[2]刘长林.概率问题的两个摸球模型[J].数学教学研究,2003(3).

[3]毛凤敏.古典概型中摸球模型的解法探讨[J].平顶山师专学报,2004(5).

(作者单位:广西崇左市扶绥县龙华中学 543200)

关于社会网络的指数随机图模型的介绍

介绍了指数随机图(P *)社交网络模型 (加里·罗宾斯,皮普派特森,尤瓦尔·卡利什,院长Lusher) 心理学系,行为科学,墨尔本大学商学院。 3010,澳大利亚 摘要: 本文提供的介绍总结,制定和应用指数随机的图模型的社交网络。网络的 各个节点之间的可能的关系被认为是随机的变量和假设,这些随机的领带变量 之间的依赖关系确定,一般形式的指数随机图模型的网络。不同的相关性假设 的例子及其相关的模型,给出了包括伯努利,对子无关,马尔可夫随机图模型。在社会选择机型演员的加入属性也被审查。更新,更复杂依赖的假设进行了简 要介绍。估计程序进行了讨论,其中包括新的方法蒙特卡罗最大似然估计。我 们预示着在其它组织了讨论论文在这款特别版:弗兰克和施特劳斯的马氏随机 图模型[弗兰克,澳,施特劳斯,D.,1986年马氏图。杂志美国统计协会81,832-842]不适合于许多观察到的网络,而Snijders等人的新的模型参数。[Snijders,TAB,派特森,P.,罗宾斯,GL,Handock,M.新规范指数随机图模型。社会学方法论,在记者]提供实质性的改善。 关键词:指数随机图模型;统计模型的社交网络; P *模型 在最近几年,出现了在指数随机图模型对于越来越大的兴趣社交网络,通常称为P *类车型(弗兰克和施特劳斯,1986;派特森和沃瑟曼,1999;罗宾斯等人,1999;沃瑟曼和帕蒂森,1996年)。这些概率模型对一组给定的演员网络 允许泛化超越了早期的P1模型类(荷兰和Leinhardt,1981年)的限制二元独立性假设。因此,它们允许模型从社会行为的结构基础的一个更为现实的构建。这些模型车的研究多层次,multitheoretical假说的有效性一直在强调(例如,承包商等,2006)。 已经有一些自Anderson等重大理论和技术的发展。(1999)介绍了他们对 P *型号知名底漆。我们总结了本文上述的进步。特别是,我们认为重要的是在概念上从依赖假设的衍生地,这些模型,模型的基本依据,然后作出了明确, 并与有关(不可观察)社会进程底层网络的形成假说更容易联系。正是通过新 的模式,可以开发一个有原则的方式,包括结合了演员的属性模型这样的做法。在模型规范和估计最近的发展需要注意的是,因为这样做就设置结构和部分新 技术的步骤依赖的假设,不仅扩大了级车型,但具有重要意义的概念。特别是,我们现在有一个更好的了解马尔可夫随机图,和有前途的新规格的性能已经提 出来克服他们的一些不足之处。 本文介绍了模型,并总结当前方法的发展与扩展概念的阐述(更多技术总 结最近被沃瑟曼和罗宾斯,2005年定;知更鸟和派特森,2005; Snijders等人,出版。)我们首先简要介绍理分析社交网络的统计模型(第1节)。然后,我 们提供指数随机图模型的基本逻辑进行了概述,并概述我们框架模型构建(第 2节)。在第3节中,我们讨论的重要概念一个依赖假设的建模方法的心脏。 在第4节中,我们提出了一系列不同的相关性假设和模型。对于模型估计(第 5章),我们简单总结伪似然估计(PLE)的方法,并检讨最近的事态发展蒙特 卡罗马尔可夫链最大似然估计方法。在第6节中,我们提出拟合模型,网络数

机器学习 —— 概率图模型(推理:决策)

Koller 教授把决策作为一种单独的模块进行讲解,但我认为,决策和推理本质上是一样的,都是在假设已知CPD或者势函数的情况下对模型给出结论。 1、决策==逐利 决策的基本思想很intuitive,并且非常有用。在赌博行为中,最后获得的钱与硬币的正反,赌注的大小有关。硬币的正反显然是随机变量,而赌注的大小却是决策量。显而易见的是,决策的最终目的是使得某个期望最大化。再举一个视觉中的例子,对于双目配准算法而言,左相机对应右相机的像素可以认为是随机变量。但是否将两个像素配在一起却可以认为是一个决策(假设像素一一对应,如果甲配了乙就不能配丙了,希望配准的最终结果是尽可能正确的)。故决策的数学表达为: 其中,P(X|A)表示在给定决策下,随机变量X的概率。U(x,a)表示给定决策下,x发生所获得的收益。简单的决策如图所示:

2、决策的方法 显然从上面的分析可知,我们要做的决策就是使得期望最大化的那个。换一个角度来看,如果每次的决策都是未知的,决策取决于已知信息,决策影响最终结果,如果决策也是随机变量,我们应该把获利最多的那个决策组作为我们所需采取的决策库。换而言之,凡事应有a,b,c三策,不同的策略对应不同的情况。显然,我们所需要采取的策略取决于已知的信息(Action的父节点)。而策略组本身就是一个随机变量。 如图所示,如果变量真实值无法观测,只能通过一个传感器(survey)来进行推测时,决策应该取决于S的值。S的值又和其所有父节点(M)的值相关。MEU表示所选择的策略。

显然,我们需要P(S)deta(F|S)U(F,M),然后P(S)需要对P(M,S)进行边际获得。故表达式如上。带入数据发现

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

概率图模型研究进展综述

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.wendangku.net/doc/3818608932.html, Journal of Software,2013,24(11):2476?2497 [doi: 10.3724/SP.J.1001.2013.04486] https://www.wendangku.net/doc/3818608932.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 概率图模型研究进展综述 张宏毅1,2, 王立威1,2, 陈瑜希1,2 1(机器感知与智能教育部重点实验室(北京大学),北京 100871) 2(北京大学信息科学技术学院智能科学系,北京 100871) 通讯作者: 张宏毅, E-mail: hongyi.zhang.pku@https://www.wendangku.net/doc/3818608932.html, 摘要: 概率图模型作为一类有力的工具,能够简洁地表示复杂的概率分布,有效地(近似)计算边缘分布和条件分 布,方便地学习概率模型中的参数和超参数.因此,它作为一种处理不确定性的形式化方法,被广泛应用于需要进行 自动的概率推理的场合,例如计算机视觉、自然语言处理.回顾了有关概率图模型的表示、推理和学习的基本概念 和主要结果,并详细介绍了这些方法在两种重要的概率模型中的应用.还回顾了在加速经典近似推理算法方面的新 进展.最后讨论了相关方向的研究前景. 关键词: 概率图模型;概率推理;机器学习 中图法分类号: TP181文献标识码: A 中文引用格式: 张宏毅,王立威,陈瑜希.概率图模型研究进展综述.软件学报,2013,24(11):2476?2497.https://www.wendangku.net/doc/3818608932.html,/ 1000-9825/4486.htm 英文引用格式: Zhang HY, Wang LW, Chen YX. Research progress of probabilistic graphical models: A survey. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2476?2497 (in Chinese).https://www.wendangku.net/doc/3818608932.html,/1000-9825/4486.htm Research Progress of Probabilistic Graphical Models: A Survey ZHANG Hong-Yi1,2, WANG Li-Wei1,2, CHEN Yu-Xi1,2 1(Key Laboratory of Machine Perception (Peking University), Ministry of Education, Beijing 100871, China) 2(Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China) Corresponding author: ZHANG Hong-Yi, E-mail: hongyi.zhang.pku@https://www.wendangku.net/doc/3818608932.html, Abstract: Probabilistic graphical models are powerful tools for compactly representing complex probability distributions, efficiently computing (approximate) marginal and conditional distributions, and conveniently learning parameters and hyperparameters in probabilistic models. As a result, they have been widely used in applications that require some sort of automated probabilistic reasoning, such as computer vision and natural language processing, as a formal approach to deal with uncertainty. This paper surveys the basic concepts and key results of representation, inference and learning in probabilistic graphical models, and demonstrates their uses in two important probabilistic models. It also reviews some recent advances in speeding up classic approximate inference algorithms, followed by a discussion of promising research directions. Key words: probabilistic graphical model; probabilistic reasoning; machine learning 我们工作和生活中的许多问题都需要通过推理来解决.通过推理,我们综合已有的信息,对我们感兴趣的未 知量做出估计,或者决定采取某种行动.例如,程序员通过观察程序在测试中的输出判断程序是否有错误以及需 要进一步调试的代码位置,医生通过患者的自我报告、患者体征、医学检测结果和流行病爆发的状态判断患者 可能罹患的疾病.一直以来,计算机科学都在努力将推理自动化,例如,编写能够自动对程序进行测试并且诊断 ?基金项目: 国家自然科学基金(61222307, 61075003) 收稿时间:2013-07-17; 修改时间: 2013-08-02; 定稿时间: 2013-08-27

新资本协议中违约概率模型的研究及应用

新资本协议中违约概率模型的研究与应用 Research and Application of PD Model in New Basel Capi tal Accord 武剑王健内容摘要:巴塞尔新资本协议实施在即,新资本协议与往常版本的重大突破在于它倡导使用内部评级法(IRB)以加强风险监管的敏感性。而客户违约概率(PD)的准确计算正是内部评级法的核心内容。本文就详尽介绍了违约概率的概念、定义,计算违约概率的进展过程;并重点研究分析了一些较为成熟的违约概率计算模型和数学统计方法,并结合建行违约概率计算的应用提出一

些经验之谈,同时对国内商业银行客户违约概率研究的进展提出了建设性的意见。 关键词:内部评级法违约概率违约数据 背景 巴塞尔新资本协议立即于2003年底正式公布,并拟于200 6年在各成员国实施。新资本协议首次提出了涵盖“三大支柱”(资本充足率、市场监管和市场纪律)的监管框架,进一步充实了金融风险监管的内容和方式,这将对业以后进展产生重大和深远的阻碍。新资本协议的核心内容是内部评级法(IRB法),同意治理水平高的银行采纳IRB法计算资本充足率,从而将资本充足率与银行信用风险的大小紧密结合起来。能够讲,满足资本监管的IRB法代表了巴塞尔委员会认可的并希望商业银行,特不是大银行今后广泛采纳的内部评级体系。IRB法代表了信用风险治理技术进展的大方向。在新协议的推动下,许多国家的银行都在积极开发IRB法,力争在2006年达标。银监会也差不多明确指出,各家商业银行应该尽早着手收集内部评级体系所需的各项必要信息,为今后采纳定量分析方法监测、治理信用风险做好基础性工作。在一段时刻之后,如银行条件具备,银监会将考虑使用

概率图模型中的推断

概率图模型中的推断 王泉 中国科学院大学网络空间安全学院 2016年11月

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P R =1 P R =0 0 P R =1G =1= ? P B =0.001 P E =0.002 P A B ,E =0.95 P A B ,?E =0.94 P A ?B ,E =0.29 P A ?B ,?E =0.001 P J A =0.9 P J ?A =0.05 P M A =0.7 P M ?A =0.01 P B =1E =0,J =1=? P x Q x E =x Q ,x E x E

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P x Q x E =x Q ,x E x E 观测图片 y i 原始图片 x i y ?=argmax P y x 朴素贝叶斯 x ?=argmax P x y 图像去噪

?精确推断:计算P x Q x E的精确值 –变量消去 (variable elimination) –信念传播 (belief propagation) –计算复杂度随着极大团规模的增长呈指数增长,适用范围有限?近似推断:在较低的时间复杂度下获得原问题的近似解–前向采样 (forward sampling) –吉布斯采样 (Gibbs sampling) –通过采样一组服从特定分布的样本,来近似原始分布,适用范围更广,可操作性更强

读懂概率图模型:你需要从基本概念和参数估计开始

读懂概率图模型:你需要从基本概念和参数估计开始 选自statsbot作者:Prasoon Goyal机器之心编译参与:Panda 概率图模型是人工智能领域内一大主要研究方向。近日,Statsbot 团队邀请数据科学家Prasoon Goyal 在其博客上分两部分发表了一篇有关概率图模型的基础性介绍文章。文章从基础的概念开始谈起,并加入了基础的应用示例来帮助初学者理解概率图模型的实用价值。机器之心对该文章进行了编译介绍。 第一部分:基本术语和问题设定 机器学习领域内很多常见问题都涉及到对彼此相互独立的 孤立数据点进行分类。比如:预测给定图像中是否包含汽车或狗,或预测图像中的手写字符是0 到9 中的哪一个。 事实证明,很多问题都不在上述范围内。比如说,给定一个句子「I like machine learning」,然后标注每个词的词性(名词、代词、动词、形容词等)。正如这个简单例子所表现出的那样:我们不能通过单独处理每个词来解决这个任务——「learning」根据上下文的情况既可以是名词,也可以是动词。这个任务对很多关于文本的更为复杂的任务非常重要,比如从一种语言到另一种语言的翻译、文本转语音等。 使用标准的分类模型来处理这些问题并没有什么显而易见

的方法。概率图模型(PGM/probabilistic graphical model)是一种用于学习这些带有依赖(dependency)的模型的强大框架。这篇文章是Statsbot 团队邀请数据科学家Prasoon Goyal 为这一框架编写的一份教程。 在探讨如何将概率图模型用于机器学习问题之前,我们需要先理解PGM 框架。概率图模型(或简称图模型)在形式上是由图结构组成的。图的每个节点(node)都关联了一个随机变量,而图的边(edge)则被用于编码这些随机变量之间的关系。 根据图是有向的还是无向的,我们可以将图的模式分为两大类——贝叶斯网络(?Bayesian network)和马尔可夫网络(Markov networks)。 贝叶斯网络:有向图模型 贝叶斯网络的一个典型案例是所谓的「学生网络(student network)」,它看起来像是这样: 这个图描述了某个学生注册某个大学课程的设定。该图中有5 个随机变量:课程的难度(Difficulty):可取两个值,0 表示低难度,1 表示高难度 学生的智力水平(Intelligence):可取两个值,0 表示不聪明,1 表示聪明 学生的评级(Grade):可取三个值,1 表示差,2 表示中,3 表示优

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

概率图模型介绍与计算

概率图模型介绍与计算 01 简单介绍 概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示: 图一(a)无向图(隐马尔科夫)(b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,每个变量有N个状态(取值范围),节点之间的边表示变量之间的关系,它除了

古典概率中的摸球模型的解法及应用

古典概率中的摸球模型的解法及应用 摘要:摸球问题是古典概率中一类重要而常见的问题。本文通过对古典概型中 两种摸球模型的探讨,提供了一些有用的解题思路和方法,并试图以明确的公式 形式表达特定问题的解。 关键词:古典概型;摸球模型;事件;概率 一、引言 摸球问题是古典概率中一类重要而常见的问题。由于摸球的方式、球色的搭 配及最终考虑的问题不同,其内容可以说是形形色色、千差万别。历史上曾有人 把浩翰繁杂的古典概率问题归纳为摸球问题、占房问题及随机取数问题,又有人 把其归纳为摸球问题、投球问题及随机取数问题。可见,“球文化”确是古典概率 中的一朵奇葩。本文通过对古典概型中摸球模型的探讨,提供了些有用的解题思 路和方法。 二、古典概率定义 若把黑球作为废品,白球作为正品,则摸球可以描述产品抽样.假如产品分 为若干等级,一等品、二等品、三等品等,则可用有多种颜色的摸球模型来描述.产品抽样检奁技术,在各个生产部门中有着广泛的应用,大型工厂每天生产 的产品数以万计,对这些产品的质量进行全面的逐件检查是不可能的.在有些情 况下,产品的检验方法带有破坏性(如灯泡寿命检验,棉纱强度试验等),最适宜 的检验方法是采取不放回的抽样检查。当然有些产品检验无破坏可以采取有放回 的抽样检查,对此本文没有涉及,有兴趣的读者可以自行解决。 2.有放回地摸球模型 (1)摸球模型三 2.投球问题 例2.把4个球放到3个杯子中去,求第1、2个杯子中各有2个球的概率,其中 假设每个杯子可放任意多个球。 五、结束语 本文通过对古典概率中的两种摸球模型——有放回摸球、无放回摸球模型的 解题方法的探讨,并结合几种常见的实例,提供一些有用的解题思路和方法,并 试图以明确的公式形式表达特定问题的解。 参考文献: [1]梁之舜,邓集贤,杨维权,司徒荣,邓永录.概率论及数理统计[上].北京:高等教育出版社,2005. [2]刘长林.概率问题的两个摸球模型[J].数学教学研究,2003(3). [3]毛凤敏.古典概型中摸球模型的解法探讨[J].平顶山师专学报,2004(5). (作者单位:广西崇左市扶绥县龙华中学 543200)

概率初步知识点总结和题型

概率初步知识点和题型 【知识梳理】 1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ①必然事件发生的概率为1,即P(必然事件)=1; ②不可能事件发生的概率为0,即P(不可能事件)=0; ③如果A为不确定事件,那么0

3.概率应用: 通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。 【练习】 随机事件与概率: 一. 选择题 1. 下列事件必然发生的是() A. 一个普通正方体骰子掷三次和为19 B. 一副洗好的扑克牌任抽一张为奇数。 C. 今天下雨。 D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。 2. 甲袋中装着1个红球9个白球,乙袋中装着9个红球1个白球,两个口袋中的球都已搅匀。想从两个口袋中摸出一个红球,那么选哪一个口袋成功的机会较大?() A. 甲袋 B. 乙袋 C. 两个都一样 D. 两个都不行 3. 下列事件中,属于确定事件的是() A. 发射运载火箭成功 B. 2008年,中国女足取得冠军 C. 闪电、雷声出现时,先看到闪电,后听到雷声 D. 掷骰子时,点数“6”朝上 4. 下列事件中,属于不确定的事件的是() A. 英文字母共28个 B. 某人连续两次购买两张彩票,均中头奖 C. 掷两个正四面体骰子(每面分别标有数字1,2,3,4)接触地面的数字和为9 D. 哈尔滨的冬天会下雪 5. 下列事件中属于不可能的事件是() A. 军训时某同学打靶击中靶心 B. 对于有理数x,∣x∣≤0 C. 一年中有365天 D. 你将来长到4米高 6、一个袋子中放有红球、绿球若干个,黄球5个,如果袋子中任意摸出黄球的概率为0.25, 那么袋子中共有球的个数为() A. 15 B. 18 C. 20 D. 25 用列举法求概率: 填空题:

各种概率分布及应用场合(建模对象)

1、高斯分布 高斯分布是最常见的分布,我现在觉得高斯分布中最难的就是,如何说服别人,你假设某个分布是高斯,是有依据的,而不是一个所谓的“经验假设”。 高斯分布的概率密度函数为: 各种各样的心理学测试分数、各种各样的无力现象、测量误差等都被发现近似地服从正态分布。尽管这些现象的根本原因经常是未知的,但是理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布。 由正态分布还可以到处一些常见的分布: 2、伯努利分布(又称:两点分布,0-1分布) 均值为p,方差为p(1-p). 这是为纪念瑞士科学家伯努利而命名的,猜测应该与伯努利本人没有太大关系吧,哈哈。 3、二项分布

进行独立的n次伯努利实验得到。均值为np,方差为np(1-p)。 与高斯分布的关系:当n足够大时,且p不接近于0或1,则二项分布近似为高斯分布,且n越大越近似。 4、多项分布 与二项分布对应,每次独立事件会出现3个及3个以上可能值。 二项分布和多项分布的概率值都可以经过计算多项式(x1+x2)^n 和多项式 (x1+x2+...+xm)^n的通项得到,对于二项分布,此时的x1=p,x2=1-p。 5、泊松分布 参考资料: https://www.wendangku.net/doc/3818608932.html,/wiki/%E6%B3%8A%E6%9D%BE%E5%88%86%E5%B8%83 泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。 概率质量函数为:(区分概率质量函数和概率密度函数,概率质量函数-离散,是概率值;概率密度-连续,不是概率值)

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

概率论中几种概率模型方法总结

概率论中几种概率模型方法总结 绪论:概率论中几种常用的概率模型是古典概型、几何概型、贝努里概型.本文对概率论中几种概率模型方法进行了总结。 1 古典概型 古典概型及其概率是概率论的基础知识,它既是进一步学习概率的基础,下面就一些典型事件的分析来说明古典概型的概率计算方法。古典概型的概率计算可以分为三个步骤:确定所研究的对象为古典概型;计算样本点数;利用公式计算概率。即如果随机试验只有有限个可能结果,而且每一个可能结果出现的可能性相同,那么这样的随机试验就是古典概型问题。若设Ω是一个古典概型样本空间, 则对任意事件A 有: A m P ( A ) ==Q n 中的样本点数中的样本点数。在计算m 和n 时,经常使用排列与组合计算公式。在确定一个试验的每个基本事件发生的可能性相同时,经常根据问题本身所具有的某种“对称性”,即利用人们长期积累的关于“对称性”的实际经验,认为某些基本事件发生的可能性没有理由偏大或偏小。关于古典概型的数学模型如下: 1.1 袋中取球问题 1.1.1 随机地同时从袋中取若干球问题 随机地同时从袋中取若干球问题是古典概型中的一类最基本问题,其特点是所考虑的事件中只涉及球的结构而不涉及取球的先后顺序,计算样本点数时只需考虑组合数即可。概率中的很多问题常常可以归结为此类问题来解决。 事件1 一袋中有m + n 个球,其中m 个黑球, n 个白球,现随机地从袋中取出k 个球( k ≤m + n) ,求其中恰好有l 个白球( l ≤n)的概率。 分析:随机地从袋中取出k 个球有k m+n C 种可能的结果,其中“恰好有l 个白球”这 一事件包含了l k-l n m C C 种结果,因此所求概率为l k - l n m k m + n C C P =C 这个结论可以作为一个公式来应用。用它可以解决一些类似的问题。 1.1.2 随机地从袋中不放回地取球若干次 随机地从袋中不放回地取球若干次就是指随机地从袋中每次只取一个球,取后不再放回袋中,连续进行若干次。这样的取球过程实际上是按顺序取的,所考虑的事件也会涉及到取球的顺序,所以要用排列数计算样本点数。 事件2 一袋中装有m + n 个球,其中m 个黑球, n 个白球,现随机地从中每次取出一

107521-概率统计随机过程课件-第一章(第二节)古典概率

第一章随机事件的概率 第二节概率的定义及性质 所谓随机事件的概率,概括地说就是用来描述随机事件出现(或发生)的可能性大小的数量指标. 其实概率的思想术语在我们日常生活中经常出现.对未来的不确定事件,我们经说有把握、希望、机会有多大,高考上线率,各种升学率等.“不怕一万,就怕万一”,就是人们对确定事件和不确定事件的认识,为此提前作出的思想准备,表明人类的智慧与先见之明。 古代智人(周文王,姜子牙,诸葛亮,刘伯温等)的掐指一算,就是算的样本空间和随机事件的概率。 数学上只能对简单的随机现象进行概率定义,复杂的随机现象有

待于研究. 随机事件在一次试验中既可能发生,也可能不发生,似乎无什么规律。 如果在相同的条件下,把一个试验重复做许多次,我们一定会发现,某些事件发生的次数多一些,而另一些事件发生的次数少一些。表现出一定的规律性。例如买彩票时投注号码,有极少一部分人能预感到中奖号码的规律。 例如,将一颗骰子重复投掷100次,毫无疑问,事件“出现奇数点”比事件“出现1点”发生的次数会多得多。那么,发生次数多的事件在每次试验中发生的可能性大一些,而发生次数少的事件在每次试验中发生的可能性小一些。 问题是:如何度量事件发生可能性的大小?

对于事件A ,如果实数)(A P 满足: (1)数)(A P 的大小表示事件A 发生可能性的大小; (2))(A P 是事件A 所固有的,不随人们主观意志而改变的一种度量。 那么数)(A P 称为事件A 的概率。它是事件A 发生可能性的度量。 在本节中,我们首先介绍一类 最简单的概率模型,然后逐步引出概率的一般定义。 一、 概率的古典定义 古典型随机试验: 如果试验E 的样本空间S 只包 含有限个基本事件, 设},,,{21n e e e S , 并且每个基本事件发生的可能性相

超几何和二项分布概率模型总结

高考理科数学知识归纳——概率 一.离散型随机变量的期望(均值)和方差 X 1x 2x … n x P 1p 2p … n p 1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称112 2...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.数学期望 ()E X =1122...n n x p x p x p +++ 性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值 μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()D X 或2σ. 方差2221122()()...()n n DX x p x p x p μμμ=-+-++- 2.方差公式也可用公式22221()()n i i i D X x p EX EX μ==-=-∑计算. 3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X 的标准差,即 ()D X σ=. 1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。 X -1 0 1 P 9 5 对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,不合格品数X X 0 1 2 … l P 0n M N M n N C C C - 11n M N M n N C C C -- 22n M N M n N C C C -- … l n l M N M n N C C C -- 其中min(,)l n M =

概率图模型

概率图模型 过去的一段时间里,忙于考试、忙于完成实验室要求的任务、更忙于过年,很长时间没有以一种良好的心态来回忆、总结自己所学的东西了。这几天总在想,我应该怎么做。后来我才明白,应该想想我现在该做什么,所以我开始写这篇博客了。这将是对概率图模型的一个很基础的总结,主要参考了《PATTERN RECOGNITION and MACHINE LEARNING》。看这部分内容主要是因为LDPC码中涉及到了相关的知识。概率图模型本身是值得深究的,但我了解得不多,本文就纯当是介绍了,如有错误或不当之处还请多多指教。 0. 这是什么? 很多事情是具有不确定性的。人们往往希望从不确定的东西里尽可能多的得到确定的知识、信息。为了达到这一目的,人们创建了概率理论来描述事物的不确定性。在这一基础上,人们希望能够通过已经知道的知识来推测出未知的事情,无论是现在、过去、还是将来。在这一过程中,模型往往是必须的,什么样的模型才是相对正确的?这又是我们需要解决的问题。这些问题出现在很多领域,包括模式识别、差错控制编码等。 概率图模型是解决这些问题的工具之一。从名字上可以看出,这是一种或是一类模型,同时运用了概率和图这两种数学工具来建立的模型。那么,很自然的有下一个问题 1. 为什么要引入概率图模型? 对于一般的统计推断问题,概率模型能够很好的解决,那么引入概率图模型又能带来什么好处呢? LDPC码的译码算法中的置信传播算法的提出早于因子图,这在一定程度上说明概率图模型不是一个从不能解决问题到解决问题的突破,而是采用概率图模型能够更好的解决问题。《模式识别和机器学习》这本书在图模型的开篇就阐明了在概率模型中运用图这一工具带来的一些好的性质,包括

概率初步知识点总结

概率初步知识点总结标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

概率初步知识点总结 25.1概率 1.随机事件 (1)确定事件 事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的. (2)随机事件 在一定条件下,可能发生也可能不发生的事件,称为随机事件. (3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中, ①必然事件发生的概率为1,即P(必然事件)=1; ②不可能事件发生的概率为0,即P(不可能事件)=0; ③如果A为不确定事件(随机事件),那么0<P(A)<1. 随机事件发生的可能性(概率)的计算方法: 2.可能性大小 (1)理论计算又分为如下两种情况: 第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算. (2)实验估算又分为如下两种情况: 第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率. 第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验. 3.概率的意义 (1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p. (2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现. (3)概率取值范围:0≤p≤1. (4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0. (4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0. (5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题. ?用列举法求概率 1.概率的公式 (1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数. (2)P(必然事件)=1. (3)P(不可能事件)=0. 2.几何概型的概率问题 是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G 内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G的测度 简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等. 3.列举法和树状法

相关文档
相关文档 最新文档