文档库 最新最全的文档下载
当前位置:文档库 › 逆变器操作说明和故障处理

逆变器操作说明和故障处理

逆变器操作说明和故障处理
逆变器操作说明和故障处理

一逆变器原理介绍

1.1逆变(invertion):把直流电转变成交流电的过程。

逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。

逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。

1.2 IGBT的结构和工作原理

1.2.1 IGBT的结构

IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示

图1-1 IGBT等效原理图及符号表示

1.2.2IGBT的工作原理

IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。

其开通和关断是由栅极和发射极间的电压U GE决定的。

当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。

当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。

电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。

1.3逆变电路介绍

1.3.1逆变产生的条件为

1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。

2要求晶闸管的控制角α>π/2,使U d为负值。

两者必须同时具备才能实现有源逆变。

逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。

逆变失败的原因

1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。

2晶闸管发生故障,该断时不断,或该通时不通。

3交流电源缺相或突然消失。

4换相的裕量角不足,引起换相失败

为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。

1.3.2逆变电路基本的工作原理

图1-2单相逆变电路原理图

图1-2中S1-S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。当开关S 1、S 4闭合,S 2、S 3断开时,负载电压u o 为正;当开关S 1、S 4断开,S 2、S 3闭合时,u o 为负,这样就把直流电变成了交流电。改变两组开关的切换频率,即可改变输出交流电的频率。 电阻负载时,负载电流i o 和u o 的波形相同,相位也相同。阻感负载时,i o 相位滞后于u o ,波形也不同。

三个单相逆变电路可组合成一个三相逆变电路。图1-3为三相桥式逆变电路。下面介绍一下它的基本工作方式。

基本工作方式是180°导电方式。同一相(即同一半桥)上下两臂交替导电,各相开始导电的角度差120 °,任一瞬间有三个桥臂同时导通。

图1-3 三相桥式逆变电路

工作波形

对于U 相输出来说,当桥臂1导通时,u UN’=U d /2,当桥臂4导通时,u UN’=-U d /2,u UN’的波形是幅值为U d /2的矩形波,V 、W 两相的情况和U 相类似。

负载线电压u UV 、u VW 、u WU 可由下式求出

负载各相的相电压分别为

??

??

?-=-=-= UN'WN'WU WN'VN'VW VN'UN'UV u u u u u u u u u ??

???-=-=-=' NN WN'WN NN' VN'VN NN' UN'UN u u u u u u u u u

图1-4 三相桥式逆变电路输出波形

把上面各式相加并整理可求得

设负载为三相对称负载,则有u UN +u VN +u WN =0,故可得

负载参数已知时,可以由u UN 的波形求出U 相电流i U 的波形,图4-10g 给出的是阻感负载下 时i U 的波形。 把桥臂1、3、5的电流加起来,就可得到直流侧电流i d 的波形,如图4-10h 所示,可以看出i d 每隔60°脉动一次。

为了防止同一相上下两桥臂的开关器件同时导通而引起直流侧电源的短路,要采取“先断后通”的方法。

1.4 PWM 控制的基本原理

单纯地由开和关回路产生的逆变器输出波形并不实用。

一般需要采用高频脉

)(3

1)(31WN VN UN WN' VN' UN' NN'u u u u u u u ++-++=)(31 WN' VN' UN'NN'u u u u ++=3

/π?<

宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。

面积等效原理是PWM控制技术的重要理论基础。

原理内容:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。如果把各输出波形用傅里叶变换分析,则其低频段非常接近,仅在高频段略有差异。

1.4.1用PWM波代替正弦半波

将正弦半波看成是由N个彼此相连的脉冲宽度为 /N,但幅值顶部是曲线且大小按正弦规律变化的脉冲序列组成的。

把上述脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,这就是PWM波形。对于正弦波的负半周,也可以用同样的方法得到PWM波形。

脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM (Sinusoidal PWM)波形。

PWM波形可分为等幅PWM波和不等幅PWM波两种,由直流电源产生的PWM波通常是等幅PWM波。基于等效面积原理,PWM波形还可以等效成其他所需要的波形,如等效所需要的非正弦交流波形等。

图1-5PWM等效波形

1.4.2PWM跟踪控制技术

跟踪控制方法:把希望输出的电流或电压波形作为指令信号,把实际电流或电压波形作为反馈信号,通过两者的瞬时值比较来决定逆变电路各功率开关器件的通断,使实际的输出跟踪指令信号变化

图1-6为PWM跟踪控制单相半桥式逆变电路

把指令电流i*和实际输出电流i的偏差i*-i作为带有滞环特性的比较器

的输入,通过其输出来控制功率器件V

1和V

2

的通断。

图1-6单相跟踪控制型PWM逆变电路控制规律

当V

1(或VD

1

)导通时,i增大。

当V

2(或VD

2

)导通时,i减小。

通过环宽为2?I的滞环比较器的控制,i就在i*+?I和i*-?I的范围内,呈锯齿状地跟踪指令电流i*。

环宽过宽时,开关频率低,跟踪误差大;环宽过窄时,跟踪误差小,但开关频率过高,开关损耗增大。

L大时,i的变化率小,跟踪慢;L小时,i的变化率大,开关频率过高。

三相跟踪控制型PWM逆变电路

由三个单相半桥电路组成,三相电流指令信号i*U、i*V和i*W依次相差120°。

在线电压的正半周和负半周内,都有极性相反的脉冲输出,这将使输出电压中的谐波分量增大,也使负载的谐波损耗增加。

图1-7 三相跟踪控制型PWM逆变电路

脉宽调制使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。图1-8为一 GSL0500逆变器原理图。

图1-8 逆变器原理图

二逆变器安装

逆变房电气原理图

说明:

1、本项目1MW集装箱式逆变房用的是科士达GSL1000-DDU集成直流配电型号的逆变房,其中每台逆变器直流输入最大可支持8路输入。

2、交流动力配电箱,为MW房内部供电,支持外部供电和内部供电自切换,内部供电额定功率1.2KW。外部由箱变隔离变引一根ZR-YJV22-1kV-4×6电缆为逆变房配电箱进行供电。

3、箱变测控装置放于35kV升压箱变里,通过通信电缆接入逆变房内的数据采集柜(通讯柜)。

4、通信柜信号接口由综自厂家(南自)提供。

5、通讯柜由业主另行采购,逆变房预留了800(宽)x600(深)x2260(高)的安装位置。

逆变房电气接口图

说明:

1、每台逆变器直流输入最大可支持8路输入。

2、每台逆变器至箱变的电缆为三根ZR-YJV22-1kV-3×240。

3、逆变器集成了直流配电功能,可以直接接入汇流箱的直流输出。

4、升压变压器中性点禁止接地。

500KW逆变器电气原理图

说明:

1.每台逆变器直流输入最大可支持8路输入。

2.除湿加热器、通信接口2为选配件。

交流动力配电箱接线图

说明:

1、箱体内所有屏柜均要与机房集中地排进行接地。

2、箱体预留2个接地螺栓,现场使用-50x5热镀锌接地扁钢与光伏区接地网相连,要求接地电阻小于4欧姆,图纸请见光伏区接地卷册

集装箱逆变房500KW逆变器接口图

说明:

1、表格中单台逆变器的PE端子(接地端子)的接地线已由厂家集成在箱体内连接。接地只用考虑外部箱体与主接地网相连,连接处不少于两点。

集装箱机房外形尺寸及总体安装图

1.逆变房防水(尘)罩安装完毕后外形尺寸为:4330*2770*2869(宽*深*高);

2.通讯柜部分的原理图及接线请见二次图纸,通讯柜由业主另行采购,现场施

工方负责安装。

照明接线图、插座接线图

逆变器和箱变相对位置布置图

三逆变器操作及维护

3.1开关说明

开锁后把把柄逆时针旋转90度即可打开逆变器前门,可以看到逆变器各电源开关,包括:

1.PV支路输入开关

2.QPV总输入开关;

3.交流输出开关QAC;

4.交流防雷开关KS;

5.外接交流取电开关KB1;

6.内部交流取电开关KB2

7.内部三相风机取电开关KB3

8.测试辅助开关:正常情况下请置于OFF位置,当需要外接辅助电源测试LCD

显示时,请置于ON位置;

注意:在接通外部电源之前,须保持所有开关处于断开状态。

3.2逆变器上电步骤

上电开机之前,确保逆变器按规范安装完毕,并断开所有外部开关。操作步骤如下:

1.按标签“交流辅助电源”要求,接好交流辅助电源电缆;

2.按标签“交流辅助电源保险”选择放入指定的保险盒;

3.确认直流配电开关QPVn(n为相应的开关路数)断开,交流输出开关QAC、

直流总开关QPV断开,辅助电源开关KB1、KB2、KB3断开;

4.确认直流输入正负极正确,PV开路电压小于900V,交流相序正确;电压范

围在系统电压的-10%—+15%内。

5.闭合交流开关QAC闭合风机电源开关KB3.

6.闭合辅助电源开关KB2控制系统开始工作。

7.观察LCD面板的信息提示,当出现“请闭合QPV直流开关的信息框,闭合所

有的QPVn开关;

8.约一分钟后听到并网接触器自动闭合的声音,表明逆变器并网成功,LCD面

板显示并网发电

9.闭合交流防雷开关KS。

注意:严禁在LCD显示屏未提示“请闭合QPV直流开关的信息框”前合上QPVn输入开关。

3.3逆变器下电步骤

1 按下系统EPO开关。

2断开交流输出开关QAC断开风机开关KB3

3断开QPVn输入开关

4断开内部电源开关KB2

显示面板右上角的紧急停机开关(EPO)用于在紧急情况下关闭逆变器,按下后将关闭逆变模块输出,并迅速切断向电网供电。此时逆变器的PV输入端口和交流输出端口仍然带点。系统下电后要等待5分钟才能进行维护操作。

3.4 逆变器介绍及维护

1.逆变器正面示意图

2逆变器背面示意图

逆变电源的几种控制算法

逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,鲁棒性好,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点: PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。 重复控制

逆变电源控制算法哪几种

https://www.wendangku.net/doc/394785959.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.wendangku.net/doc/394785959.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统的旅客列车上每节车厢都设置一台三相逆变器将机车供给的DC600V的直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电。 逆变器设两台互为独立的热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KV A),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备的正常工作。 一、逆变器的操作要求: 为了确保逆变器的可靠工作,必须按照逆变器的操作规程进行操作。上电的时候,先给110V控制电然后再给600V 的大电;断电的时候先断600V的大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载的操作原则。为了确保检修人员和设备的安全,逆变器的检修必须在断电五分钟后进行。 一、逆变器常见故障的处理 1.正常工作时,逆变器报代码为“OO”,输入欠压时报 “O2”,除此之外,出现其它代码均为故障状态。 2.如果逆变器报“O5”,断开负载,看能否正常工作,如 正常,检查负载是否有问题,如仍有“O5”故障,则

更换驱动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7”,打开相关逆变单元的散热器,检查IGBT是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏, 更换熔断器,然后,打开对应单元的散热器,测量IGBT 是否有损坏,有损坏则进行更换,同时检查驱动板是否正常,有问题更换。 5.如果逆变器报“OE”,检查相应单元的接触器触头和触 点是否异常,检查散热器箱内左侧的电源板插头是否有松动,如果接触器触头有粘连现象,要检查散热器上的IGBT是否有问题,同时检查驱动板。如都正常,测量相应单元的固态继电器,有问题则更换相应单元箱的固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传的代码为 “OO”,但仍为故障的状态:第一种为逆Ⅰ或逆Ⅱ无输

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

梅兰日兰UPS使用操作说明

梅兰日兰U P S使用操作 说明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

梅兰日兰U P S使用操作说明 一、操作面板显示和按键说明 1.整流/充电器指示灯 1)指示灯熄灭:整流/充电器停止运行 2)指示灯常亮成绿色:整流/充电器运行正常 3)指示灯常亮成红色:整流/充电器故障,表示以下的一种或几种故障; 输入开关Q1断开, 整流/充电器输入端的保护保险(FUE)熔断 整流/充电器模块内部异常高温 电池充电电流异常增大 电池充电电压异常升高 整流/充电器的控制电路板没有校验或没有设置参数, 控制电源板故障 2.电池指示灯 1)指示灯熄灭:电池正在浮充电 2)指示灯闪烁成绿色:电池正在强充电 3)指示灯常亮成绿色:负载由电池供电 4)指示灯闪烁成红色:电池低电压停机预报警 5)指示灯常亮成红色:电池后背时间结束且电池断路器QF1断开,或电池故障。 3.静态旁路指示灯 1)指示灯熄灭:电源2在容限范围内,且静态旁路停止 2)指示灯常亮成绿色:静态路旁导通工作

3)指示灯常亮成红色:表示以下一种或几种故障: 电源2的电压或频率超出容限范围 静态旁路故障 逆变器输出接触器K3N运行故障 逆变器响应故障(并联UPS) 静态旁路模块内部异常高温 静态旁路通风故障 静态旁路控制电路板的电源故障 切换控制电路板故障 逆变器控制电路板没有校验或没有设置参数 控制电源板故障 4.逆变器指示灯 1)指示灯熄灭:逆变器停机 2)指示灯闪烁成绿色:逆变器启动并运行,但还没有切换带负载3)指示灯常亮成绿色:逆变器运行正常 4)指示灯常亮成红色:逆变器故障,表示以下一种或几种故障:由于逆变器输出电压超出容限范围而导致逆变器停机逆变器输出保护保险(FUS)熔断 逆变器模块上的保护保险熔断(并联UPS) 逆变器故障 逆变器输出变压器内部异常高温 逆变器模块内部异常高温 输出电压故障(幅值或相位(并联UPS)

逆变器屏幕没有显示

1、逆变器屏幕没有显示 故障分析:没有直流输入,逆变器LCD是由直流供电的。 可能原因: (1)组件电压不够。逆变器工作电压是100V到500V,低于100V时,逆变器不工作。组件电压和太阳能辐照度有关。 (2)PV输入端子接反,PV端子有正负两极,要互相对应,不能和别的组串接反。 (3)直流开关没有合上。 (4)组件串联时,某一个接头没有接好。 (5)有一组件短路,造成其它组串也不能工作。 解决办法: 用万用表电压档测量逆变器直流输入电压。电压正常时,总电压是各组件电压之和。如果没有电压,依次检测直流开关,接线端子,电缆接头,组件等是否正常。如果有多路组件,要分开单独接入测试。 如果逆变器是使用一段时间,没有发现原因,则是逆变器硬件电路发生故障,需要联系售后。 2、逆变器不并网 故障分析:逆变器和电网没有连接。 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是否断开。 3、PV过压 故障分析:直流电压过高报警。 可能原因:组件串联数量过多,造成电压超过逆变器的电压。 解决办法:因为组件的温度特性,温度越低,电压越高。单相组串式逆变器输入电压范围是100-500V,建议组串后电压在350-400V之间,三相组串式逆变器输入电压范围是250-800V,建议组串后电压在600-650V之间。在这个电压区间,逆变器效率较高,早晚辐照度低时也可发电,但又不至于电压超出逆变器电压上限,引起报警而停机。 4、隔离故障 故障分析:光伏系统对地绝缘电阻小于2兆欧。 可能原因:太阳能组件,接线盒,直流电缆,逆变器,交流电缆,接线端子等地方有电线对地短路或者绝缘层破坏。PV接线端子和交流接线外壳松动,导致进水。 解决办法:断开电网,逆变器,依次检查各部件电线对地的电阻,找出问题点,并更换。 5、漏电流故障 故障分析:漏电流太大。 解决办法:取下PV阵列输入端,然后检查外围的AC电网。直流端和交流端全部断开,让逆变器停电30分钟以上,如果自己能恢复就继续使用,如果不能恢复,联系售后技术工程师。 6、电网错误

三相储能变流器操作手册

版本号 V1.0 PSCONVERTER-I10/3 三相储能变流器 用户使用手册 天津天海源电气技术有限责任公司 Tianjin THY -Electric Power Technology Co., Ltd 目录

一关于本手册的说明 (1) 1.1 前言 (2) 1.2 内容介绍 (2) 1.3 面向读者 (3) 1.4 手册使用 (3) 二安全须知 (4) 2.1 用户须知 (5) 2.2 安全标志约定 (5) 2.3 安全注意事项 (5) 三PSCONVERTER-I10/3三相储能变流器简介 (7) 3.1 简介 (8) 3.2 产品性能特点 (8) 3.3 产品原理图 (10) 四操作指导 (12) 4.1 上电前检查 (13) 4.2 上电操作 (14) 4.3 断电操作 (15) 4.4 变流器工作状态 (16) 五触摸屏监视终端和上位机监控软件操作说明 (17) 5.1 触摸屏监视终端 (18) 5.1.1 触摸屏监视终端简介 (18) 5.1.2 触摸屏监视终端操作步骤 (20) 5.2 上位机监控软件 (20) 5.2.2 上位机监控软件功能简介 (21) 5.2.2 上位机监控软件功能操作步骤 (22) 六故障诊断及排除 (23) 6.1 故障和告警类型 (24) 6.2 上位机监控软件故障 (25) 6.3 其他故障 (25) 七例行维护 (26) 7.1 维护周期 (27) 7.2 可视化检查系统状态 (27) 7.2.1 变流器箱体 (27) 7.2.2 变流器周围的环境 (28) 7.3 接线端子紧固性检查 (28) 7.3.1 内部器件检查 (28) 7.3.2 插头的安装检查 (29) 7.4断路器的检查及维护 (29) 八典型应用 (30) 8.1典型应用1:离网V/F控制模式 (31) 8.1.1离网V/F控制模式简介 (31) 8.1.2应用目的 (31) 8.1.3应用接线图例 (31) 8.1.4硬件及上位机操作步骤 (31)

逆变器原理

太阳能光伏并网控制逆变器工作原理及控制方法摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1 引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为“光热”和“光伏”两种,其中光热式热水器在我

国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的“光生伏打现象”。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2 并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分:其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

逆变器使用说明书

车载逆变器用户手册 1、简介 感谢您购买HUASYN系列的逆变器。为了您能舒适、安全的使用本产品,请仔细阅读本说明书,说明书中包含关于本产品的重要信息,请保留此说明书以供以后参考。 HUASYN系列逆变器拥有您所期待的的卓越品质,无论你接在汽车点烟器插孔,还是接在电瓶上,都能直接转换为交流电。它可广泛用于各类家用电器上,让您在商务工作、驾车旅游、停电应急的时候,给您源源不断的动力。 2、产品特性 采用专用智能IC控制逆变器产品,具有非常完善的保护功能和指示功能。采用优质的双面线路板及电子元件,保证产品的高质量,高性能。转换效率高、小巧轻便、适用范围广的特点。 产品示意图: 75W 100W 150W 200W 300W 500W 3、使用说明 a:使用环境 基于安全和性能的考虑,HUASYN系列产品应该在以下环境下使用: 干燥:不能浸水或淋雨

阴凉:环境温度应该在0℃到40℃之间 通风:保持壳体上方5CM内无异物,其它端面通风良好,确认风扇不会在工作过程中不会发生阻塞或障碍(适用于有带风扇的产品),以便防止出现通风不良的情况。 b:操作方法 1、确定所使用的电器功率应小于所使用的逆变器的额定输出功率。 2、当使用设备输出功率小于200W时,将逆变器开关置于关闭位置,然后雪茄头紧密地插入车内点烟器插口,确保雪茄头良好接触。 3、当使用设备输出功率大于200W时,必须通过鳄鱼夹线使用,引线的太阳端子接至逆变器接线柱,颜色应该匹配,引线端为红色的接逆变器上的红色接线柱,引线端为黑色的接逆变器的黑色接线柱;另外一端的鳄鱼夹连接所使用过的电瓶,红色鳄鱼夹接“+”级,黑色鳄鱼夹接“﹣”级)。 4、输入端接好后,打开开关,逆变器指示灯将发亮,表示已经有交流电输出,逆变器便可以开始正常工作。 5、将需要使用的电器插入的逆变器的输出端AC插座或USB接口充电,根据你所使用的设备选择。 6、开启你的电器开关,HUASYN逆变器便可以给你带来源源不断的交流电能。 4、产品规格

并网逆变器电流控制方法

并网逆变器的电流控制方法陈敬德,1140319060;杨凯,1140319070;指导老师:王志新(上海交通大学电气工程系,上海,200240) 摘要:并网逆变器是光伏发电系统的一个核心部件,其控制技术一直是研究的热点。其使用的功率器件属于电力电子设备,它们固有特性会对系统产生不利的影响,为了防止逆变器中的功率开关器件处于直通状态,通常要在控制开关管的驱动信号中加入死区,这给逆变器输出电压带来了谐波,对电网的电能产生污染。本文对传统的控制方法重复控制、传统的PI控制、dq轴旋转坐标控制、比例谐振控制进行了总结分析,并比较了它们的优缺点。 关键词:并网逆变器,重复控制,传统的PI控制,dq轴旋转坐标控制,比例谐振控制 0引言 随着现代工业的迅速发展,近年来全球范围内包括煤、石油、天然气等能源日益紧缺,全球将再一次面临能源危机,同时,这些燃料能源的应用对我们所生活的周围环境产生了严重的影响。环境问题受到了人们的广泛关注,为了解决能源紧缺以及环境污染问题,寻找可再生能源是解决这一问题的有效方式。太阳能因其清洁,无污染的优势受到了人们的青睐,太阳能光伏发电是目前充分利用太阳能资源的主要方式之一。太阳能发电主要有单独运行和并网运行两种模式,其中并网运行发展速度越来越快,应用的规模也愈来愈大[1]。逆变器是光伏发电系统中的关键部件,逆变器的工作原理是通过IGBT、GTO、GTR等功率开关管的导通和关断,把直流蓄电池电能、太阳能电池能量等变换为电能质量较高的交流电能,可以把它看成是一种电能转换设备。功率开关管的开关频率一般都比较高,因此利用它们进行电能转换的效率也比较高,但有一个很大的缺点是由它们组成的逆变系统的输出电能却不理想,其输出的波形中包含了很多对电能质量产生不利的方波,而很多场合都要求其输出的是一定幅值和频率的正弦波,所以要寻找更好的控制策略来提高逆变器的电能质量,让其输出各项性能指标都满足要求的波形。目前所用的逆变器可以分为以下两类:一类是恒压恒频逆变器,这类逆变器在各种电源持续供电的领域应用广泛,它能够输出电压幅值和频率都是特定值的交流正弦波,简称CVCF 逆变器。第二类是变压变频逆变器,这种逆变器主要用在电动机的调速系统中,它能够输出特定的幅值电压和频率,简称VVVF 逆变器[2]。 本文将对并网逆变器的几种常见控制方法进行总结,如传统的PI控制、基于dq 旋转坐标系的控制、重复控制及比例谐振控制。给出了框图和数学模型,并指出了它们各自的优缺点。 1重复控制 1.1重复控制思想 重复控制是基于内模原理的一种控制方法。所谓内模原理,即在一个闭环调节系统中,在其反馈回路中设置一个内部模型,使该内部模型能够很好的描述系统的外部特性,通过该模型的作用可使系统获得理想的指令跟踪特性,具有很强的抗干扰能力

30kw逆变器使用说明书

用户手册 WI300-240-CM01 离网型纯正弦波逆变器

版本:3.0

目录 一、安全说明 0 1.1 使用安全 0 1.2 维护安全 0 二、产品概述 (1) 三、产品结构 (1) 3.1 产品结构示意图 (1) 3.2 LCD显示界面 (2) 四、设备原理框图 (3) 五、产品安装 (4) 5.1 安装流程 (4) 5.2 安装细节说明 (5) 5.3 环境选择 (6) 5.4 电气连接 (7) 5.4.1 逆变器与蓄电池组相连接 (7) 5.4.2 逆变器与用电负载相连接 (8) *5.4.3 逆变器与市电电网相连接 (10) 六、故障排除 (11) 七、质保与售后服务 (12) 八、质保与售后服务 (13)

用户手册中带有*内容为具有市电互补功能产品的使用说明。

一、安全说明 1.1使用安全 本手册中使用安全标志,强调潜在的安全风险和重要的安全信息,如果操作不当可能导致人身伤害或设备损坏。 严禁在有易燃性、易爆性气体或物品的环境下使用,谨防火焰和火花; 无论在何种工作状态下,请勿带电拆除或连接设备连线,以免发生危险; 逆变器输出禁止与市电电网相连接,使用前要做到市电线路与逆变器线路隔 离,否则将严重损坏逆变器。 应安装在儿童触摸不到的位置,以确保儿童安全。 逆变器检修或维护时,在拆除相关连接线后必须等待超过10分钟时间间隔方 可打开设备盖板,防止逆变器电容器件存储的电荷对人身造成电击伤害。 使用过程中请勿用杂物阻塞设备的散热孔,确保良好的通风和散热; 若设备发生保护报警,禁止立刻重启设备,应按照故障分析内容查明原因且 修复后再次开机使用。 1.2维护安全 蓄电池组虚接或损坏是造成设备出现故障的主要因素之一。建议您每两周定

华为光伏逆变器常见故障及处理

华为光伏逆变器常见故障及处理 1、绝缘阻抗低:使用排除法。把逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串,找到问题组串后重点检查直流接头是否有水浸短接支架或者烧熔短接支架,另外还可以检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。 2、母线电压低:如果出现在早/晚时段,则为正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,检测方法依然为排除法,检测方法与1项相同。 3、漏电流故障:这类问题根本原因就是安装质量问题,选择错误的安装地点与低质量的设备引起。故障点有很多:低质量的直流接头,低质量的组件,组件安装高度不合格,并网设备质量低或进水漏电,一但出现类似问题,可以通过在洒粉找出**点并做好绝缘工作解决问题,如果是材料本省问题则只能更换材料。 4、直流过压保护:随着组件追求高效率工艺改进,功率等级不断更新上升,同时组件开路电压与工作电压也在上涨,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。 5、逆变器开机无响应:请确保直流输入线路没有接反,一般直流接头有防呆效果,但是压线端子没有防呆效果,仔细阅读逆变器说明书确保正负极后再压接是很重要的。逆变器内置反接短路保护,在恢复正常接线后正常启动。 6、电网故障: 电网过压:前期勘察电网重载(用电量大工作时间)/轻载(用电量少休息时间)的工作就在这里体现出来,提前勘察并网点电压的健康情况,与逆变器厂商沟通电网情况做技术结合能保证项目设计在合理范围内,切勿“想当然”,特别是农村电网,逆变器对并网电压,并网波形,并网距离都是有严格要求的。出现电网过压问题多数原因在于原电网轻载电压超过或接近安规保护值,如果并网线路过长或压接不好导致线路阻抗/感抗过大,电站是无法正常稳定运行的。解决办法是找供电局协调电压或者正确选择并网并严抓电站建设质量。 电网欠压:该问题与电网过压的处理方法一致,但是如果出现独立的一相电压过低,除了原电网负载分配不完全之外,该相电网掉电或断路也会导致该问题,出现虚电压。 电网过/欠频:如果正常电网出现这类问题,证明电网健康非常堪忧。 电网没电压:检查并网线路即可。 电网缺相:检查缺相电路,即无电压线路。 三相不平衡,并网线路外加特殊设备导致并网异常震荡,超长距离并网,电网削顶过压相移。 7、最后一点——监控搭接:正确阅读各设备说明书机型线路压接,设备连接,并设置好设备的通讯地址,时间,是保证通讯稳定有效的保证! 8、发电量保证:有空擦擦板子,发电量“凸”一下就起来了。

逆变器操作说明和故障处理

一逆变器原理介绍 1.1逆变(invertion):把直流电转变成交流电的过程。 逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。 逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。 1.2 IGBT的结构和工作原理 1.2.1 IGBT的结构 IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示 图1-1 IGBT等效原理图及符号表示 1.2.2IGBT的工作原理 IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。 其开通和关断是由栅极和发射极间的电压U GE决定的。

当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。 当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。 电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。 1.3逆变电路介绍 1.3.1逆变产生的条件为 1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。 2要求晶闸管的控制角α>π/2,使U d为负值。 两者必须同时具备才能实现有源逆变。 逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。 逆变失败的原因 1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。 2晶闸管发生故障,该断时不断,或该通时不通。 3交流电源缺相或突然消失。 4换相的裕量角不足,引起换相失败 为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。 1.3.2逆变电路基本的工作原理 图1-2单相逆变电路原理图

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统得旅客列车上每节车厢都设置一台三相逆变器将机车供给得DC600V得直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电、 逆变器设两台互为独立得热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KVA),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备得正常工作。一、逆变器得操作要求: 为了确保逆变器得可靠工作,必须按照逆变器得操作规程进行操作。上电得时候,先给110V控制电然后再给600V 得大电;断电得时候先断600V得大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载得操作原则。为了确保检修人员与设备得安全,逆变器得检修必须在断电五分钟后进行、 一、逆变器常见故障得处理 1.正常工作时,逆变器报代码为“OO",输入欠压时报“O 2”,除此之外,出现其它代码均为故障状态、 2.如果逆变器报“O5”,断开负载,瞧能否正常工作,如正 常,检查负载就是否有问题,如仍有“O5”故障,则更换驱

动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,就是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载就是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7",打开相关逆变单元得散热器,检查IGBT就是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏,更 换熔断器,然后,打开对应单元得散热器,测量IGBT就是否有损坏,有损坏则进行更换,同时检查驱动板就是否正常,有问题更换。 5.如果逆变器报“OE",检查相应单元得接触器触头与触 点就是否异常,检查散热器箱内左侧得电源板插头就是否有松动,如果接触器触头有粘连现象,要检查散热器上得IGBT就是否有问题,同时检查驱动板。如都正常,测量相应单元得固态继电器,有问题则更换相应单元箱得固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板就是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传得代码为 “OO”,但仍为故障得状态:第一种为逆Ⅰ或逆Ⅱ无输

并网逆变器的控制系统及控制方法与制作流程

图片简介: 本技术介绍了一种并网逆变器的控制系统及控制方法,所述的控制系统包括:检测单元、锁相单元、计算单元、乘法器、复位积分器、比较器、RS触发器以及选择开关,选择开关对RS触发器的信号经过选择后得到逆变系统中开关S1、S2、S3、S4的驱动信号g(S1)、g(S2)、g(S3)、g(S4),其中,选择的依据由电网电压ug提供,通过在每个开关周期保持输入电路的能量与输出能量和电路中消耗及储存的能量相等来实现并网逆变器的控制。本技术实现了对可再生能源等直流源不稳定,且电网存在波动情况的并网系统的控制,能够抑制直流侧电源不稳定对并网电流的影响,且提高了并网电流对于电网波动的动态响应速度。 技术要求 1.一种并网逆变器的控制系统,其特征在于,所述的控制系统包括:检测单元、锁相单元、计算单元、乘法器、复位积分器、比较器、RS触发器以及选择开关,其中, 所述的检测单元和选择开关与逆变系统相连,所述的检测单元检测得到逆变系统的并网电压ug、逆变器输出侧A、B点之间的电压uAB和电感电流il,所检测到的信号发送给计算单元以及经过乘法器后送入复位积分器; 所述的锁相单元与所述的检测单元相连,用于对所检测的并网电压的相位和频率进行锁定,用以确定给定并网电流的相位和频率;所述的计算单元、乘法器和复位积分器用于计算及处理所述的检测单元和锁相单元所得到的信号,所述的计算单元和所述的复位积分器的输出端分别与所述的比较器的两个输入端相连; 所述的比较器用于对所述的计算单元和复位积分器处理得到的信号进行对比,用于提供所述的RS触发器 的R端信号,R端为RS触发器的复位端;RS触发器的S端连接时钟信号,RS触发器的输出Q端和端与所述的选择开关相连,所述的选择开关对RS触发器的信号经过选择后得到逆变系统中开关S1、S2、S3、S4的驱动信号g(S1)、g(S2)、g(S3)、g(S4)。

离网逆变器说明书讲解

(敬请用户使用前应详细阅读此使用说明)深圳市普顿电力设备有限公司 使 用 说 明 书

请严格依照以下说明使用或安装: 1、安装逆变电源时要专业人员操作或当地经销商协助完成。 2、确认输入直流电压范围是否符合要求即+15% ,电源极性是否正确。 3、确认负载设备电压等级,功率应不大于逆变电源额定输出功率。 4、勿将液体流入逆变电源内部,或用湿布擦机器外壳。机器运行时人体不能直接接触逆变电源输入输出端子,尤其是湿手,否则造成触电伤害。 5、正常运行的逆变电源如需变动其工作环境,不可自行改变其连线,应由专业人员或经销商确认操作。 6、逆变电源运行环境应在通风良好、温度范围-20至45度环境使用,应远离明火源以及日光直射的位置。不能在结露,灰尘环境下运行。在使用过程中有一定的发热量属正常现象、但要保持安装环境的通风散热、干净清洁,特别不能阻塞通风孔。 7、未成年人不得使用本产品。 8、确认逆变电源地线可靠连接,火线和零线不能接反,线径应符合安全使用条件,连接线尽可能缩短。 9、请不要自行打开逆变电源机箱,否则我方将不承担保修事宜。 10、请保存好本说明书,作为日后参阅。 注意: A、未经许可本产品不可以用于维持生命的设备。 B、本逆变电源不适宜用于超高精密电子设备,需先经专业技术人员确认方可投入运行。 C、如果用于计算机负载,计算机的内置电源应选用品牌电源。 警告! 严禁蓄电池反接,严禁火线和零线接反。 严禁在有易燃性、易爆性气体的环境下使用,谨防火花! 连接顺序,务必是先接蓄电池,后接电池板;严禁颠倒顺序。

一、PD-A1系列太阳能逆变电源介绍 本系列逆变电源结合目前逆变电源的优点和缺点进行升级优化、全面改进,并且采用最新的工频逆变电路方案而设计,具备高转换效率、高稳定性、超低损耗、超强带载能力、超强抗干扰能力的特性;可为商业、工业、民用、军用、电信设备等提供可靠的正弦波交流电源。适用于直流电压为DC12V,DC24V,DC48V,DC72V的光伏离网发电场合,主要用于空调、电视、收银机、冰箱、洗衣机、电脑、电动工具、照明、工业设备、电信设备等各类负载。

逆变器用户使用手册

GDLYEC-PV-3~270/500光伏并网逆变器 用户使用手册 版本2.0 国电龙源电气有限公司

目录 1关于本手册 (3) 1.1 前言 (4) 1.2 内容简介 (4) 1.3 面向读者 (4) 1.4 手册使用 (4) 2 安全须知 (5) 2.1 警示符号说明 (6) 2.2 安全提示 (7) 2.3 操作中的注意事项 (9) 3 产品简介 (10) 3.1 光伏并网系统 (11) 3.2 产品特点 (11) 3.3 电气原理 (12) 3.4 产品外观 (14) 4 产品功能与LCD操作指南 (17) 4.1 GDL YEC-PV-3~270/500主要功能 (18) 4.1.1 并网发电 (18) 4.1.2 MPPT功能 (18) 4.1.3低电压穿越功能 (18) 4.1.4 保护功能 (19) 4.1.5 远程控制功能 (20) 4.1.6自动开关机功能 (20) 4.2 GDL YEC-PV-3~270/500运行模式 (20) 4.3 GDL YEC-PV-3~270/500 LCD操作指南 (22) 4.3.1 LCD主界面 (22) 4.3.2 LCD控制指令发送 (24) 5 产品安装 (30) 5.1 注意事项 (31) 5.2 机械尺寸 (31) 5.3 放置与移动 (31) 5.4直流输入线缆连接 (32) 5.4.1 直流输入电气参数规格 (32)

5.4.2直流输入线缆要求 (33) 5.4.3线缆连接 (33) 5.5交流输出线缆连接 (36) 5.5.1交流输出电气规格 (36) 5.5.2 交流输出线缆要求 (36) 5.5.3 线缆连接 (36) 5.6 系统地线连接 (38) 5.6.1地线线缆要求 (38) 5.7 远程监控通信线连接 (38) 6 产品运行指南 (40) 6.1 启动 (41) 6.2 关机 (42) 7 电气特性 (43)

电源变换器使用说明书 逆变器讲解

常州轨道车辆牵引传动工程技术研究中心 版本1.0 用户使用说明书 电源变换器 CSMA530-00-000SM

变更一览/Alteration Review 1) A: 因文件错误或升级的变更 B: 完成或增加功能的变更 C: 限制或减少功能的变更

目录 1系统概述 (5) 1.1 功能 (5) 1.2 车下设备箱 (5) 1.3 安全须知 (6) 2 逆变器DRNH55-07 (6) 2.1主要功能 (6) 2.1.1逆变器互联 (6) 2.1.2降频降压输出 (6) 2.2逆变器面板对外接口 (6) 2.3设备保护 (8) 2.4逆变器技术参数 (9) 2.4.1 总体技术参数 (9) 2.4.2 输入参数 (10) 2.4.3 输出参数 (10) 2.5 故障分析与处理 (11) 2.6诊断与通讯 (12) 3 8KW充电机 (13) 3.1功能 (13) 3.2电气指标 (14) 3.3电气接口 (14) 3.4人机界面 (15) 3.5常用故障码查询 (19) 3.6工作环境及使用条件 (21)

3.7外形及安装 (21) 3.8检查与维修 (21) 4 3.5KVA单相逆变器 (22) 4.1功能 (22) 4.2工作环境及使用条件 (22) 4.3总体指标 (22) 4.4电气指标 (23) 4.5外形及安装 (23) 4.6电气接口 (23) 4.7人机界面 (24) 4.7.1空气开关 (24) 4.7.2主控制板拨码开关、发光管、数码管定义 (24) 4.7.2.1发光管 (24) 4.7.2.2数码管 (24) 4.8检查与维修 (26)

CRH2牵引变流器故障处理

CRH2牵引变流器故障处理 1主电路构成 主电路系统一般以2辆M1车·M2车为1个单元。 电源为电车线提供的单相交流25kV、50Hz,受电弓引下的电经VCB送到牵引变压器原边侧绕组。主电路开闭由VCB控制。牵引变压器的2个牵引侧绕组受原边侧绕组励磁感应出1500V(原边侧25kV时)电压,并将其输入牵引变流器脉冲整流器部。 牵引变流器在M1车、M2车各搭载1台,除实施牵引时向牵引电机供电和制动时电力再生控制外,还具有保护功能。此外,还可依据车辆信息控制装置提供的信息实现脉冲整流器间载波相位差运行,以减少架线电流的高次谐波。 牵引电机为3相鼠笼型感应电机,轴端部安装速度传感器,用以向牵引变流器、制动控制装置提供转数(转子频率)数据。 主电路的构成

牵引变流器由单相交流电变直流电的脉冲整流器部,直流电流变3相交流电流的逆变器部,和吸收电压波动、输出直流定电压的直流平滑电路(滤波电容器)部构成。 利用PWM脉冲整流器可实现输入基波功率因数1运行,从而减小设备体积、降低电力消耗。此外,由于脉冲整流器·逆变器部采用3级结构实现了微细电压控制,主电路半导体元件采用高速切换的IPM减小了交流电压波形失真,可有效降低牵引电机和牵引变压器的电磁噪音、扭矩波动。 脉冲整流器部介绍 脉冲整流器部由单相3级PWM脉冲整流器和交流接触器K构成,以牵引变压器牵引侧输出AC1500V、50Hz为输入。

通过无触点控制装置的IPM选通控制,实现输出直流电压2600~3000V定电压控制、牵引变压器原边侧电压电流功率因数1控制。此外,还可通过无触点控制装置实现保护功能。再生制动时功能为逆变换,以滤波电容器输出DC3000V为输入,向牵引变压器侧输出AC1500V、50Hz。 交流接触器K控制输入侧主电路接通、断开。 脉冲整流器3级PWM控制概要 3级脉冲整流器将滤波电容器分压直流电压得到的3阶(正:+Ed/2,零,负:-Ed/2)电压输出到交流(牵引变压器)侧。 3级脉冲整流器调制方式参照图。依据U相调制波ymU(U相电压指令)、正侧载波和负侧载波(三角波)的大小关系,生成3级PWM信号Gsw的+1、0、-1信号。(V相调制波ymV(与U相逆相位)和V相载波ycV之间的关系与上述关系相同。ycV是为减少高次谐波而偏离ycU180?相位的调制波。) 为减少架线电流高次谐波,将同一单元内M1车、M2车的2台脉冲整流器间载波相位差设定为-90°,单元间相位差设定为-60°。 逆变器部工作原理介绍 逆变器部以滤波电容器电压为输入,依据无触点控制装置IPM选通控

逆变器故障的维修方法

KND-Ⅱ型逆变器故障的维修方法 1、报“00”,但显示“逆变故障” A:量三相输出均正常,打开逆变器前箱量301或303对地为110V,换ERR1或ERR2电磁继电器。 B:量三相输出均正常,逆变器上传301或303对地为0,建议车辆段或车辆厂找综合控制柜厂家。 C:量三相输出均正常,但综合柜显示电压不正常,建议车辆段或车辆厂找综合柜厂家换电压传感器。 D:量三相输出,有一或二相偏高,查空载运行是否正常,如正常,检查负载。如仍不正常,打开相应单元散热器后箱,检查输出滤波电容是否有膨胀或漏液现象,有则更换电容。 E:逆变器无输出,打开相应单元散热器看控制板灯判断故障,换上测试片,通110V测试,量负偏、脉冲是否正常,如有某一路或几路不正常,换驱动板或相应的IGBT,换好后用测试片测试正常后,再通600V。 2、逆变器正常运行,显示“00”逆变正常,但实际测量三相电压都偏高或偏 低 A:换相应单元的输出电压传感器V204或V212。 B:换相应单元的控制板。 3、逆变器正常工作,但显示“逆变停止” A:打开逆变器前箱量201或203对地为0,换NOR1或NOR2电磁继电器。 B:逆变器上传201或203对地为110V,建议车辆段或车辆厂找综合控制柜厂家。 4、报“01”,输入过压 A:检查线路,看输入电压传感器(V201、V209)或中间电压传感器(V202、V210)线。 B:更换相应单元输入电压传感器(V201、V209)。 C:更换相应单元中间电压传感器(V202、V210)。 D:更换相应单元的控制板。 5、报“02”,输入欠压,逆变器不工作 A:检查综合控制柜上600V空开Q1、Q2、Q3、电源按钮是否合上,如全部合上,看综合控制柜最下端的接触器KM1或KM2是否有一个吸合,如都没有吸合,建议车辆段或车辆厂找综合控制柜厂家。 B:打开逆变器前箱,测量输入二极管是否正常,如烧断,则更换输入二极管。C:测量传感器上24V电源,如果偏低,则把该单元上所有传感器的电源线逐个摘掉,测量24V电源,直到24V电源正常为止,更换传感器。 D:如果C正常更换相应单元输入电压传感器(V201、V209),故障依旧则更

相关文档
相关文档 最新文档