文档库 最新最全的文档下载
当前位置:文档库 › 定量遥感:地表温度反演

定量遥感:地表温度反演

定量遥感:地表温度反演
定量遥感:地表温度反演

作品名称:黄河三角洲地表温度反演

姓名+学号:

小组成绩:

一、概述

1、作业背景:

地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大范围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量范围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用

2、作业意义:

黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入海口处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区内自然资源丰富。

黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之内,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。

二、数据介绍

数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。

实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n)

三、基本概念及技术流程图

3.1、基本概念:

①、辐射定标:指建立遥感传感器的数字量化输出值DN与其所对应视场中辐射亮度值之间的定量关系。

②、大气校正:消除遥感图像中由大气散射引起的辐射误差的处理过程。

③、NDVI:植被覆盖指数。应用于检测植被生长状态、植被覆盖度和消除部分辐射误差等。

④、密度分割:密度分割是一种用于影像密度分层显示的彩色增强技术。原理是将具有连续色调的单色影像按一定密度范围分割成若干等级,经分层设色显示出一种新彩色影像。常用于航空像片、多光谱扫描影像和热红外扫描影像等单色影像的彩色增强。

3.2、技术流程:

实验流程:完整流程涉及Landsat TM的数据读取、辐射定标、反演模型、遥感反演过程、反演结果验证等

软件功能:主要采用ENVI主模块中的Landsat TM数据读取、辐射定标、波段运算、结果统计分析等。该方法需要进行大气校正,消除大气层对地表辐射能量的影响,这就需要从卫星观测得到的热辐射能量中扣除大气层的辐射分量,并利用热红外波段(Band6)范围内的地表发射率作为参数,反演出地表的真实温度。

3.3、技术路线

(1)Landsat TM数据预处理:数据读取、辐射定标。

(2)相关辅助数据的确定与查找:大气上行辐射以及下行辐射,采用数据当天的大气透过率信息等。

(3)采用大气校正法利用Landsat TM Band 6进行地表温度反演;首先获取地表比辐射率值;其次,计算黑体在热红外波段的辐射亮度;最后,利用普朗克公式的反函数反演出整个研究区域的地表温度分布情况。

3.4、技术流程图

四、具体步骤

4.1、打开数据

选择后缀为MTL的文件

导入后截图:

加载后数据截图

4.2、数据辐射定标:

处理后结果:

4.3、裁剪数据:

定标后的数据需要进行影像裁剪处理,选择需要分析的区域。在谷歌地图上确定研究范围的经纬度信息,在其他软件上将平面的经纬度信息转至相同投影面上的数据,作为裁剪的标准。准备好shipfile格式数据:

选择辐射定标好的影像

Shipfile格式数据转换为ROI格式:

裁剪:

裁剪完毕后对比:

对于红外波段数据的裁剪方法与上述方法相同。

4.4、可见光和近红外波段大气校正

采用大气校正来消除遥感图像中由大气散射引起的辐射误差的处理过程。

4.5、地表比辐射率值计算

(1)NDVI指数计算:

利用TM3、4波段的象元DN值利用公式: NDVI=(NIR - R)/(NIR + R)

处理后结果:

由上统计可以看出,NDVI计算结果最小值为-2.2,最大值为1.4.

(2)植被覆盖度

计算植被覆盖度采用的是混合像元分解法,将整幅影像的地类大致分为水体、植被和建筑。

利用Band Math计,根据上步操作中计算出来的NDVI指数

输入公式:(b1 lt 0.0)*0+(b1 ge 0 and b1 le 1.4)*((b1 - 0.0)/(1.4-0.0))。b1:表示获取的NDVI值。

计算结果如下图所示:

处理结果如下:

(2)地表比辐射率:

根据前人研究,将遥感影像分为水体、城镇和自然表面3种类型。本次实习采用:水体像元的比辐射率赋值为0.995,自然表面和城镇像元的比辐射吕估算则根据下公式中计算

利用Band Math计算

输入公式:(b1 le 0)*0.995+(b1 gt 0 and b1 lt 0.7)*(0.9589+0.086*b2-0.0671*b2^2)+(b1 ge 0.7)*(0.9625+0.0614*b2-0.0461*b2^2)。b1:表示获取的NDVI值,b2:植被覆盖度值。

处理后结果:

4.6、大气参数获取

卫星传感器接收到的热红外辐射亮度值由三部分:大气向上辐射亮度,以及地面的真实辐射亮度经过大气层之后到达卫星传感器的能量。地面的真实辐射亮度为同温度黑体的辐射亮度值与地物发射率的乘积。

NASA官网(https://www.wendangku.net/doc/3a17130290.html,)中获取大气参数获取,在上网址中输入成像时间以及中心经纬度,查找下式中需要的参数。

根据上图看出,大气在热红外波段的透过率为0.68,大气向上辐射亮度为

2.55W/(m2·sr·μm),大气向下辐射亮度为

3.97W/(m2·sr·μm)

利用Band Math计算

输入公式:(b2-2.55-0.68*(1-b1)*3.97)/(0.68*b1)。b1:地表比辐射率值,b2:热红外波段辐射定标志。

获取的黑体在热红外波段的辐射亮度结果如下:

4.7地表温度反演

在获取热红外波段辐射亮度值以后根据普朗克公式的反函数,求得地表真实温度T。对于TM,K1 =607.76W/(m2·sr·μm),K2 =1260.56K。

利用ENVI中的Band Math,在公式栏中输入:(1260.56)/alog (607.76/b1+1)

4.8反演结果分析

利用ENVI软件,采用单波段彩色变换的方法对地表真实温度的灰度图进行密度分割得到地表真实温度的分布情况。其中:

(1)绿色代表的温度范围是:35℃-40℃

(2)红色代表的温度范围是:30℃-35℃

(3)黄色代表的温度范围是:25℃-30℃

(4)蓝色代表的温度范围是:25℃以下

五、结果输出

将ENVI软件中最后的密度分割保存,输出结果ArcView格式,再将其导入软件ArcGis,进行布局,添加图名、图例,将最终结果输出,如下图:

地表温度反演实验报告

遥感原理与及应用 地表温度反演实验报告 专业:地理信息系统 班级: XXXXXXXX 姓名: XXX 学号: XXXXXX 成绩: 指导教师: XXX 2014年12月17日 一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥

感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。

四. 实验原理 图1 TM 影像地表温度反演流程 1. 地表温度(Land Surface Temperature)反演公 式为: 2 1(1)K LST K In R ε=+, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮 度可以进一步写作: max min 6min 255L L R DN L -=?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体 辐射能的比率,其可以表示为: 1.0090.047(In )(0)NDVI NDVI ε=+>,

其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。 五. 实验步骤 1. TM 数据下载 数 据查询和下载网址https://www.wendangku.net/doc/3a17130290.html,/query.html ,界面如图2 所示。 图2 中国科学院遥感与数字地球研究所数据共享 网址界面

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC8LGN002016/7/263:26:56 ………………………… 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标

选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中, 选择数据LC8LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC8LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨 率自动读取; 6) 设置研究区域的地面高程数据;

ENVI支持下地表温度反演

[转载]ENVI下利用ETM+数据反演地表温度 (2012-05-15 08:31:18) 转载▼ 标签: 转载 原文地址:ENVI下利用ETM+数据反演地表温度作者:ENVIIDL 地表温度作为地球环境分析的重要指标,而遥感技术作为现代重要的对地观测手段,使得基于遥感图像的地表温度反演的研究越来越多。主要的地表温度反演方法有:大气校正法,单窗算法,单通道法等等。本文介绍用辐射传输方程法对地表温度进行反演。 技术流程: 例子数据为2002年9月2日的襄樊市Landsat ETM+数据。根据数据的特点以及地表温度反演研究的技术要求,采用的技术路线为:先对Landsat ETM+数据进行预处理:数据读取、辐射定标、大气校正、襄樊区域裁剪,利用大气校正,即:辐射传输方程法对其影像热红外波段数据进行操作反演,实现襄樊市地区的地表真实温度的反演研究。具体的处理流程如下:

具体的实现步骤如下: 第一步:准备数据 热红外数据使用的是Landsat的第六波段,已经做了传感器定标、几何校正、工程区裁剪,详细流程参考上面的流程图。文件为TM6-rad-subset-jz-xiangfan.img。

由TM影像(已经过大气校正)生成的NDVI数据,已经利用主菜单->Basic Tools- >Resize Data(SFatial/SFectral)重采样为60米分辨率,与TMi6数据保持一致,文件名为:TM-NDVI-60m.img。 第二步:地表比辐射率计算 物体的比辐射率是物体向外辐射电磁波的能力表征。它不仅依赖于地表物体的组成, 而且与物体的表面状态(表面粗糙度等)及物理性质(介电常数、含水量等)有关,并随着所测 定的波长和观测角度等因素有关。在大尺度上对比辐射率精确测量的难度很大,目前只是 基于某些假设获得比辐射率的相对值,本文主要根据可见光和近红外光谱信息来估计比辐 射率。 (一)植被覆盖度计算 计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下: F V = (NDVI- NDVI S)/(NDVI V - NDVI S) (2) 其中,NDVI为归一化差异植被指数,取NDVI V = 0.70和NDVI S = 0.00,且有,当某 个像元的NDVI大于0.70时,F V取值为1;当NDVI小于0.00,F V取值为0。 利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入: (b1 gt 0.7)*1+(b1 lt 0.)*0+(b1 ge 0 and b1 le 0.7)*((b1-0.0)/(0.7-0.0))b1:选择NDVI图像 得到植被盖度图像。 (二)地表比辐射率计算

定量遥感的定义

定量遥感的定义 定量遥感 随着经济和科技的发展,国家的宏观决策、资源调查、环境及灾害监测等 影响国民经济发展的关键领域急需数据支持,要求数据具有空间上的宏观性, 时间上的连续性和可获取数据的全面性。而遥感技术正具备这一能力,它能够 以不同的时空尺度不断地提供多种地表特征信息。 但是与遥感卫星获取数据的能力相比,遥感数据的自动、定量化处理乃至 对遥感数据信息的理解能力与对遥感数据的有效利用却远远不足,这也是目前 制约遥感发挥作用的瓶颈问题。因此,定量遥感逐渐成为遥感发展的主要方向。 定义 定量遥感或称遥感量化遥感研究,主要指从对地观测电磁波信号中定量提 取地表参数的技术和方法研究,区别于仅依靠经验判读的定性识别地物的方法。 它有两重含义:遥感信息在电磁波的不同波段内给出的地表物质的定量的 物理量和准确的空间位置;从这些定量的遥感信息中,通过实验的或物理的模 型将遥感信息与地学参量联系起来,定量的反演或推算某些地学或生物学信息。 建模 装置在星体上的传感器,它的可测参数一般为电磁波的属性参数,也就是 电磁辐射强度、偏振度、相位差等,而我们的目的是要从这些可测参数中获得 有关目标的物理的、地理的、化学的、甚至生物学的状态参数,所以在可测参 数与目标状态参数间建立某种函数关系是实现目标参数反演的关键一步,我们 称它为建模。 遥感模型一般分为三种: 1.统计模型(即经验模型):基于陆地表面变量和遥感数据的相关关系,对 一系列的观测数据做经验性的统计描述或者进行相关性分析,构建遥感参数与 地面观测数据之间的线性回归方程。 优点:参数少;容易建立且可以有效概括从局部区域获取的数据,简便, 适用性强;

landsat 遥感影像地表温度反演 教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教 程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时 间 中心经度中心纬度 LC81280402016208LGN002016/7/263:26:56106.1128830.30647…………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程

三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。

Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数 据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。

基于ETM数据地表温度反演实验单通道算法操作文档

基于ETM 数据煤田火区地表温度反演的研究实验操作步骤与流程 算法:单通道算法,其公式为 Τs =γ ε?1 ψ1L sensor +ψ2 +ψ3 +δ(1) γ= c 2L sensor T sensor 2 λ4 c 1 L sensor +λ?1 ?1 (2) δ=?γL sensor +T sensor (3) L sensor =L min λ + L max λ ?L min λ Q DN Q max (4) T sensor = K 2 ln 1+K 1L λ (5) K 1=666.09 mW ?cm ?2?sr ?1?um ?1 , K 2=1282.71K ψ1=0.1471?ω2?0.1558ω+1.1234 (6) ψ2=?1.1836?ω2?0.3761ω?0.5289(7) ψ3=?0.0455?ω2+1.8719ω?0.3907 (8) ω=0.177e +0.339 (9) e =0.6108?exp 17.27 Τ0 ?273 237.3+Τ 0?273 ?RH (10) 先来说明单通道算法公式(1)中γ,L sensor ,δ,ψ1,ψ2,ψ3等这些参数的计算过程,地表比辐射率ε的计算过程稍后在说明。 (1)对于ψ1,ψ2,ψ3的计算,只要查阅资料得知相对湿度RH ,与温度Τ0后,就可以算出大气中水蒸汽的含量ω,进而可以根据公式算出ψ1,ψ2,ψ3。 (2)对于L sensor 的计算,也就是辐射校正的过程,主要目的在于把影像中像元的灰度值转化成辐亮度L sensor ,公式(4)中的L min λ ,L max λ ,Q max 在影像头文件中可以找到,Q DN 就是所要进行校正的影像。在ENVI 中的操作如下: Basic tools → band math ,然后点开出现如下左侧对话框: 对于ETM 数据热红外波段高增益就是L sensor =3.2+9.45?Q DN 255 然后点ok 出现如下右侧对话框:

定量遥感_地表温度反演

遥感数字影像处理 作品名称:黄河三角洲地表温度反演 +学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。 目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。 本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。 基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。 具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程): Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1) 式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。则温度为T的黑体在热红外波段的辐射亮度B(T S)为: B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2) T s可以用普朗克公式的函数获取。

T S = K2/ln(K1/ B(T S)+ 1) (1.3) 对于TM,K1 =607.76 W/(m2*μm*sr),K2 =1260.56K。 对于ETM+,K1=666.09 W/(m2*μm*sr),K2 =1282.71K。 对于TIRS Band10,K1= 774.89 W/(m2*μm*sr),K2 = 1321.08K。 从上可知此类算法需要2个参数:大气剖面参数和地表比辐射率。大气剖面参数在NASA提供的网站(https://www.wendangku.net/doc/3a17130290.html,/)中,输入成影时间以及中心经纬度可以获取大气剖面参数。适用于只有一个热红外波段的数据,如Landsat TM /ETM+/TIRS数据。 主要内容就是使用BandMath工具计算公式(1.2)和公式(1.3),处理流程如下图所示。

基于热红外波段的地表温度反演实验报告

遥感原理与应用 地表温度反演 实验报告 专业:地理信息系统 班级:XXXXXXXX 姓名:XXX 学号:XXXXXX 成绩: 指导教师:XXX 2014年12月17日

一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。 四. 实验原理 图1 TM影像地表温度反演流程

1. 地表温度(Land Surface Temperature)反演公式为: 2 1(1) K LST K In R ε= +, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮度可以进一步写作: max min 6min 255 L L R DN L -= ?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体辐射能的比率,其可以表示为: 1.0090.047(In ) (0)NDVI NDVI ε=+>, 其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。 五. 实验步骤 1. TM 数据下载 数据查询和下载网址https://www.wendangku.net/doc/3a17130290.html,/query .html ,界面如图2所示。 图2 中国科学院遥感与数字地球研究所数据共享网址界面

长江口淤泥质潮滩高程遥感定量反演及冲淤演变分析

长江口淤泥质潮滩高程遥感定量反演及冲淤演变分析 【摘要】:淤泥质潮滩作为陆海相互作用的敏感地带,滩面泥泞、潮沟密布、变化频繁,常规地形测量难度较大。由于淤泥质潮滩具有一些能被可见光和近红外传感器探测到的特征,所以遥感技术为其地形信息提取和定量反演提供了广阔的前景。本论文首先利用多时相卫星影像资料及海图资料,结合实地调查完成了上海市不同时期的滩涂资源解译工作,统计结果为探明上海市滩涂资源总量及其变化规律提供了科学依据。利用遥感水边线方法和数值模型建立淤泥质潮滩的数字高程模型(DEM)。作者在分析长江口区不同浓度水体与背景地物光谱特征的基础上,利用多时相卫星遥感影像,采用决策树方法及区域增长算法提取水边线信息,提高了水边线提取效率和精度。利用国际上成熟的水动力数值模型(Delft-3D)模拟卫星过境时刻的潮位。最后,对具有高程值的水边线系列利用不规则三角网(TIN)完成插值,生成潮滩的数字高程模型。将得到的初始高程模型输入水动力模型,细化原来的地形条件重复运行模型,并将模型结果与水边线提取结果对比,进一步微调潮滩地形,直到模型模拟的水边线与卫星影像提取的水边线满足精度要求为止。作者以九段沙为主要研究对象,为消除潮滩冲淤变化的影响,选取相近年份的遥感数据为数据源,利用上述方法建立了不同时间段内的潮滩高程模型,并通过对比分析研究了长江口深水航道工程对九段沙冲淤演变的影响。以多时相高分辨率航空影像为数据源,在分析潮滩的动力沉积、动力地貌和光谱信息特征的基

础上,进行了崇明东滩潮沟信息的提取。根据上述的提取结果研究了Horton定律在崇明东滩潮沟系统中的适用条件,并利用Horton定律及分形分维理论从定量角度分析潮沟形态变化。利用水边线高程反演技术,结合实测潮沟宽深比资料实现了潮沟地形反演,使潮滩地形得到更精细的刻画。利用大量的实测植被光谱及生态调查数据,利用主成份分析方法(PCA)分析了潮滩植被光谱信息与生态环境因子的关系,并以此为基础将植被覆盖度指数(FVC)、潮滩高程、潮沟等信息作为植被分类的辅助信息。在植被初次分类的基础上,构造模糊矩阵,根据辅助信息对不同植被类型的隶属关系对误分的像元进行二次分类,从而提高了潮滩植被分类的精度。为了得到潮滩的沉积速率,本文利用不同年份的水边线位置和实测的高程剖面,计算了潮滩不同部位的多年平均沉积速率,并分析了潮滩冲淤的空间差异及影响因素。结合上述高程反演及平均冲淤速率计算结果,探讨崇明东滩高程及沉积速率之间的相互关系。根据植被信息提取结果,研究了崇明东滩植被对潮滩沉积速率的影响,同时根据野外实测光滩区及植被区的流速、流向及悬沙浓度特征进一步研究了植被对潮滩地貌演化的影响。论文最后探讨了空间可视化技术,利用地理信息系统三维可视化功能对潮滩地形及近岸潮位、流场模拟结果进行了虚拟表达,为海洋科学研究人员进行深入、综合分析提供了技术支持。【关键词】:长江口淤泥质潮滩水动力模型分形分维模糊矩阵潮沟空间可视化 【学位授予单位】:华东师范大学 【学位级别】:博士

erdas 北京地表温度反演_实习报告

Landsat TM6 地表温度反演实习报告 实习目的: 1、TM Level 1 数据的热红外波段辐射定标:学会阅读头文件,找出所需定标参数;利用定标参数将TM图像热红外波段DN值转换为辐射亮度; 2、运用单通道法,反演地表温度反演 实习步骤: 1.加载图像:import—>选择需要加载的图像 2.分部建模 2.1求算NDVI的建模如图所示

第三第四波段的辐射定标运算的增益和偏移均来自数据的头文件。 2.2第六波段辐射定标计算

说明:第六波段的辐射定标计算的增益和偏移不能再用头文件中的增益和偏移,否则误差会很大造成无法显示,因此必须在老师给的表格中查找。 然后再用老师给的公式进行计算. 从表格中找出L min 和L max 输入下面公式 255 G min max L L rescale -= min B L rescale = rescale cal rescale B Q G L +?=λ 即可求出增益和偏移,然后进行辐射定标运算即可求出所需结果。

2.3求解地表反射率(λε)的建模运算。 所使用的经验公式根据Van 的经验公式: )ln(047.00094.1NDVI +=λε 2.4求解)T (B s λ的建模。)T (B s λ为温度为s T 的黑体在热红外波段的辐射亮度。

使用的公式是 L L o o o s ↓ ↑ -- -=λ λ λ λλλλλεετε1L )T (B )(,其中 L o ↓ λ 表示大气向下辐射亮度,模拟结果为1.68 Wm -2um -1Sr -1,L o ↑ λ表示大气向上辐射亮度, 模拟结果为1.74 Wm -2um -1Sr -1,λτo 为大气在热红外波段的透过率,模拟结果为0.77。λε为上一步求解的结果。 2.5反演温度的建模

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat 数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration 。在File Selection 对话框中,选择数据LC8LGN02_MTL_Thermal ,单击Spectral Subset 选择Thermal Infrared1(),打开Radiometric Calibration 面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“进行辐射定标。 Settings ,如下图。 2、大气校正

本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取; 6) 设置研究区域的地面高程数据; 7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间; 注:也可以从元文件“”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:; 8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择); 9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T); 10) 其他参数按照默认设置即可。 11) 多光谱参数设置中, K-T反演选择默认模式:Defaults->Over-Land Retrieval standard (600:2100) 波谱响应函数:默认指向.. \Program Files\Exelis\ENVI51\classic\filt_func\ 把它重新指向:..\Program Files\Exelis\ENVI51\resource\filterfuncs\ 注:这是因为版本的一个小bug,即Classic中的L8的波谱响应函数不正确,另外一个一劳永逸的方法是:将

遥感反演地表温度

遥感地学分析 实验报告 成绩: 姓名: 学号: 班级: 题目:

课程实验报告要求 一、实验目的 掌握并熟悉band math的操作,对建筑用地分离用的几个建筑指数;学会面对对象分类;学会反演地表温度。 二、实验准备 软件准备: 数据准备:中等分辨率数据AA、高分辨率数据、热岛监测band6 三、实验步骤 1.中等分辨率数据中城市范围的提取: (1)加载数据AA,首先在BAND MATH里面计算图像的NDVI值其公式:(float(b1)-float(b2))/(float(b1)+float(b2)),正确输入公式后点击OK; 在接下来的界面中为公式中b1和b2赋予相应的波段,及近红外波段和红色波段,选择合适的路径即可点击OK; 结果如图:

(2)同样用上述发放计算图像的归一化建筑指数(NDBI值),公式同样使用前面所用,但是后面给b1和b2赋予第五和第四波段就行,同样选择合适的路径即可; 结果如图:

(3)利用前面所计算的NDVI和NDBI值计算改进的归一化裸露指数(MNDBI),MNDBI= NDBI+(1-NDVI),首先在BAND MATH中输入一下公式并b1和b2赋予NDBI的波段和NDVI的波段; 结果如图:

(3)同样使用上述方法计算城镇用地指数(ULI)计算公式为ULI=NDBI and NDVI,同样在BAND MATH中输入公式并赋予相应的波段,在设置好输出路径即可; 结果如图:

(4)三种指数的阈值的设置,通过查看三种指数的直方图可以为每种指数的分离建筑用地提取合适的阈值;通过查看NDBI的阈值设置为,并将其在band math中进行二值化; 通过查看MNDBI的阈值设置为,并将其在band math中进行二值化;

定量遥感:地表温度反演

作品名称:黄河三角洲地表温度反演 姓名+学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大范围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量范围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入海口处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区内自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之内,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

地表温度反演

地表温度反演

目录 一:单窗算法 (3) 1.1实验原理 (3) 1.1.1TM/ETM波段的热辐射传导方程: (3) 1.1.2化简后最终的单窗体算法模型为: (3) 1.1.3大气平均作用温度Ta的近似估计 (3) 1.1.4大气透射率t6的估计 (3) 1.1.5地表比辐射率的估计 (4) 1.1.6像元亮度温度计算 (4) 1.1.7遥感器接收的辐射强度计算 (4) 1.2操作步骤 (5) 1.2.1研究区示意图 (5) 1.3实验结果 (7) 1.3.1灰度图像 (7) 1.3.2密度分割后图像 (7) 二:单通道算法 (8) 2.1实验原理 (8) 2.1.1单通道算法模型为: (8) 2.1.2大气平均作用温度Ta的近似估计 (8) 2.1.3大气透射率t6的估计 (8) 2.1.5像元亮度温度计算 (8) 2.1.6遥感器接收的辐射强度计算 (9) 2.2操作步骤 (9) 研究区示意图 (9) 2.2.1计算L6 (10) 2.2.2T6e6的求算 (10) 2.2.3计算R (10) 2.2.4计算t (10) 2.3实验结果 (11) 2.3.1温度反演灰度图像 (11) 2.3.2密度分割后的图像 (11) 三:辐射方程 (12) 3.1实验过程 (12) 3.1.1数据准备 (12) 3.1.2地表比辐射率的估计 (12) 3.1.3计算同温度下黑体的辐射亮度值 (12) 3.1.4反演地表温度 (13) 3.2温度反演结果 (13)

一:单窗算法 1.1实验原理 1.1.1TM/ETM波段的热辐射传导方程: B6(T6)=t6(q)[ ε6B6(Ts)+(1-ε6)I6~]+I6_ Ts是地表温度; T6是TM6的亮度温度; t6是大气透射率; ε6是地表辐射率。 B6(T6)表示TM6遥感器所接收到的热辐射强度; B6(Ts)是地表在TM6波段区间内的实际热辐射强度,直接决取于地表温度; I6~和I6_分别是大气在TM6波段区间内的向上和向下热辐射强度。 1.1.2化简后最终的单窗体算法模型计算Ts(地表温度): Ts={a(1-C-D)+[b(1-C-D)+C+D]T6-DTa}/C 式中 C6=τ6ε6(ε6为比辐射率,τ6为透射率) D6=(1-τ6)[1+t6(1-ε6)] a =-67.355351,b=0.458606 1.1.3大气平均作用温度Ta的近似估计 温度换算:T=t+273.15 本图为9月份拍摄,对于中纬度夏季平均大气Ta=16.0110+0.92621T0 取平均气温为25摄氏度时Ta = 312.15753 1.1.4大气透射率τ6的估计 τ6=0.974290-0.08007w,0.4≤w≤1.6。 w为水分含量,单位(g/cm2),这里,取w=1.0,计算得到τ6=0.89422

遥感反演地表温度

1、 裁剪出出济南市区 2、 分别利用ENVI 、ERDAS 反演地表温度(LST )、NDVI ,对LST 进行彩色显示。 3、 分析LST 、NDVI 的关系。 反演公式 具体流程: 图像的DN 值 辐射亮度 辐射亮温 地表温度。 反演时从图像数值(DN )转换成绝对辐射亮度值时的公式、从辐射亮度值转成辐射亮温时的公式、从亮温转换成地表温度时的公式分别是: min min max 6255)(L L L DN L tm +-?=、 )1/ln(/12+=λL K K T 、 ε ρλl n )/(1T T T s += 其中:6tm L 为TM 传感器所接收到的辐射亮度(mW .cm -2s r-1.um -1),max L 、min L 分别是传感器所接收到的最大和最小的辐射强度,即对应于DN =255和DN =0时的最大和最小辐射强度。对于Landsat5的TM 6波段, 1K =60.77mW .cm -2s r-1.um -1,2K =1260.56K 。S T 为地表温度(K ) ;T 为辐射温度(K );λ为有效波谱范围内的最大灵敏度值,λ=11.5um ,ρ=/hc δ=1.438×10-2mk ,其中δ=1.38 ×10-23/J k ,为玻尔兹曼常数,h =6.626×10-34Js ,为Plank′s 常数,c =2.998 ×108/m s ,为光速。一般地,有植被覆盖的地表取ε=0.95,没有植被覆盖的地表取ε=0.92(Weng ,2004[16])。 min L =0.1238 255 )(min max L L - =0.005632156 )1/ln(/12+=λL K K T 1260.56 / LOG ( 1 + 60.766 / $n8_fu ) $n1_12736l / (1 + (0.0000115 * $n1_12736l /0.01438) * LOG (0.95 ) )

地表温度反演

《地表温度反演》实验报告院系:资源与环境科学学院 专业及班级:地信08-1 学号:20081207019 姓名:李荣立 指导教师:丁建丽 2011年12月

目录 一:单窗算法 (3) 1.1实验原理 (3) 1.1.1TM/ETM波段的热辐射传导方程: (3) 1.1.2化简后最终的单窗体算法模型为: (3) 1.1.3大气平均作用温度Ta的近似估计 (3) 1.1.4大气透射率t6的估计 (3) 1.1.5地表比辐射率的估计 (4) 1.1.6像元亮度温度计算 (4) 1.1.7遥感器接收的辐射强度计算 (4) 1.2操作步骤 (5) 1.2.1研究区示意图 (5) 1.3实验结果 (7) 1.3.1灰度图像 (7) 1.3.2密度分割后图像 (7) 二:单通道算法 (8) 2.1实验原理 (8) 2.1.1单通道算法模型为: (8) 2.1.2大气平均作用温度Ta的近似估计 (8) 2.1.3大气透射率t6的估计 (8) 2.1.5像元亮度温度计算 (8) 2.1.6遥感器接收的辐射强度计算 (9) 2.2操作步骤 (9) 研究区示意图 (9) 2.2.1计算L6 (10) 2.2.2T6e6的求算 (10) 2.2.3计算R (10) 2.2.4计算t (10) 2.3实验结果 (11) 2.3.1温度反演灰度图像 (11) 2.3.2密度分割后的图像 (11) 三:辐射方程 (12) 3.1实验过程 (12) 3.1.1数据准备 (12) 3.1.2地表比辐射率的估计 (12) 3.1.3计算同温度下黑体的辐射亮度值 (12) 3.1.4反演地表温度 (13) 3.2温度反演结果 (13)

定量遥感实验指导书.pdf

地理信息科学专业定量遥感 实验指导书 2016 年 3 月

目录 实验一遥感辐射信息获取与大气校正 实验二地物识别与定量反演 实验三Erdas遥感反演建模-植被指数反演实验四Erdas遥感反演建模-地表温度反演

实验一遥感辐射信息获取与大气校正1.实验目的 (1)初步了解目前主流的遥感图象处理软件 ERDAS,ENVI 的主要功能模块; (2)掌握 Landsat ETM 遥感影像数据,数据获取手段。掌握 Erdas 遥感影像辐射信息获取; (3)加深对遥感理论知识理解,掌握遥感大气校正方法。 2.实验内容 掌握遥感辐射定标方法,理解并独立完成三种ENVI大气校正(黑暗象元法大气校正、QUAC快速大气校正、Flaash大气校正) 3.实验主要过程 (1)遥感影像辐射定标 (2)数据预处理 (3)QUAC 快速大气校正 (4)简化黑暗象元法大气校正 (5)Flaash 大气校正

4.实验重点、难点 (1)理解遥感辐射校正基本原理; (2)掌握常用的三种大气校正方法,能够熟练使用 ENVI 完成;(3)Flaash 大气校正参数设置。 5.实验思考 (1)遥感影像大气校正为什么需要定标? (2)遥感大气校正主要影响因素有哪些。 6.实验报告 (1)实验目的,内容; (2)实验每个过程详细步骤,并附上每一步截图和相关说明,特别是一些关键参数和数据需要注明; (3)实验小结,完成数据处理后,导入 ArcGIS 制作专题地图,并比较不同地物类别大气校正辐射率信息,分析差异及原因; (4)完成实验思考题。

实验二地物识别和定量反演 1.实验目的 (1)理解基于遥感光谱曲线的地物识别原理,掌握遥感定量反演模型和方法; (2)学习 ENVI Bandmath 工具进行地表温度反演的过程; (3)加深定量遥感反演知识理论,增强遥感软件平台操作能力。 2.实验内容 使用ENVI中的Band Math进行地表温度的反演(1.植被覆盖度,2.地表比辐射率,3.相同温度下黑体辐射亮度值,4.反演地表温度),并制作专题图输出。 3.实验步骤 (1)熟悉和掌握遥感温度反演过程; (2)植被覆盖度计算; (3)地表比辐射率计算; (4)反演地表温度; (5)结果输出和专题图制作。

地表温度反演单通道算法

1、单通道算法模型为: Ts=r*[(y1*L6+y2)/e6+y3]+t 2、大气平均作用温度Ta的近似估计 温度换算:T=t+273.15 本图为7月份拍摄,对于中纬度夏季平均大气Ta=16.0110+0.92621T0 取乌鲁木齐市平均气温为25摄氏度时Ta = 312.15753 3、大气透射率t6的估计 t6=0.974290-0.08007w,0.4≤w≤1.6。 w为水分含量,单位(g/cm2),这里,取w=1.0,计算得到t6=0.89422 4、地表比辐射率的估计 典型地表类型的比辐射率 ew=0.995 ev=0.986 em=0.970 Pv=[(NDVI- NDVIs)/(NDVIv- NDVIs)]2 NDVI 为归一化植被指数, 取NDVIv=0.70 和NDVIs=0(分别取自5%及95%数据) e surface=0.9625+0.0614Pv-0.0461Pv^2 5、像元亮度温度计算 T6=K2/ln(1+K1/L6) 其中:K1=607.76,K2=1260.56(覃志豪,用陆地卫星TM6数据演算地表温度的单窗算法); L6为遥感器接收的辐射强度。 6、遥感器接收的辐射强度计算 L6=(15.303-1.238)*b1/255.0+1.238 (覃志豪,用陆地卫星TM6数据演算地表温度的单窗算法);b1为第六波段像元灰度值(DN值)。 LMAX_BAND6 = 15.303 LMIN_BAND6 = 1.238 单通道算法模型表达式中, Ts是陆地表面温度, L6是卫星高度上遥感传感器测得的辐射强度(W·m- 2·sr- 1·m- 1),e6是地表发射率; r, t,y1,y2,y3是中间变量, 分别由以下公式计算: R=1/[(c2*L6/T6^2)*(λ^4*L6/c1+1/λ)] y1=0.14714w^2- 0.15583w+1.1234=1.11471 y2=-1.1836w^2- 0.37607w- 0.52894=0.27859 y3=-0.04554w^2+1.8719w- 0.39071=1.43565 t=T6-r*L6 其中, C1和C2是Plank 函数的常量, C1=1.19104×10^8 W·μm4·m- 2·sr- 1, C2=14387.7 μm·K; T6是卫星高 度上传感器所探测到的像元亮度温度, 单位为K; λ

地表温度热红外遥感反演的研究现状及其发展趋势_祝善友

收稿日期:2006-04-19;修订日期:2006-10-16 基金项目:上海市科委光科技专项(04dz05117)资助。 作者简介:祝善友(1977-),男,博士,主要从事遥感信息处理研究工作。 地表温度热红外遥感反演的研究现状及其发展趋势 祝善友1,张桂欣1,尹 球2,匡定波2 (1.南京信息工程大学遥感学院,江苏南京 210044;2.中国科学院上海技术物理研究所,上海 200083)摘要:区域性或全球性的地表温度,只有通过遥感手段才能获得,在诸多应用中是一个非常重要的参数。地表温度反演是热红外遥感研究的热点和难点之一,大气校正、温度与比辐射率的分离是必须考虑的两个重要方面。近年来有关的研究非常多,主要反演方法可分为5类:单通道方法、分裂窗(双波段)方法、多波段温度-比辐射率分离方法、多角度温度反演方法和多角度与多通道相结合的方法。这些方法都各有利弊,如何提高反演的精度和模型的适用性是地表温度热红外遥感的未来发展趋势,理论和实验相结合的多种信息源的综合应用成为必然的要求。关 键 词:地表温度;比辐射率;热红外波段;遥感 中图分类号:TP 751.1;TP 722.5 文献标识码:A 文章编号:1004-0323(2006)05-0420-06 1 引 言 在许多环境模型中,如大气与地表的能量与水汽交换、数字天气预报、全球洋流、气候变化等方面,地表温度都是一个不可或缺的重要参量。只有通过遥感技术,才能获得区域性或全球性的地表温度分布状况。近年来许多方法被用于从热红外波段探测到的经大气影响的地表辐射,并结合其它辅助数据来估算地表温度。但是许多原因限制了高精度的地表温度反演〔1,2〕:①大气对热红外波段的影响非常复杂,难以进行精确的大气校正;②热红外波段信息受地表热状况的影响,而且地物本身的热过程非常复杂,要定量表达这一过程非常困难;③热探测器获得的物体发射辐射信息包含了地表温度与比辐射率,温度与比辐射率的分离是热红外遥感的一个难点;④热红外遥感图像的空间分辨率一般低于可见光-近红外遥感图像,造成了混合像元(非同温像元)的定义和计算的复杂。因此,若想从遥感数据中获得地表温度,高精度的大气校正、温度与比辐射率的分离是首先必须考虑的两个关键方面。 2 地表温度热红外遥感反演的理论基 础 在热红外遥感的地-气辐射传输过程中,地面 与大气都是热红外辐射的辐射源,辐射能多次通过 大气层,被大气吸收、散射和发射。图1为热红外遥感的地-气辐射传输示意图,它表达了热红外辐射的传输方向以及相互作用过程〔2〕 。 图1 热红外遥感的地-气辐射传输示意图Fig .1  Sketch map of ground -atmospheric radiance transmission of thermal inf rared remote sensing 若考虑热辐射的方向性,则根据热辐射传输方程,卫星遥感器接收到的辐射亮度可由式(1)计算:L sensor j (θ)=f j (θ)·X j (θ)·B j (T s )+L atm ↑ j (θ)+ f j (θ)·∫ o f (θ′,h ′,θ,h )·L atm ↓j (θ′)·co s θ′do ′(1) 第21卷 第5期2006年10月 遥 感 技 术 与 应 用 REM OT E S EN SING TEC HNOLOGY AND APPLICA TION Vol .21 No .5Oct .2006

相关文档
相关文档 最新文档