文档库 最新最全的文档下载
当前位置:文档库 › 新人教a版高中数学(必修1)3.1《随机事件的概率》教案

新人教a版高中数学(必修1)3.1《随机事件的概率》教案

3.1 随机事件的概率

3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)

一、教学目标: 1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A 发生的频率f n (A )与事件A 发生的概率P (A )的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题. 2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法. 3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识. 二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题.

三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.

四、教学设想:

1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。

2、基本概念:

(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;

(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;

(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=

n

n A

为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值

n

n A

,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 (7)似然法与极大似然法:见课本P111 3、例题分析:

例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?

(1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”. 答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.

例2 某射手在同一条件下进行射击,结果如下表所示:

(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是什么?

分析:事件A 出现的频数n A 与试验次数n 的比值即为事件A 的频率,当事件A 发生的频率f n (A )稳定在某个常数上时,这个常数即为事件A 的概率。 解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.

(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89。

小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。 练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下:

(2)这一地区男婴出生的概率约是多少? 答案:(1)表中依次填入的数据为:0.520,0.517,0.517,0.517. (2)由表中的已知数据及公式f n (A )=

n

n A

即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.

例3 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?

分析:中靶的频数为9,试验次数为10,所以靶的频率为

10

9

=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.

例4 如果某种彩票中奖的概率为

1000

1

,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。

解:不一定能中奖,因为,买1000张彩票相当于做1000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖。

例5 在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性。

分析:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5。

解:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5。 小结:事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。 4、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。 5、自我评价与课堂练习:

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )

A .必然事件

B .随机事件

C .不可能事件

D .无法确定 2.下列说法正确的是( )

A .任一事件的概率总在(0.1)内

B .不可能事件的概率不一定为0

C .必然事件的概率一定为1

D .以上均不对

(1)完成上面表格:

(2)该油菜子发芽的概率约是多少?

(2)这位运动员投篮一次,进球的概率约为多少? 5.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗? 6、评价标准:

1.B[提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件。] 2.C[提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.] 3.解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897。

4.解:(1)填入表中的数据依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80。

5.解:天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的。

7、作业:根据情况安排

3.1.3 概率的基本性质(第三课时)

一、教学目标:

1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;

(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.

2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。

3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

二、重点与难点:概率的加法公式及其应用,事件的关系与运算。

三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片

四、教学设想:

①、创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,

5}等;

(2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……

师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?

②、基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).

③、例题分析:

例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

事件A:命中环数大于7环;事件B:命中环数为10环;

事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.

分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发

生,另一个必发生。

解:A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生).

例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=

21,P(B)=2

1

,求出“出现奇数点或偶数点”. 分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解. 解:记“出现奇数点或偶数点”为事件C,则C=A ∪B,因为A 、B 是互斥事件,所以P(C)=P(A)+ P(B)=

21+2

1

=1 答:出现奇数点或偶数点的概率为1

例3 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是

41,取到方块(事件B )的概率是4

1

,问: (1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少?

分析:事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1—P(C). 解:(1)P(C)=P(A)+ P(B)=

21(2)P(D)=1—P(C)=2

1

例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为

31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是12

5

,试求得到黑球、得到黄球、得到绿球的概率各是多少?

分析:利用方程的思想及互斥事件、对立事件的概率公式求解. 解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A 、

B 、

C 、

D ,则有P(B ∪C)=P(B)+P(C)=

125;P(C ∪D)=P(C)+P(D)=12

5

;P(B ∪C ∪D)=1-P(A)=1-31=32,解的P(B)=41,P(C)=61

,P(D)=4

1

答:得到黑球、得到黄球、得到绿球的概率分别是41、61、4

1

4、课堂小结:概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);3)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

5、自我评价与课堂练习:

1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。

(1)恰好有1件次品恰好有2件次品; (2)至少有1件次品和全是次品;

(3)至少有1件正品和至少有1件次品; (4)至少有1件次品和全是正品; 2.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=

21,P (B )=6

1

,求出现奇数点或2点的概率之和。 3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中: (1)射中10环或9环的概率; (2)少于7环的概率。

4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是

71,从中取出2粒都是白子的概率是35

12,现从中任意取出2粒恰好是同一色的概率是多少?

6、评价标准:

1.解:依据互斥事件的定义,即事件A 与事件B 在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。(3)中的2个事件既是互斥事件也是对立事件。 2.解:“出现奇数点”的概率是事件A ,“出现2点”的概率是事件B ,“出现奇数点或2点”的概率之和为P (C )=P (A )+P (B )=

21+61=3

2

3.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。

4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为

71+3512=35

17 7、作业:根据情况安排

3.1.1 随机事件的概率NO.014

设计人 田学建 学习目标

1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念 及其意义;

2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键;

3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方 法, 理解频率和概率的区别和联系;

4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.

学习重点:根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系.

学习难点:理解随机事件的频率定义及概率的统计定义及计算概率的方法, 理解频率和概 率的区别和联系. 学习过程

一、情境引入:

来看看这样一个游戏:小军和小明玩骰子的游戏,他们约定:两颗骰子掷出去,如果朝上的两个数的和是5,那么小军获胜,如果朝上的两个数的和是7,那么小明获胜。这样的游戏公平吗?

二、新课学习: 1、基本概念:

②在条件S 下必然要发生的事件叫 ; 在条件S 下不可能发生的事件叫 ;

在条件S 下可能发生也可能不发生的事件叫 。

③必然事件和不可能事件统称为 ,确定事件和随机事件统称为 ,一般用大写字母A ,B ,C …,表示。

④(1)抛掷一颗骰子,出现6点是 事件; (2)某人投篮2次,投中3次是 事件。

⑤下列事件中,随机事件的个数为( )

(1)2010年5月1日下雨;(2)手电筒电池没电,灯泡发亮;(3)某信息台在每天的某段时间受到信息咨询的请求次数超过32次;(4)方程2310x x --=有两个不相等的实根。 A 、1 B 、2 C 、3 D 、4

⑥频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验

中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=A n

n

为事件A 出

现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

⑦频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的

比值A n

n

,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这

种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

三、应用举例:

例1 试判断下列事件是随机事件、必然事件、还是不可能事件

(1)我国东南沿海某地明年将3次受到热带气旋的侵袭;

a ;

(2)若a为实数,则0

(3)某人开车通过10个路口都将遇到绿灯;

(4)抛一石块,石块下落;

(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的

数字之和大于12。

例2

四、达标练习:

1、在数轴上(0,2)的区间内投点,若点落入区间(0,1)内属于事件。

2、在10件同类产品中,有8件正品,2件次品,从中任意抽取3件,至少有1件正品是事件。

3

(1

4、某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:

表3-1-4

(1)

(2)该市男婴出生的概率是多少?

五.回顾小结

1理解确定性现象、随机现象、事件、随机事件、必然事件、不可能事件的概念并会判断给定事件的类型。

2理解概率的定义,理解频率和概率的区别和联系。

六、作业班级______________ 姓名_____________

1、课本第页第题

2、课本第页第题

离散型随机变量的期望

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

五、教学的基本流程设计

教学内容设计意图

引入

建构概念

学生在未学习期望的概念之前解法可能如下:

[情境一]解答:

根据混合糖果中3种糖果的比例可知在1kg的混合糖果

中,3种糖果的质量分别是kg,kg和kg,则混合

糖果的合理价格应该是18×+24×+36×=23

()

[情境二]解答:

商场平均可获经济效益为10×0.6-4×0.4=4.4(万元)

为了将两个式子中的数字与随机变量的取值及其

概率建立关系,归纳出期望的定义。

接着引导学生分析[情境一]

∵混合糖果中每颗糖果的质量都相等

∴在混合糖果中任取一粒糖果,它的单价为18,

24或36的概率分别为,和,若用表示

这颗糖果的价格,则每千克混合糖果的合理价格表示为

18×P(=18)+24×P(=24)+36×P(=36)

分析[情境二]得

商场平均可获经济效益为10×P(=10)+(-4)×P(

=-4)

这两个问题的解决将为

归纳出期望的定义作铺

垫。

细心的学生会发现以上

两式从形式上具有某种

相似性,通过比较,归

纳出离散型随机变量期

望的定义。

归纳是一种重要的推理

方法,由具体结论归纳

比较两式、归纳定义

一般地,若离散型随机变量的概率分布为

……

……

则称

为的数学期望或均值,数学期望又简称为期望。概括出定义能使学生的感性认识升华到理性认识,培养学生从特殊到一般的认知方法。

用文字语言描述抽象的数学公式

E=·+·+…+·+…

即:离散型随机变量的数学期望即为随机变量取值与相应

概率分别相乘后相加。

加深公式记忆

理解概念练习1:离散型随机变量的概率分布

1 100

P 0.01 0.99

①求可能取值的算术平均数。

②求的期望。

解答如下

①、可能取值的算术平均数为

②、E=1×0.01+100×0.99=99.01

弄清数学概念、理解数

学概念是学生学好数学

的基础和前提,为了加

深学生对概念的理解,

设置以下4道练习。

其中练习1是为了让学

生进一步理解期望是反

映随机变量在随机试验

中取值的平均值,它是

概率意义下的平均值,

不同于相应数值的算术

平均数。

所设置的两个问题将学

生的注意力转而集中到

对解题过程的分析,求

得答案,进而通过对比,

发现以下两个结论

①、随机变量相应数

值的算术平均数并不能

真正体现的期望。因

练习2:随机抛掷一个骰子,求所得骰子的点数的期望。结论:

则E=×+×+…+×

=

练习3:篮球运动员在比赛中每次罚球中得1分,罚不中得0分。已知某运动员罚球命中的概率为0.7,那

么他罚球1次的得分的均值是多少?

当学生求得E=0.7后,

提出问题:均值为0.7分的含义是什么?

(让学生理解所求得的E=0.7即为罚球1次平均得0.7分.我们也说他只能期望得0.7分.)

练习4:甲、乙两名射手一次射击中的得分为两个相互独立的随机变量与,且,的分布列为

1 2 3

P 0.3 0.1 0.6 为取值100的概率比

取值1的概率大得多。

②、随机变量取值的算术平均数即为

时的期望。

练习2与结论②相统一,更进一步说明取不同数值时的概率都相等时,随机变量的期望

与相应数值的算术平均数相等。

这两道练习都是为了进一步理解期望的含义。

1 2 3

P 0.3 0.4 0.3

注意事项

①、区别与E

随机变量是可变的,可取不同的值。

而期望E是不变的,由的分布列唯一确定,所以称之为概率分布的数学期望,它反映了取值的平均水平。

②、区别随即机变量的期望与相应数值的算术平均数。

期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数。

实例1:有一批数量很大的产品,其次品率是15℅。对这

批产品进行抽查,每次抽出1件,如果抽出次品,则抽

查终止,否则继续抽查,直到抽到次品,但抽查次数最

多不超过10次。求抽查次数的期望。

教师强调:一般地,在产品抽查中已说明产品数量很大时,

各次抽查结果可以认为是相互独立的。

解题中注意:取1~10的整数,前k-1次取到正品,而

第k次取到次品的概率是P(=k)=

(k=1,2,3, (9)

P(=10)=

解完此例题后归纳求离散型随机变量期望的步骤:

①、确定离散型随机变量的取值。

②、写出分布列,并检查分布列的正确与否。

③、求出期望。

例2:目前由于各种原因,许多人选择租车代步,租车行

生活中蕴涵数学知识,数

学知识又能解决生活中

的问题。两道例题与生

活密切联系,让学生感受

数学在生活及社会各个

领域中的广泛应用。

受损,则保险公司需赔偿元,一年中一辆车受损的概

率为0.03,则赔偿金至少定为多少元,保险公司才

③若一辆车一年的保险费为元,若在一年内该车受

损,则保险公司需赔偿元,一年中一辆车受损的概率

为,则,,应满足什么关系,保险公司方可盈

你有哪些收获?

一个概念,两个注意,三个步骤。

让学生知道理解概念是关键,掌握公式是前提,实际应用

是深化。

小结除了注重知识,还

注重引导学生对解题思

路和方法的总结,可切

实提高学生分析问题、

解决问题的能力,并让

学生养成良好的学习数

学的方法和习惯。

基础题、课后探究题

七、评价分析

1、评价学生学习过程

本节课在情境创设,例题设置中注重与实际生活联系,让学生体会数学的应用价值,在教学中注意观察学生是否置身于数学学习活动中,是否精神饱满、兴趣浓厚、探究积极,并愿意与老师、同伴交流自己的想法。

2、评价学生的基础知识、基本技能和发现问题、解决问题的能力

教学中通过学生回答问题,学生举例,归纳总结等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨,同时从新课标评价理念出发,鼓励学生发表自己的观点、充分质疑,并抓住学生在语言、思想等方面的的亮点给予表扬,树立自信心,帮助他们积极向上。

教学设计“说明”

本节的教学有如下特点:

(1)、注重情境创设,联系生活实际,关注身边数学。

(2)、期望概念的教学是本节课的重点,本节突出概念的建构,通过实例,引导学生分析,并归纳出定义;通过练习,层层递进,加深学生对概念的理解,帮助学生把握概念的本质特征,使学生的思维活起来;通过例题分析,让学生体会学习期望的意义。本节课以现实问题引入,以生活中的实例结束,让学生认识到数学源于生活,又应用于生活,生活中处处有数学。

浙江省丽水中学教师教学设计

年级高二科目____ 数学__ _ 主备教师

相关文档
相关文档 最新文档