文档库 最新最全的文档下载
当前位置:文档库 › (完整版)徐芝纶弹性力学主要内容及知识点

(完整版)徐芝纶弹性力学主要内容及知识点

(完整版)徐芝纶弹性力学主要内容及知识点
(完整版)徐芝纶弹性力学主要内容及知识点

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。

2外力分为体积力和面积力。体力是分布在物体体积内的力,重力和惯性力。体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。

3内力,即物体本身不同部分之间相互作用的力。

3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。均匀性,整个物体时统一材料组成。各向同性,物体的弹性在所有各个方向都相同。

4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。解释在物体内同一点,不同截面上的应力是不同的。应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。负面上沿坐标轴负方向为正,沿正方向为负。材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。

5.形变:所谓形变,就是形状的改变。包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负)

6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。外力约束,平行于板面且不沿厚度变化。平面应变问题:几何形状,横断面不沿长度变化,均匀分布。外力约束,平行于横截面并不沿长度变化。

7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。

6. 平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。在推导平衡微分方程时我们主要用了连续性假定。

7几何方程表示的是形变分量与位移分量之间的关系式。当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。在推导几何方程主要用了小变形假定。

8.在平面问题中,为了完全确定位移,就必须有3个适当的刚体约束条件。为什么?既然物体在形变为零时可以有刚体位移,可见,当物体发生一定形变时,由于约束条件的不同,他可能具有不同的刚体位移,因而它的位移并不是完确定的,在平面问题中,常数U0

V0 W的任意性就反应位移的不确定性,而为了安全确定位移,就必须有三个何时得刚体约束来确定这三个常数。

9.物理方程表示的应力分量与应变分量之间的关系式。两种平面问题的物理方程是不一样的,然而如果在平面应力问题的物理方程,降E换为E/1-μ2,将μ换为μ/1-μ,就可以得到平面应变问题的物理方程。推导物理方程时,主要用了完全弹性、各向同性以及均匀性(此处写小变形假定也可以)等假设。

10.边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为应力边界条件、位移边界条件以及混合边界条件。

11.试简述圣维南原理的内容,并利用该原理解释“当没有体力作用时,离边界较远处的小孔口边界上有平衡力系作用,只能在小孔口附近产生局部应力。”“在结构中开设孔口或不开孔口,两者的应力也只在孔口附近区域有显著的差别”。如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于一点的主矩也相同),那么,近处的应力分布将有显著地变化,但是远处所受的影响可以不计。如在小边界上进行面力的静力等效变换,只改变局部区域的应力分布,对此外的不部分区域的应力没有什么影响。应用时不能离开静力等效的条件。

12.位移法:按位移求解弹性力学平面问题,它是以位移为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含有位移分量的方程和相应的边界条件。应力法是以应力分量为基本未知函数。

13.应力法:按应力求解函数解答时,通常只求解全部为应力边界条件的问题。也可以出简答题,为什么应力法通常只求解全部为应力边界条件的问题?按应力求解平面问题时,应力分量取为基本未知函数。其他未知函数中形变分量可以简单的用应力分量表示,即物理方程。为了用应力分量表示位移分量,须将物理方程带入几何方程,通过积分等运算求出位移与分量。因此,用应力分量表示位移分量的表达式较为复杂,且其中包含了待定的积分项。从而使位移边界条件用应力分量表示的式子很复杂,且难求接。

14.按应力求解平面问题时,应力分量、、必须满足区域内的平衡微分方程、在区域内的相容方程(用应力分量表示的)、在边界上的应力边界条件,对于多连体,还必须满足位移单值条件。

15.在用实验方法量测结构或构件上的应力分量、、时,为什么可以用便于量测的材料来制造模型,以代替原来不便量测的结构或构件材料。(可以用平面应力情况下的薄板模型,来代替平面应变情况下的长柱形的结构或构件)试采用弹性力学原理解释。

当体力为常量时,在单连体的应力边界问题中,如果两个弹性体具有相同的边界形状、并受到同样分布的外力,那么就不管这两个弹性体的材料是否相同、也不管它们是在平面应力情况下还是平面应变情况下,应力分量的分布是相同的。

16.在常体力情况下,按应力求解平面问题,可以归纳为求解一个应力函数。它必须满足在

区域内的相容方程,在边界上的应力边界条件,在多连体中,还必须满足位移单值条件。17轴对称是指物体的形状或某物理量是绕一轴对称的,凡通过对称轴的任何面都是对称面。.一般而言,产生轴对称应力状态的条件是,弹性体的形状和应力边界条件必须是轴对称的。如果位移边界条件也是轴对称的,则位移也是轴对称的。绕z轴对称的应力,在极坐标平面内应力分量为的函数,不随变化;切应力为0。

18.孔口附近的应力将远大于无孔的应力,也远大于距孔口较远的应力,这种现象称为孔口应力集中。“小孔口问题”,即孔口的尺寸远小于弹性体尺寸,并且孔边距弹性体的边界比较远,约大于 1.5 倍孔口尺寸。

19.接触问题:即两个弹性体在边界上相互接触的问题,必须考虑交界面上的接触条件。

20.单连体:只有一个连续边界的物体。多连体:具有两个或两个以上的连续边界的物体

21.当体力为常量时,在单连体的应力边界问题中,如果两个弹性体具有相同的边界形状,并受到同样分布的外力,那么,就不管两个弹性体飞材料是否相同,也不管他们是在平面应力情况下还是在平面应变情况下,应力分量σx,σy,τxy的分布是相同的。

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

(完整word版)徐芝纶弹性力学主要内容及知识点,推荐文档

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。 2外力分为体积力和面积力。体力是分布在物体体积内的力,重力和惯性力。体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。 3内力,即物体本身不同部分之间相互作用的力。 3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。均匀性,整个物体时统一材料组成。各向同性,物体的弹性在所有各个方向都相同。 4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。解释在物体内同一点,不同截面上的应力是不同的。应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。负面上沿坐标轴负方向为正,沿正方向为负。材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。 5.形变:所谓形变,就是形状的改变。包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负) 6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。外力约束,平行于板面且不沿厚度变化。平面应变问题:几何形状,横断面不沿长度变化,均匀分布。外力约束,平行于横截面并不沿长度变化。 7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。 6. 平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。在推导平衡微分方程时我们主要用了连续性假定。 7几何方程表示的是形变分量与位移分量之间的关系式。当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。在推导几何方程主要用了小变形假定。 8.在平面问题中,为了完全确定位移,就必须有3个适当的刚体约束条件。为什么?既然物体在形变为零时可以有刚体位移,可见,当物体发生一定形变时,由于约束条件的不同,他可能具有不同的刚体位移,因而它的位移并不是完确定的,在平面问题中,常数U0 V0 W的任意性就反应位移的不确定性,而为了安全确定位移,就必须有三个何时得刚体约束来确定这三个常数。 9.物理方程表示的应力分量与应变分量之间的关系式。两种平面问题的物理方程是不一样的,然而如果在平面应力问题的物理方程,降E换为E/1-μ2,将μ换为μ/1-μ,就可以得到平面应变问题的物理方程。推导物理方程时,主要用了完全弹性、各向同性以及均匀性(此处写小变形假定也可以)等假设。 10.边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为应力边界条件、位移边界条件以及混合边界条件。

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

弹性力学主要内容

1、弹性力学的研究对象、内容及范围 弹性力学是研究在外界因素(外力、温度变化)的影响下,处于弹性阶段的物体所产生的应力、应变及位移。 弹性力学的研究对象为一般及复杂形状的构件、实体结构、板、壳等。 2、弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的) (1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。(用处:物体的弹性参数,如弹性模量E,不会随 位置坐标的变化而变化) (2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。 (用处:弹性体的所用物理量均可用连续的函数去表示) (3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关 系。(用处:可以使用线性虎克定律来表示应力与应变的关系) (4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。(用处:物体的弹性参数可以取为常数) (5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。(用处:可以在某些方程的推导中略去位移和形变的高阶微量)3、弹性力学的基本量 表1 直角坐标表示的各种基本量情况

4、两类平面问题的概念 (1)平面应力问题(应力是平面的;变形是空间的) 如图所示薄板,其z方向的尺寸比其他两个方向上的尺寸小得多;外力和体力都平行于板面,并且沿着板的厚度没有变化,这样的问题称为平面应力问题。(2)平面应变问题 若物体在z方向的尺寸比在其他两个方向上的尺寸大得多,如图所示很长的坝体,外力及体力沿着z方向没有变化,则这类问题称为平面应变问题。 (3)两类平面问题的一些特征 空间问题的基本未知量共有8个,每个基本未知量仅仅是坐标(),x y的函数。 表2 两类平面问题的一些特征

弹性力学答案清晰修改

2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。 证明: (1)将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程 ???????=+??+??=+??+??00y x xy y y x y yx x x f f τ στσ (a ) 0)1())((22 22=??+??+-=+??+??)(y f x f y x y x y x μσσ (b ) 显然(a )、(b )是满足的 (2)对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式 ?? ?? ?=+=+)()() ()(s f l m s f m l y s xy y x s yx x τστσ (c ) 则有),cos(),cos(x n q x n x -=σ ),cos(),cos(y n q y n y -=σ 所以q x -=σ,q y -=σ。 对于单连体,上述条件就是确定应力的全部条件。 (3)对于多连体,应校核位移单值条件是否满足。 该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形

变分量q E x )1(-= με,q E y ) 1(-=με,0=xy γ (d ) 然后,将(d )的变形分量代入几何方程,得 q E x u ) 1(-=??μ,q E y v )1(-=??μ,0=??+??y u x v (e ) 前而式的积分得到 )()1(1y f qx E u +-= μ,)() 1(2x f qy E v +-=μ (f ) 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式(f )代入(e )的第三式得 dx x df dy y df ) ()(21=- 等式左边只是y 的函数,而等式右边只是x 的函数。因此,只可能两边都等于同一个常数ω,于是有 ω-=dy y df )(1,ω=dx x df ) (2,积分以后得01)(u y y f +-=ω,02)(v x x f +=ω 代入(f )得位移分量 ?? ???++-=+--=v x qy E v u y qx E u ωμωμ)1()1(0 其中ω,,00v u 为表示刚体位移量的常数,须由约束条件求得。 从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确 的解答。 2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。试根据材料力学公式,写出弯应力x σ和切应力xy τ的表达式,并取挤压应力0=y σ,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答。 解〔1〕矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为Fx x M -=)(,横 截面对z 轴(中性轴)的惯性矩为12 3 h I z =,根据材料力学公式,弯应力

弹性力学教案.doc

弹性力学教案 第一章绪论(4学时) 介绍弹性力学研究的内容、基本概念和基本假设。 1、主要内容: 第一节弹性力学的内容 第二节弹性力学的基本概念 第三节弹性力学的基本假设 2、本章重点: 弹性力学的基本概念。 3、本章难点: 弹性力学的基本概念。 4、本章教学要求: 理解弹性力学的基本假设、基本概念。 5、教学组织: 弹性力学是在学习了理论力学、材料力学等课程的基础上开设的专业课程。学生已经建立了关于应力、应变、位移的概念。而且能够用材料力学的方法对杆件进行应力计算;并进一步对其进行强度、刚度和稳定性的分析。 在本章第一节的教学中,要明确弹性力学、材料力学和结构力学在研究对象上的分工的不同;在研究方法上的不同;及其不同的原因。并且让学生初步了解弹性力学的研究方法。 在本章第二节的教学中,要进一步深入研究作用在弹性体上的力。明确内力与外力、体力与面力、应力矢量与应力张量等概念及其表达方式。 在本章第三节的教学中,研究弹性力学的基本假设。通过基本假设的讲解,让学生明白合理的科学假设在科学研究中的必要性和重要性。要启发学生理解弹性力学的各个假设及其限定的缘由。 第二章弹性力学平面问题的基本理论(14学时) 本章研究平面问题的基本方程、边界条件及其解法。 1、主要内容: 第一节平面问题 第二节平衡微分方程 第三节斜截面上的应力、主应力 第四节几何方程、刚体位移 第五节斜截面上的应变及位移 第六节物理方程 第七节边界条件 第八节圣维南原理 第九节按位移求解的平面问题 第十节按应力求解的平面问题、相容方程 第十一节常体力情况下的简化 第十二节应力函数、逆解法与半逆解法 2、本章重点: 平面问题的基本方程、应力函数及边界条件。 3、本章难点: 平面问题的基本方程及边界条件的确定。

(完整word版)弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学基本知识考试必备

弹性力学基本知识考试必备 一、 基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变 问题。

(5)一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6)圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。(7)差分法的基本概念: 是微分方程的近似解法,具体的讲,差分法就是把微分用差分来代替,把导数用差分商来代替,从而把基本方程和边界条件(微分方程)近似用差分方程来表示,把求解微分方程的问题变成求解代数方程问题。 (8)极小势能原理: 在给定外力作用下,在满足位移边界条件的所有各组位移中间,实际存在的一组位移应使总势能成为极值,对于稳定平衡状态,这个值是极小值。 (9)轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答

【3-1】为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2-15),而在小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题? 【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全得到满足,往往比较困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个积分的应力边界条件来代替精确的应力边界条件(公式2-15),就会影响大部分区域的应力分布,会使问题的解答精度不足。 【3-2】如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,固而可以不必校核。 【解答】区域内的每一微小单元均满足平衡条件,应力边界条件实质上是边界上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件。研究对象整体的外力是满足平衡条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。 【3-3】如果某一应力边界问题中有m 个主要边界和n 个小边界,试问在主要边界和小边界上各应满足什么类型的应力边界条件,各有几个条件? 【解答】在m 个主要边界上,每个边界应有2个精确的应力边界条件,公式(2-15),共2m 个;在n 个次要边界上,如果能满足精确应力边界条件,则有2n 个;如果不能满足公式(2-15)的精确应力边界条件,则可以用三个静力等效的积分边界条件来代替2个精确应力边界条件,共3n 个。 【3-4】试考察应力函数3 ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)? 【解答】⑴相容条件: 不论系数a 取何值,应力函数3 ay Φ=总能满足应力函数表示的相容方程,式(2-25). ⑵求应力分量 当体力不计时,将应力函数Φ代入公式(2-24),得 6,0,0x y xy yx ay σσττ==== ⑶考察边界条件 上下边界上应力分量均为零,故上下边界上无面力.

弹性力学教材习题及解答完整版

弹性力学教材习题及解 答 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃 钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没 有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力 应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足 线性弹性关系。 2-1. 选择题 a.所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不 同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截 面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为,试写出墙体横截面边

界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。 2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如

(完整版)弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答 徐芝纶 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分

弹性力学与有限元分析试题及其答案

一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa , 50=y σMPa ,5010=xy τ MPa ,则主应 力=1σ150MPa ,=2σ0MPa , =1α6135' 。 8、已知一点处的应力分量, 200=x σMPa , 0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa , =1α-37°57′。 9、已知一点处的应力分量, 2000-=x σMPa ,1000=y σMPa , 400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别 建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)

弹性力学答案

【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向。 【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。 面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。 由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。 正的应力 正的面力 【2-1】试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。 【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该薄层的上下表面都无面力,且在薄层内所有各点都有0===z xz yz σττ,只存在平面应力分量,,x y xy σστ,且它们不沿z 方向变化,仅为x ,y 的函数。可以认为此问题是平面应力问题。 【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x ,y 向的面力或约束,且不沿厚度变化时,其应变状态接近于平面应变的情况。 【解答】板上处处受法向约束时0z ε=,且不受切向面力作用,则 0xz yz γγ==(相应0zx zy ττ==)板边上只受x ,y 向的面力或约束,所以仅存在,,x y xy εεγ,且不沿厚度变化,仅为x ,y 的函数,故其应变状态接近于平 面应变的情况。 O z y

【2-3】在图2-3的微分体中,若将对形心的力矩平很条件C M 0=∑改为对角点的力矩平衡条 件,试问将导出什么形式的方程? 【解答】将对形心的力矩平衡条件 C M 0=∑, 改为分别对四个角点A 、B 、D 、E 的平衡条件,为计算方便,在z 方向的尺寸取为单位1。 0A M =∑ 1()1()11222()1()1110 222 xy x y x xy y y yx y yx x x dx dy dy dx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ????++??-+??-?? ????-+??++??+??-??=?? (a) 0B M =∑ ()1()1()122 111110 2222 yx y x x yx y xy x y x y dy dx dx dy dy dx dy dy dx x y y dy dx dy dx dy dx dy dx f dxdy f dxdy τσσστστσσ???+ ??++??++?????-??-??-??+??+??= (b) 0D M =∑ ()111122 1()1110 2222 y y xy x yx x x x x y dx dy dy dx dy dx dy dx dy y dx dy dy dx dx dx dy f dxdy f dxdy x σστστσσσ?+ ?? -??+??+????-??-+??-??+??=? (c) 0E M =∑ ()1111222 ()1()1110 222y y x yx y xy x x xy x y dx dy dx dy dx dy dx dy dx y dy dy dx dx dy dx dy dx f dxdy f dxdy x x σσστστσστ?-+ ?? +??+??+??- ???+??-+??-??+??=?? (d) 略去(a)、(b)、(c)、(d)中的三阶小量(亦即令22 ,d xdy dxd y 都趋于0),并将各式都除以dxdy 后合并同类项,分别得到xy yx ττ=。 【分析】由本题可得出结论:微分体对任一点取力矩平衡得到的结果都是验证了切应力互等定理。

弹性理论考试题及答案

需求的价格弹性是指__________变动的比率所引起的__________变动的比率。 选择一项: a. 价格需求量 b. 需求量价格 正确答案是:价格需求量 当某商品的价格上升6%,而需求量减少9%时,该商品属于需求__________弹性。当某商品的价格下降5%而需求量增加3%时,该商品属于需求__________弹性。选择一项: a. 富有缺乏 b. 缺乏富有 正确答案是:富有缺乏 若某种商品的需求无弹性,则其需求曲线是一条的线。 选择一项: a. 与横轴平行(与横轴垂直) b. 与横轴垂直(与纵轴平行) 正确答案是:与横轴垂直(与纵轴平行) 收入弹性是指__________变动的比率所引起的__________变动的比率。 选择一项: a. 收入需求量 b. 需求量收入

正确答案是:收入需求量 税收负担在经营者和消费者之间的分割称为,税收负担最终由谁承担称为。 选择一项: a. 税收归宿税收分摊 b. 税收分摊税收归宿 正确答案是:税收分摊税收归宿 如果某种商品需求富有弹性而供给缺乏弹性,则税收就主要落在身上。选择一项: a. 消费者 b. 生产者 正确答案是:生产者 在需求的价格弹性小于1的条件下,卖者适当__________价格能增加总收益。选择一项: a. 提高 b. 降低 正确答案是:提高 需求弹性的弹性系数是指__________与__________的比值。

选择一项: a. 需求量变动的比率价格变动的比率 b. 价格变动的比率需求量变动的比率 正确答案是:需求量变动的比率价格变动的比率 需求缺乏弹性是指需求量变动的比率__________价格变动的比率,需求富有弹性则是指需求量变动的比率__________价格变动的比率。 选择一项: a. 小于大于 b. 大于小于 正确答案是:小于大于 一般来说,生活必需品的需求弹性__________,而奢侈品的需求弹性。 选择一项: a. 大小 b. 小大 正确答案是:小大 若某种商品需求量变动的比率大于价格变动的比率,该商品属于需求__________弹性。若某种商品需求量变动的比率小于价格变动的比率时,该商品属于需求 __________弹性。 选择一项:

第五章 弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理 内容介绍 知识点 弹性力学基本方程 边界条件 位移表示的平衡微分方程 应力解法 体力为常量时的变形协调方程物理量的性质 逆解法和半逆解法 解的迭加原理弹性力学基本求解方法位移解法 位移边界条件 变形协调方程 混合解法 应变能定理 解的唯一性原理 圣维南原理 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。

学习要点: 1. 弹性力学基本方程; 2. 本构方程; 3. 边界条件; 4. 弹性力学边值问题; 首先将弹性力学基本方程综合如下: 1. 平衡微分方程 用张量形式描述 2. 几何方程 用张量形式描述 变形协调方程

当然,具体求解弹性力学问题时,并不需要同时求解十五个基本未知量,可以而且必须做出必要的简化。根据几何方程和本构方程可见,位移、应力和应变分量之间不是相互独立的。 假如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量。反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。 基于上述的理由,为简化求解的难度,选取部分未知量作为基本未知量。 若以位移函数作为基本未知量求解,称为位移解法; 若以应力函数作为基本未知量,称为应力解法; 若以部分位移分量和部分应力分量作为基本未知量,称为混合解法。 在给定的边界条件下,求解偏微分方程组的问题,数学上称为偏微分方程的边值问题。 按照不同的边界条件,弹性力学有三类边值问题。 第一类边值问题:已知弹性体内的体力F b x,F b y,F b z和其表面的面力F s x,F s y,F s z,求平衡状态的弹性体内各点的应力分量和位移分量,这时的边界条件 为面力边界条件。

弹性力学练习--答案

弹性力学练习--答案

一、填空题 1. 等截面直杆扭转问题中, 2D dxdy M φ=??的物理意义是 : 杆端截面上剪应力 对转轴的矩等于杆截面内的扭矩M 。 5.弹性力学的基本假定为:连续性、完全弹性、均匀性、各向同性、小变形性。 6. 一组可能的应力分量应满足: 平衡微分方程 、相容方程(变形协调条件) 。 7. 最小势能原理等价于弹性力学基本方程中:平衡微分方程 、应力边界条件 。 13.弹性力学平衡微分方程、几何方程的张量表示为: ,0ij j i X σ+=,,,1 ()2ij i j j i u u ε= +

17. 有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 18. 为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19. 每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 20. 为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(√) 2、均匀性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(×) 3、表示位移分量与应力分量之间关系的方程为物理方程。(×) 4、当物体的位移分量完全确定时,形变分量即完全确定。(√) 5、连续性假定是指整个物体是由同一材料组成的。(×) 6、平面应力问题与平面应变问题的物理方程是完全相同的。(×) 7、按应力求解平面问题,最后可以归纳为求解一个应力函数。(×) 8、在有限单元法中,结点力是指单元对结点的作用力。(×) 9、在有限单元法中,结点力是指结点对单元的作用力。(√) 10、当物体的形变分量完全确定时,位移分量却不能完全确定。(√) 11、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ ) 12、按应力求解平面问题时常采用位移法和应力法。(×) 13、表示应力分量与面力分量之间关系的方程为平衡微分方程。(×) 三、问答题 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

相关文档
相关文档 最新文档