文档库 最新最全的文档下载
当前位置:文档库 › 电磁波隐身术的研究

电磁波隐身术的研究

电磁波隐身术的研究
电磁波隐身术的研究

电磁散射与隐身技术导论

课程大作业报告

学院:电子工程学院

专业:电磁场与无线技术

班级: 021061

学号: 02106020

姓名:赖贤军

电子邮件: 92065436@https://www.wendangku.net/doc/386716957.html,

日期: 2013 年 06 月

成绩:

指导教师:姜文

电磁波隐身技术的研究

隐形技术(stealth technology)俗称隐身技术,精确的术语应该是“低可探测技术”(low-observable technology)。即通过研究利用各种不同的技术手法来改变己方目标的可探测性信息特征,最大程度地降低被对方探测系统发现的概率,使己方目标以及己方的武器装备不被敌方的探测系统发现和探测到。1.隐身技术及其历史背景

现代无线电技术和雷达探测系统的迅速发展极大地提高了战争中的搜索、跟踪目标的能力,传统的作战武器所受到的威胁愈来愈严重。隐身技术作为提高武器系统生存、突防以及纵深打击能力的有效手段已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最为重要、最为有效的突防战术技术手段并受到世界各国的高度重视。隐身技术(又称目标特征信号控制技术)是通过控制武器系统的信号特征使其难以被发现、识别和跟踪打击的技术。它是针对探测技术而言的,在兵器研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击的专门技术。简言之隐身就是使敌方的各种探测系统(如雷达等)发现不了我方的飞机,无法实施拦截和攻击。早在第二次世界大战期间,美国便开始使用隐身技术以减少飞机被敌方雷达发现的概率。当前电磁波隐身的研究重点是雷达隐身技术和红外隐身技术。由于在未来战争中雷达仍将是探测目标的最可靠手段,因此隐身技术研究以目标的雷达特征信号控制为重点,同时展开红外、声、视频等其它特征信号控制的研究工作,最后向多功能、高性能的隐身方向发展。

2.隐身技术的工作原理

隐身技术的主要就是反雷达探测。雷达是一种利用无线电波发现目标并测定其他位置的装置。雷达的问世使人类的探测技术和能力跨上了新的台阶,同时也向反探测技术提出了新的挑战。人们为了提高目标反雷达探测能力不懈地奋斗了几十年,终于探索到一条新的隐身途径。与早期的隐身术——伪装术相比,今天的隐身技术已起了根本变化,有了质的飞跃。下面从反雷达探测和反红外、热

探测两个方面简单介绍隐身技术的一些工作原理与隐身性能。

1)反雷达探测开始隐身技术的一项主要工作是提高反雷达探测的能力:也

就是提高目标在雷达探测下的隐身性能。通常用目标的雷达散射界面RCS表示。所谓目标的雷达散射截面是指目标被雷达发射的电磁波散射中时其反射电磁波能量的程度。雷达散射截面的大小反映了目标反射电磁波能量的强弱,其越小

雷达就越不易探测到目标。

2)反红外(热)探测开始隐身技术的另一项重要工作是提高反红外(热}探测的能力:也就是减小目标的红外(热)信号特征。发动机的尾喷管是红外探测器的主要红外(热)源。因此减小红外(热)信号特征主要是要减小发动机尾喷管或排气口的红外(热)辐射。

3.隐身材料概述

用于隐身目的的材料称为隐身材料。由于隐身技术能极大地提高武器的生存能力和作战效果,受到许多国家的高度重视,成为现代军事技术研究的关键技术。目前雷达在各种探测器中仍占主导地位。因此雷达波隐身材料是隐身技术中最主要和发展最快的隐身材料。雷达波隐身材料的基本性能要求是吸收雷达波,所以这种材科又称雷达吸波材料。我们所指的吸波材料也就是雷达波吸收材料,简称为RAM。吸波材料的研究始于第二次世界大战期间,起源在德国,发展在美国并扩展到英、法、俄罗斯及日本等发达国家。经过半个世纪的发展成绩斐然。第二次世界大战时,德国人曾用活性碳粉末充填天然橡胶片来包覆潜艇以降低被对方雷达发现的可能性。这可以说是最早的RAM,美国早期研制了一种称为防辐射涂料(HARP)布,是用像胶或塑料填充导电的鳞片状铝粉、铜粉或铁磁材料制成。这些早期的材料主要通过增加厚度来提高吸波性能,一般较重,用于舰船和陆地武装设备。从50年代起。美国等开展了较为系统的飞机隐身技术研究,经过20多年的发展,70年化开始研制隐身飞机,80年代隐身飞机装备部队并投入使用。现已装备的F-117A隐形攻击机、B-2战略轰炸机以及F-22先进战术隐身战斗机均采用了不同类型的隐身材料。其它大国也都投人大量人力物力研制吸波材料,己发展出不少新型的雷达吸波材料和吸波结构。

高度的军事敏感性和技术保密性使当前高性能的RAM研究和应用情况笼罩在迷雾之中,但各科技机构的努力主要集中在以下两个方面:全新的吸收机理和吸收剂、计算科学的迅速发展和应用。总之,应运而生的RAM必将在这场世界性攻关研究中不断取得发展,并对今后的隐身反隐身技术的竟争产生深刻的影响。

4.吸波材料的综合要求和分类

4.1隐身技术对吸波材料的基本要求

一、材料的化学稳定性应有较宽的温度范围。

二、足够宽的工作频带中要求材料与空气有良好的匹配,使空气与材料界面间的总反射很小。这就要求材料有较好的频率特性。再通过合理的设计,充分利用材料的性能。

三、要求吸波涂层材料的面密度小、质量轻,其中对隐身飞行器尤为关键。

四、有高的力学性能及良好的环境适应性和理化性能就是要求材料具有结强度高耐一定温度和不同坏境变化的要求。

4.2隐身材料的分类

由于吸波材料种类繁多,吸波机理也不尽相同,目前有多种分类方法。主要有以下几种: 1涂敷型和结构型按材料成型工艺和承载能力可分为涂敷型和结构型。涂敷型吸波材料是将吸收剂与粘结剂混合后涂敷于目标表面形成吸波涂层而结构型吸波材料则通常是将吸收剂分散在由特种纤维〔如石英纤维、玻璃纤维等)增强的结构材料中所形成的结构复合材料,它具有承载和吸收雷达波双重功能。 2) 吸波型和干涉型按吸波原理分有吸波型和干涉型两大类。前者主要是材料本身对雷达波损耗吸收,后者则利用吸波层表面反射波和底层反射波的振幅相等、相位相反进行干涉相消。其中对于吸收型吸波材料按材料损耗机理可分为电阻型、电介质型和磁介质型。碳化硅纤维、导电高聚物、石墨等属于电阻型吸波材料。电磁能主要衰减在材料电阻上,钛酸钡之类属于电介质型吸波材料,其机理为介电极化弛豫损耗,磁介质吸波材料的机理主要归结为磁滞损耗和铁磁共振损耗。这类材料有铁氧体、多晶铁纤维等。 3) 传统型和新型按不同研究时期,吸波材料又可分为传统吸波材料和新型吸波材料。铁氧化、金属微粉、钛酸钡、碳化硅、石墨、导电纤维等均为传统吸波材料,而新型吸波材料则包括纳米材料、多晶铁纤维、“手征”材料、导电高聚物及电路模拟吸波材料等,它们具有不同于传统吸波材料的新吸波机理。在传统吸波材料中,铁氧体吸波材料和金属微粉吸波材料是两种研究得最多、性能最好、并已得到较广泛应用的吸波材料。而纳米材料和多晶铁纤维则是目前众多新型吸波材料中性能最好的两种。

传统吸波材料以强吸收为主要目标。新型吸波材料则要求满足“薄、轻、宽、强”,而未来吸波材科则应满足多频谱隐身、环境自适应、耐高温、耐海洋气候、抗核辐射等更高要求。以适应日趋恶劣的未来战场。其中多频谱隐身材料和智能型隐身材料将成为雷达吸波材料的发展方向。

1)多频谱隐身材料迄今为止的吸波材料都是针对厘米波雷达,如俄罗斯高王雷达)、毫米波雷达(如荷兰翁鸟雷达、瑞典鹰雷达)等先进探侧设备而相继问世,要求吸波材料在不久的将来发展成为能够兼容米波、厘米波、毫米波、红外、激光等多波段电磁波隐身的多频谱隐身材料。单波段吸波材料在未来将不再具有实战意义。在同一目标上使用的材料不应再是单功能多层结构,而希望成为多功能材料,实现四个或五个波段以上的多功能隐身材料一体化设计。

2)智能型隐身材料就象上述所讲的那样,智能型隐身材料作为一种新兴材料其应用会越来越广泛。美国制定的隐身材料研究目标中提出,2005年研制出可单独控制的辐射率/反射率涂层,2010年研制能自动对背景和威胁作出反应的自适应涂层体系。对此,世界其它军事强国也在积极运作中。

隐身无人机所使用的隐身技术是很全面的。因此,隐身无人机的发展代表了隐身技术的最前沿。 20世纪60年代,无人机开始用于军事领城。在1973年的中东战争和1982年的叙、以贝卡谷地之战中,无人机崭露头角,令人刮目相看。无人机大量、成规模地用于战争是在1991年的海湾战争中。以美国为首的多国部队使用了几百架无人机,飞行了几千小时,执行了大量的军事任务。目前,研究无人机对空中战争的影响和新一代多用途、隐身无人机的研制己经成为世界各国空军新的研究和发展之重点。美国是世界上最早把隐身技术用于无人机的国家。早在1960年初,美国就在Q-2无人机上部分地采用了隐身技术,其隐身特征是

用金属丝网罩住发动机进气道,在机身两侧贴数雷达吸波材料覆盖层,机头涂不导电的油漆。自此以后便有越来越多的无人机采用隐身技术。除美国之外,其它一些国家也开始研制生产这类无人机。根据隐身要求、方法和程度的不同,无人机隐身可以分为部分隐身和全面隐身两种。

新的隐身机理(1)仿生技术试验证明,海鸥虽与燕八哥的形体大小相近,但海鸥的雷达反射截面比燕八哥的大200倍。蜜蜂的体积小于麻雀,但它的雷达反射截面反而比麻雀大16倍。有关科学家们正在研究这些现象,试图采用仿生技

术,寻求新的隐身技术。(2)等离子体隐身技术实验证明,用等离子气体层包围诸如飞机、舰船、卫星等的表面,当雷达波碰到这层特殊气体时,由于等离子体层对雷达波有特殊的吸收和折射特性,使反射回雷达接收机的能量很少。 1999年初,俄罗斯克尔德什研究中心宣称,他们已研制成功完全不同于美国“常规”隐身技术的新机理飞行器隐身系统。其隐身方法是利用专门的机载等离子体发生器生成等离子体,然后通过等离子体吸收电磁波使飞机的雷达散射截面(RCS)减小。此外,受一系列物理作用的影响,电磁波急于绕过等离子体,也会使反射信号大大减弱。第一代系统可能已装到现有飞行器上,装上这种装置后,飞机的RCS 减小近两个数量级第二代系统不仅可衰减反射信号,而且可生成许多假信号,这将大大增大跟踪飞行器的难度。第二代机载装置质量不超过100kg,能耗不超过几十千瓦。目前该中心正在根据新的物理原理,研制更有效的第三代隐身系统。美国对等离子体隐身技术也进行了大量的研究,取得了一些进展。20世纪90年代初,美国休斯研究实验室投资65万美元进行了一项为期两年的研究计划。在执行计划的第一阶段,休斯研究等离子体隐身的方法是测量电磁波在充满等离子体的矩形波导管中传播的透射和反射,以及它们随等离子体密度剖面和动量交换碰撞频率的变化,并将实验结果与理论进行了比较,在理论和实验上都取得了重要进展。在执行计划的第二阶段,休斯研制和验证了等离子体隐身模型组件,在实验室双锥辐射体微波散射实验中,所测的充满等离子体外壳对反射微波信号的衰减为37dB,采用小雷达波段测量了充满等离子体外壳的RCS减小量,其中频率在(4~14)GHz范围内的RCS减小量为(20~25)dB。美国的分子研究实验室也进行了大量的有关等离子体微波干扰方面的理论和实验研究,美国还在《国防部1997年基础研究计划》中提山了“中性等离子体效应可以为国防部的飞机和卫星提供隐身条件”。

等离子体隐身机理:等离子体隐身主要是采取相关的技术途径在飞行器表面(周围)形成等离子体,并通过等离子体与电磁波的相互作用,对雷达波实施碰撞吸收、反射和耗散衰减。当存在磁场时,在等离子休中沿磁场方向传播的电磁波的极化方向会产生所谓法拉第旋转,从而使雷达接收的回波极化方向与发射时的不一致,造成极化失真。等离子体隐身技术与目前已经广泛应用的隐身技术相比具有很多优势。(1)改变了常规隐身技术的被动实现手段,采取了主动控制

方法实现隐身,使隐身系统便于维护。(2)不需改变飞行器的气动外形设计

不会影响飞行器的飞行性能和故术技术性能( 3)使用简便,等离子体可做成能快速开、关的隐身系统。在通信或雷达系统尚未发送或接收时,通过快速打开等离子体,将能覆盖电磁波传输系统(4)吸波频带宽,吸收率高,隐身因素多且效果好(5)使用周期长,造价相对低廉,维护费用低。等离子体隐身技术作为新概念的飞行武器防御系统,目前在理论和试验上已经获得成功,如果在工程上一旦研制成功,将对未来空战产生革命性的影响。现有的一些大雷达截面飞行器,欲减小RCS 可以采用等离子体作为隐蔽部件来实现,而无需做重大的结构改变。这样可暂时免去昂贵的重新设计,在电子战中使一些老装备的服役寿命得以延长。同时还可以研制不同的等离子体隐身系统用于船舶、机载平台和卫星,以抵御不同雷达的威胁。因此,等离子体隐身技术在军事上具有极高的潜在应用价值,将成为隐身技术发展的新的突破方向及世界各军事强国竞相研究的焦点。

反隐身技术的机理:隐身技术的迅速发展对战略和战术防御系统提出了严峻挑战,迫使人们考虑如何摧毁隐身兵器并研究反隐身技术。隐身技术与反隐身技术的发展,是相互制约、相互促进的,无论哪一方有新的突破,都将引起另一方的重大变革。反隐身技术的发展方向是,综合运用,系统综合(集成),开发新的反隐身技术理论。目前,国外对飞机隐身技术的研究主要把力量放在雷达波隐身和红外线隐身上。在雷达波隐身上,飞机主要是靠调整外形来缩减雷达散射截面(占RCS缩减总量的70%~80%)。其次,则是应用RAM探索或研究反隐身技术,要从当前隐身技术的局限性或明显弱点入手(1)现役或在研隐身飞机以单站雷达为对抗目标,雷达是通过接收被照射目标的散射电磁波来判断有无目标存在并测出目标所在的空间角度及空间距离。当前正在使用的雷达绝大多数是单站雷达

它的接收天线和发射天线靠得很近或接收功能及发射功能共用一个天线完成。对于单站雷达,接收机接收到的目标散射电磁波是沿入射电磁波路线返回的回波。调整飞机外形只能优选雷达照射角度范围,使回波集中到极少致方向上并偏离发射源。若设法从别的方向上接收回波,或同时从多个角度进行探测,可以作为探测隐身飞机的措施及手段。 2)难以在整个电磁和红外频谱达到相同的低可探测性,飞机调整外形以及采用RAM,只能有效对抗工作频率在(0.2~29GHz)的厘米波雷达,当雷达波长与被照射目标特征尺寸相近时,在目标反射波与爬行波之间产

生谐振现象。尽管没有直接的镜面反射也会造成强烈的信号特征。例如,某些陆基雷达的长波(米级波)辐射能在飞机较大的部件(平尾或机翼前缘)上引起谐振。在波长很短(毫米波)的雷达照射下,则飞机的不平滑部位相对波长来说显然增多。而任何不平滑部位都会产生角反射并导致RCS增大。大多数RAM都含有“活性成分”经雷达波照射后其分子结构内部产生电子重新排列,分子振荡的惯性会吸收一部分入射能量。但是,照射波的波长越长,分子振荡越慢而吸波效果越不明显。雷达跳出目前隐身技术所能对抗的波段。将使飞机的隐身性能大大降低或失效。另外,目前的隐身技术主要是针对微波雷达的飞机的红外辐射可以减弱并限制在一定的方位角内但却不能完全消除发展可见光或接近可见光波段的探侧器以及提高红外传感器的探测性能,也可作为探测隐身飞机的措施及手段。反隐身技术与隐身技术一样,也是综合性技术,单独采用某一种反隐身技术都不可能获得好的反隐身效果,必须综合运用各种反隐身技术才能提高探测隐身飞机的效能。

本文首先分析隐身技术的研究现状,然后介绍国外隐身技术的应用情况以及隐身材料的发展,最后预测隐身技术和隐身武器装备将朝着宽频带、全方位、全天候和智能化的方向发展。目前,世界上许多国家和地区都在研究和发展隐身技术,研制隐身或部分隐身武器装备,对现役的非隐身装备进行隐身改装等。隐身技术的出现打破了世界各国现有的攻防平衡,显著地提高了作战平台,进攻平台和防护平台的效能,增强了电子作战能力提高了目标的生存和突防能力,是当今世界各国重点发展的国防高科技。隐身技术正在向着综合运用、权衡隐身性能和其他性能、扩展频率范围和应用范围、降低成本等方向发展。我国在隐身技术的预研工作上已进行了多年探索,取得了一定成果,有的方面已达到实用水平。从现在周边环境的发展趋势来看,我国的军用飞行器在未来的作战环境中将面临严峻的挑战。因此,必须加大力度研究发展高性能的隐身技术装备。对隐身材料来说,对某种探测手段的隐身性能好,往往对另一种探测手段的隐身性能就不好。例如,对激光探测的隐身性能好,一般对红外探测就不能隐身,这就是隐身材料的相容性问题。传统的隐身材料以强吸收为主要目标,新型的隐身材料要求满足“薄、轻、宽、强”,而未来的隐身材料则应满足多频谱隐身、环境自适应、耐高温、耐海洋气候、抗核辐射等更高要求,以适应未来战场的需要。为解决这

一问题,未来隐身材料的研制方向将是兼容型隐身材料,如雷达波、红外兼容隐身材料红外、激光兼容隐身材料,雷达波、红外、激光等多种兼容的隐身材料等

四、总结

本学期选修了《电磁散射与隐身技术导论》这门课程,在课程中学习了许多关于电磁散射与隐身技术的知识,对于所学专业有了一个感观上的认识,极大地激发了自己对本专业学习的兴趣。最后,对这门课程各位老师在学习上的悉心指导表示深深的感谢!

参考文献:

[1] 肖占中编著.信息化作战指挥[M].北京:海潮出版

社,2006.

[2] 乔清晨. 信息化战争条件下我国防空的战略问

题[M].北京:解放军报,2006.

[3] 钟明范,刘兵初编著.防空作战[M].北京:蓝天出

版社,2008.

隐身技术的发展及应用

隐身技术的发展及应用 摘要:介绍隐身技术带来了军事装备的变革,并探讨有源和无源隐身原理,并重点介绍了无源隐身中利用理想对消特性、频率差将破坏相干性、相位差的影响、幅度差的影响,以规避雷达对目标的检测。 接着分析了隐身技术的现状及其原理,分别从可见光隐身技术、声波隐身技术、雷达隐身技术、激光隐身技术及红外辐射隐身技术方面介绍了当前所采用隐身技术的原理、方法及其应用。通过采用可见光、红外及激光隐身兼容技术,更好的达到隐身的效果,即可得隐身兼容技术才是隐身技术的发展方向。 隐身技术迅猛发展,新的隐身方法和技术应运而生。仿生技术、等离子体隐身技术、“微波传播指示”技术及智能隐身技术丰富和扩展了隐身技术的领域。在新的隐身方法中,重点介绍了等离子体隐身技术这一典型事例,通过介绍其原理、方法,以及在军事装备上的应用,以便我们把握这一隐身技术的发展方向。 隐身材料的开发和利用一直是隐身技术发展的重要内容,是飞机等隐身兵器实现隐身的基石,接下来介绍了正在研制开发的新型隐身材料:宽频带吸波剂、高分子隐身材料、纳米隐身材料、手征材料、结构吸波材料及智能隐身材料。新的隐形材料的研制,必将推动隐身技术迈向新的台阶。 隐身技术与反隐身技术的发展,是相互制约、相互促进的,无论哪一方有新的突破,都将引起另一方的重大变革。最后,我们探讨了当今反隐身技术的发展,以及探讨反隐身技术的方法:采用长波低频雷达探测技术、采用激光雷达探测技术、采用光电探测技术、采用数据融合技术、采用自动化和智能化技术。希望隐身技术和反隐身技术,这对矛和盾,能够加快我国的武器装备现代化的进程。 关键词:有效散射截面积(RCS)无源及无源隐身技术等离子体技术

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为 μ,则磁感应强度B 和磁场H 满足的方程为:。 2.设线性各向同性的均匀媒质中,02 =? φ称为方程。 3.时变电磁场中,数学表达式H E S ?=称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为 t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数 y x e xz e y B ??2+-= 是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。 16.矢量 z y x e e e A ?3??2-+= , z y x e e e B ??3?5--= ,求 (1)B A + (2)B A ? 17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E e E --=004?3? (1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为a ,带电量为Q 。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。

电磁波在信号中的传输

《电磁场电磁波》课程论文电磁波在信号传输中的应用 姓名段一凡 班级 BG1208 学号 121001260807 2015年 10月 9日 电磁波在信号中的应用 摘要本文主要介绍了电磁波的光谱和特性及作为载波在信号传

输的应用,分别有光纤通信,微波通信和波导通信等,介绍了电磁波的频段,电磁波与介质的相互作用,电磁波在不同介质中的传播特性。 关键词电磁波1;光谱2;光纤3;通信4 Application of electromagnetic wave in signal Abstract the spectrum and characteristics of electromagnetic wave and its application in signal transmission are introduced. The optical fiber communication, microwave communication and waveguide communication are introduced. Keywords electromagnetic wave 1; spectrum 2; optical fiber 3; communication 4 目录 一背景1 二定义1 三电磁波概述1 四电磁波普2 1电磁波普的定义2 2波普分类:2 五电磁波特性5 1电磁波特性5 2划分 :5

六光纤通信5 1光纤通信5 2光波特性6 3光纤原理及应用6 七微波通信6 1微波通信6 2微波波长7 3频带的划分7 4微波特征7 1)穿透性7 2)选择性加热7 3)热惯性小8 5微波原理8 八波导通信8 1波导历史8 2波导定义9 3毫米波9 4调制方式9 九电磁波在信号中传输的应用9 1背景 电磁波首先由詹姆斯·麦克斯韦于1865年预测出来,而后由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实存在。麦克斯

电磁场与电磁波试题及答案

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????= ==??由此说明了矢量场的散度与坐标的选择无关。

电磁波隐身技术的研究

电磁散射与隐身技术导论 课程大作业报告 学院:电子工程学院 专业:电磁场与无线技术 班级: 021061 学号: 02106020 姓名:赖贤军 电子邮件: 92065436@https://www.wendangku.net/doc/386716957.html, 日期: 2013 年 06 月 成绩: 指导教师:姜文

电磁波隐身技术的研究 隐形技术(stealth technology)俗称隐身技术,精确的术语应该是“低可探测技术”(low-observable technology)。即通过研究利用各种不同的技术手法来改变己方目标的可探测性信息特征,最大程度地降低被对方探测系统发现的概率,使己方目标以及己方的武器装备不被敌方的探测系统发现和探测到。1.隐身技术及其历史背景 现代无线电技术和雷达探测系统的迅速发展极大地提高了战争中的搜索、跟踪目标的能力,传统的作战武器所受到的威胁愈来愈严重。隐身技术作为提高武器系统生存、突防以及纵深打击能力的有效手段已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最为重要、最为有效的突防战术技术手段并受到世界各国的高度重视。隐身技术(又称目标特征信号控制技术)是通过控制武器系统的信号特征使其难以被发现、识别和跟踪打击的技术。它是针对探测技术而言的,在兵器研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击的专门技术。简言之隐身就是使敌方的各种探测系统(如雷达等)发现不了我方的飞机,无法实施拦截和攻击。早在第二次世界大战期间,美国便开始使用隐身技术以减少飞机被敌方雷达发现的概率。当前电磁波隐身的研究重点是雷达隐身技术和红外隐身技术。由于在未来战争中雷达仍将是探测目标的最可靠手段,因此隐身技术研究以目标的雷达特征信号控制为重点,同时展开红外、声、视频等其它特征信号控制的研究工作,最后向多功能、高性能的隐身方向发展。 2.隐身技术的工作原理 隐身技术的主要就是反雷达探测。雷达是一种利用无线电波发现目标并测定其他位置的装置。雷达的问世使人类的探测技术和能力跨上了新的台阶,同时也向反探测技术提出了新的挑战。人们为了提高目标反雷达探测能力不懈地奋斗了几十年,终于探索到一条新的隐身途径。与早期的隐身术——伪装术相比,今天的隐身技术已起了根本变化,有了质的飞跃。下面从反雷达探测和反红外、热 探测两个方面简单介绍隐身技术的一些工作原理与隐身性能。 1)反雷达探测开始隐身技术的一项主要工作是提高反雷达探测的能力:也

【开题报告】电磁波在左手材料中的传输特性

开题报告 应用物理 电磁波在左手材料中的传输特性 一、选题的背景与意义 近几十年来,物理学在先进材料领域的研究发展取得了巨大的不可思议的令人欢庆鼓舞的成就,如果在几十年前你很难想象哈利波特里才有的隐形衣材料在理论上已经发展成熟并且实验室里已经能初步有了实物雏形。这就是在近十年间横空出世掀起研究狂潮的一种具有不可思议性能的人工复合材料,俗称左手材料。 左手材料的研究要追溯到上世纪60年代前苏联科学家的假想。 物理学中,介电常数ε和磁导率μ是描述均匀媒质中电磁场性质的最基本的两个物理量。在已知的物质世界中,对于电介质而言,介电常数ε和磁导率μ都为正值,电场、磁场和波矢三者构成右手关系,这样的物质被称为右手材料(right-handed materials,RHM)。这种右手规则一直以来被认为是物质世界的常规,但这一常规却在上世纪60年代开始遭遇颠覆性的挑战。1967年,前苏联物理学家Veselago在前苏联一个学术刊物上发表了一篇论文,首次报道了他在理论研究中对物质电磁学性质的新发现,即:当ε和μ都为负值时,电场、磁场和波矢之间构成左手关系。他称这种假想的物质为左手材料(left-handed materials,LHM),同时指出,电磁波在左手材料中的行为与在右手材料中相反,比如光的负折射、负的切连科夫效应、反多普勒效应等等。 然而左手材料的研究发展并不一帆风顺。在这一具有颠覆性的概念被提出后的三十年里,尽管它有很多新奇的性质,但由于只是停留在理论上,而在自然界中并未发现实际的左手材料,所以,这一怪诞的假设并没有立刻被人接受,而是处于几乎无人理睬的境地,直到时光将近本世纪时才开始出现转机。直至 1998~1999年英国科学家Pendry等人提出了一种巧妙的设计结构可以实现负的介电系数与负的磁导率,从此以后,人们开始对这种材料投入了越来越多的兴趣。2001年的突破,使左手材料的研究在世界上渐渐呈现旋风之势。 2001年,美国加州大学San Diego分校的David Smith等物理学家根据Pendry等人的建议,利用以铜为主的复合材料首次制造出在微波波段具有负介电常数、负磁导率的物质,他们使一束微波射入铜环和铜线构成的人工介质,微波

最新电磁场与电磁波答案

第7章 导行电磁波 1、 求内外导体直径分别为0.25cm 和 0.75cm 空气同轴线的特性阻抗; 在此同轴线内外导体之间填充聚四氟乙烯( 2.1r ε=),求其特性阻抗与300MHz 时的波长。 解:空气同轴线的特性阻抗 00.75 60ln 60ln =65.9170.25 b Z a ==Ω 聚四氟乙烯同轴线: 00.75 =41.404ln345.487 0.25 b Z a = ==Ω 8 0.69v m f λ==== 2、在设计均匀传输线时,用聚乙烯(εr =2.25)作电介质,忽略损耗 ⑴ 对于300Ω的双线传输线,若导线的半径为0.6mm ,线间距应选取为多少? ⑵ 对于75Ω的同轴线,若内导体的半径为0.6mm ,外导体的内半径应选取为多少? 解:⑴ 双线传输线,令d 为导线半径,D 为线间距,则 0110 ln , ln 1 300 ln 3.75, 25.5D L C D d d D Z d D D mm d μπεππ= = ===∴== ⑵ 同轴线,令a 为内导体半径,b 为外导体内半径,则 0112 ln , 2ln b L C b a a μπε π= = 01 ln 752 ln 1.875, 3.91b Z a b b mm a π===∴== 3、设无耗线的特性阻抗为100Ω, 负载阻抗为5050j -Ω, 试求:终端反射系数L Γ驻波比VSWR 及距负载0.15λ处的输入阻抗in Z 。 解:005050100112505010035 L L L Z Z j j j Z Z j j ---++Γ===-=- +-+- 1 2.6181L L S +Γ= ==-Γ

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

电磁波的隐身技术的研究

电磁波隐身技术的研究 摘要 隐形技术(stealth technology)俗称隐身技术,精确的术语应该是“低可探测技术”(low-observable technology)。即通过研究利用各种不同的技术手法来改变己方目标的可探测性信息特征,最大程度地降低被对方探测系统发现的概率,使己方目标以及己方的武器装备不被敌方的探测系统发现和探测到。本文从电磁波的隐身技术的发展历程、原理、电磁波隐身材料以及反隐身技术等方面进行阐述,并对对未来隐身技术做出了总结和展望。 关键词:隐身技术武器装备雷达吸波材料隐身材料

Abstract Stealth technology (stealth technology) commonly known as stealth technology, precise terminology should be "low-observable technology" (low-observable technology). That is ,through research methods using a variety of different techniques to change one's own target detectability information features ,is the other side to minimize the probability of detection systems that make one's own goals and not be one's enemy weapons detection system to detect and detected .This wave of stealth technology from the development process, principles, electromagnetic and anti-stealth technology, stealth materials and other aspects described, and stealth technology for the future and make a summary and outlook.

电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式 是:.D H J t ???=+?,B E t ???=-?,0B ?=,D ρ?= 2静电场的基本方程积分形式为: C E dl =? S D d s ρ =? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。 6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。8.电场强度E 的单位是, 电位移D 的单位是 。9.静电场的两个基本方程的微分 形式为 0E ??= ρ?=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 3.00n S n n n S e e e e J ρ??=? ?=?? ?=?? ?=?D B E H 4.D E ε=,B H μ=,J E σ= 5. J t ρ??=-? 6.2ρ?ε?=- 12??= 1212n n εεεε??=?? 7.唯一性定理 8.V/m C/m2 1.在分析恒定磁场时,引入矢量磁位A ,并令 B A =??的依据是(c.0B ?= ) 2. “某处的电位0=?,则该处的电场强度0=E ”的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( ) l n (0 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一 定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω= 则位移电流密度为:0sin d x r m D J e E t t ωεεω?= =-? 其振幅值为: 304510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S S d q =?得2 4q D r π= 24D e e r r q D r π== 空间的电场分布2 04D E e r q r επε== 导体球的电位 2 0044E l E r e r r a a a q q U d d d r a πεπε∞ ∞ ∞ ==== ??? 导体球的电容04q C a U πε= = 五、两块无限大接地导体板分别置于x=0和x=a 处,其间在x=x0处有一面密度为σ2C/m 的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分) 解:()2 102d 00;d x x x ?=<<()22 02d 0 d x x a x ?=<< 得: ()()11100;x C x D x x ?=+<< ()( )222 0x C x D x x a ?=+< < ()()()()()()()(122112102000,0;, x x x x a x x x x ???????????===-???? 和满足得边界条件为

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2.

电磁波传播

电磁波传播特性实验报告 Part1 电磁波参量的测量 一、实验目的 1、了解电磁波综合测试仪的结构,掌握其工作原理 2、利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v。 二、实验原理 1、自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 得到电磁波的主要参数K和v等。 电磁波参量测试原理如图1-1所示,和分别表示发射和接收喇叭天线,A和B分别表示固定和可移动的金属反射板,C表示半透射板(有机玻璃板)。由TP发射平面电磁波,在平面波前进的方向上放置成°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A板方向传播,另一束向B板方向传播。由于A和B为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线处。于是收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。 移动反射板B,当的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波

当入射波以入射角向介质板C斜入射时,在分界面上产生反射波和折射波。设C板的反射系数为R,为由空气进入介质板的折射系数,为由介质板进入空气的折射系数。固定板A和可移动板B都是金属板,反射系数均为1?。在一次近似的条件下,接收喇叭天线处的相干波分别为 这里 其中,为B板移动距离,而与传播的路程差为2ΔL。 由于与的相位差为,因此,当2ΔL满足 和同相相加,接收指示为最大。 当2ΔL时满足 和反相抵消,接收指示为零。这里,n表示相干波合成驻波场的波节点数。

11.5 电磁波传播特性

实验11.5 电磁波传播特性 Part 1 电磁波参量的测量 一、实验目的 1. 研究电磁波在良导体表面的反射。 2. 利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v 。 二、实验仪器 (1)三厘米固态信号发生器1台; (2)电磁波综合测试仪1套; (3)反射板(金属板)2块; (4)半透射板(玻璃板)1块。 三、实验原理和方法 1. 自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路程上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 2K v f K πλλω=?? ==? 得到电磁波的主要参数K 和v 等。 电磁波参量测试原理如图1所示,P T 和P R 分别表示发射和接收喇叭天线,A 和B 分别表示固定和可移动的金属反射板,C 表示半透射板(有机玻璃板)。由P T 发射平面电磁波,在平面波前进的方向上放置成45°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A 板方向传播,另一束向B 板方向传播。由于A 和B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线P R 处。于是P R 收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。

移动反射板B ,当P R 的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波 0j i E E e φ-= 当入射波以入射角θ1向介质板C 斜入射时,在分界面上产生反射波r E 和折射波t E 。设C 板的反射系数为R ,T 0为由空气进入介质板的折射系数,T c 为由介质板进入空气的折射系数。固定板A 和可移动板B 都是金属板,反射系数均为-1。在一次近似的条件下,接收喇叭天线P R 处的相干波分别为 12100200j r c j r c E RT T E e E RT T E e φφ--=-=- 这里 ()()()1131 223132 K l l KL K l l K l l L KL φφ=+==+=++?= 其中,ΔL =|L 2-L 1|为B 板移动距离,而1r E 与2r E 传播的路程差为2ΔL 。 由于1r E 与2r E 的相位差为21=2K L φφφ?-=?,因此,当2ΔL 满足 ()20,1,2, L n n λ?== 1r E 与2r E 同相相加,接收指示为最大。 当2ΔL 时满足 图1 电磁波参量测试原理图

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程 为: 。 2.设线性各向同性的均匀媒质中, 02=?φ称为 方程。 3.时变电磁场中,数学表达式H E S ?=称为 。 4.在理想导体的表面, 的切向分量等于零。 5.矢量场 )(r A 穿过闭合曲面S 的通量的表达式为: 。 6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表 示。 二、简述题 (每小题5分,共20分) 11.已知麦克斯韦第二方程为 t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题 (每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数 y x e xz e y B ??2+-= 是否是某区域的磁通量密度?

(2)如果是,求相应的电流分布。 16.矢量 z y x e e e A ?3??2-+= , z y x e e e B ??3?5--= ,求 (1)B A + (2)B A ? 17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E e E --=004?3? (1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题 (每小题10分,共30分) 18.均匀带电导体球,半径为a ,带电量为Q 。试求 (1) 球任一点的电场强度 (2) 球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为0U ,其余两面电位为零, (1) 写出电位满足的方程; (2) 求槽的电位分布

隐身技术现状及发展趋势

隐身技术现状及发展趋势 摘要:介绍了隐身技术的重要性以及各种各样的隐身技术的原理及方法,对未来隐身技术的发展做了一些较为深入的探讨和详细大胆的预测,并就隐身技术做出一些总结。 一、隐身技术的概述 自1989年美国入侵巴拿马时首次使用F2117隐身战斗机后,隐身技术日益引起世界各国军界的高度重视。在海湾战争中,各种隐身兵器的精彩表演,尤其是F2117又一次的不凡战绩,令世界各强国对隐身技术刮目相看。海湾战争后,美、俄等军事强国都加强了对隐身技术的研究,隐身技术因此也获得了长足的发展,被广泛应用于各种武器装备,如隐身战斗机、隐身轰炸机、隐身舰船、隐身导弹等。 随着现代科学技术的不断发展,针对飞行器、舰船等作战装备的探测技术日益完善。现在,各个军事强国在本土都有强大的雷达网,空中有预警机,在太空还有战略预警系统。这些系统通过链路构成一张强大的预警网络,对飞机,舰船甚至是导弹的生存都构成了严重的威胁。所以,武器装备的隐身性能已经成为考量整体战斗力的重要指标。具有隐身性的装备,既拥有了在战场上赖以生存的法宝,又使得自己在进攻中处于主动的一方,加大了攻击的突然性。在讲究快速反应的现代战场,隐身技术已经成

为决定战争胜负的关键因素。 隐身技术按照战斗平台分,可以分为飞行器隐身,舰船隐身,导弹隐身。 按照隐身的方式手段主要为雷达隐身,并辅之以红外、光学和声波隐身,其中雷达隐身是现代隐身技术的重中之重。红外隐身在导弹突防中应用较为广泛。而随着反潜技术的发展,潜艇的声波隐身则是至关重要的一环。 二、雷达隐身技术的关键 若用一句话概括雷达隐身技术,就是采取各种手段减小装备的雷达散射截面(Radar Cross Section,一下简称RCS)。所谓目标的雷达散射截面RCS,就是定量表征目标散射强弱的物理量。目标的雷达散射截面RCS,越小,雷达接收能量越小,因而使敌方侦察雷达难于对己方目标作出正确的判断,从而达到隐形目的。 RCS不是目标的几何截面积,而是一个与目标产生同等回波的金属圆球的等效截面积,几何截面积、材质和形状对雷达的反射率和反射的方向性都对雷达截面积有影响,所以雷达反射面积可以比几何截面积大,也可以比几何截面积小,就好像在黑夜里手电照射下,一块小镜子可以远比一个蒙面黑衣大汉显眼。作为参照,美国的F-15 的RCS为405 平方米,B-1B 为1.02 平方米,SR-71 为0.014 平方米,F-22 为0.0065 平方米,F-117 为

各波段电波传播方式和特点

一.电磁场基本性质: 1.电场和磁场: 静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。不随时间变化的电场称为静电场。运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。不随时间变化的磁场称为恒定磁场。 2. 电磁波及麦克斯韦方程: 如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。静电场与恒定磁场相互无关、彼此独立,可以分别进行研究。 0c D B B E t D H J t ρ?=???=??????=-??????=+??? c D E B H J E εμσ=??=??=? 3. 物质属性 电磁场与电磁波虽然不能亲眼所见,但是客观存在的一种物质,因为它具有物质的 两种重要属性:能量和质量。但电磁场与电磁波的质量极其微小,因此,通常仅研究电磁场与电磁波的能量特性。电磁场与电磁波既

然是一种物质,它的存在和传播无需依赖于任何媒质。在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。 当空间存在媒质时,在电磁场的作用下媒质中会发生极化与磁化现象,结果在媒质中又产生二次电场及磁场,从而改变了媒质中原先的场分布,这就是场与媒质的相互作用现象。 4. 历史的回顾与电磁场与波的应用 公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;公元前300年我国发现了磁石吸铁的现象;后来人们发现了地球磁场的存在。1785年法国科学家库仑(1736-1806)通过实验创建了著名的库仑定律。1820年丹麦人奥斯特(1777-1851)发现了电流产生的磁场。同年法国科学家安培(1775-1836)计算了两个电流之间的作用力。1831年英国科学家法拉第(1791-1867)发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以产生时变电场。1873年英国科学家麦克斯韦(1831-1879)提出了位移电流的假设,认为时变电场可以产生时变磁场,并以严格数学方程描述了电磁场与波应该遵循的统一规律,这就是著名的麦克斯韦方程。该方程说明了时变电场可以产生时变磁场,同时又表明时变磁场可以产生时变电场,因此麦克斯韦预言电磁波的存在,后来在1887年被德国物理学家赫兹(1857-1894)的实验证实。在这个基础上俄国的波波夫及意大利的马可尼于19世纪末先后发明了用电磁波作为媒体传输信息的技术。 静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因

电磁场与电磁波试题及答案.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 2211()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2. ()[()()()]()()()0y x x x z z x y z x y z y y x x z z A A A A A A A e e e e e e x y z y z z x x y A A A A A A x y z y z x z x y ????????????? =++?-+-+-??????????????????=-+-+-=????????? 1. 简述亥姆霍兹定理并举例说明。 2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。 例静电场 s D ds q ?=∑?? 0D ρ??= 有源 0l E dl ?=? 0E ??= 无旋 1. 已知 R r r '=-,证明R R R R e R ' '?=-?==。 2. 证明 x y z x y z R R R x x y y z z R e e e e e e x y z R R R ''' ???---?=++=++??? R '?= …… R =-? 1. 试写出一般电流连续性方程的积分与微分形式 ,恒定电流的呢?

相关文档