文档库 最新最全的文档下载
当前位置:文档库 › 转炉留渣操作技术

转炉留渣操作技术

转炉留渣操作技术
转炉留渣操作技术

转炉留渣操作技术

1 前言

氧气顶吹转炉留渣操作在20世纪80年代初期就已经提出,由于没有掌握留渣后操作安全规律,在兑铁时时常出现大喷,因此,留渣操作一直没有得到推广应用,但氧气顶吹转炉留渣操作可以大大降低钢铁料消耗、节约石灰,在转炉吹炼初期可以快速成渣,而且是高碱度氧化渣,有利于提高生产率,我们知道,钢铁料消耗占转炉生产成本80%左右的水平,因此,留渣操作具有显著的经济效益,特别是对于我们某厂公司,铁水资源不足的钢厂效益更是立竿见影,所以,只要从理论上找出留渣后兑铁发生大喷的根本原因,从操作上找出切实可行的规避措施,留渣操作从可持续发展和循环经济的层面上是大有可为的。2转炉留渣操作的可行性

某厂二炼钢铁水成分如下:

铁水平均温度1250~1300℃冶炼终渣成分为:CaO:52%、MgO:8%、Si02:10%、FeO:18%。

兑铁时发生喷溅的主要原因是在兑铁瞬间,铁水中的碳和钢渣中的FeO发生激烈的C-O反应,生成的CO气体急剧膨胀,把铁水和钢渣带出炉口,因此,只有解决兑铁时的C-O激烈反应,才能避免大的喷溅。

3留渣操作的特点

由于炼钢生产节奏快,一炉钢在冶炼过程中,其吹炼时间只有十几分钟,也就是说要在十几分钟的吹氧时间内形成具有一定碱度、良好流动性、合适且

TFe和MgO含量正常泡沫化的炉渣,以保证冶炼成分和温度同时双命中的钢水,并减少对炉衬的侵蚀,留渣操作贯穿于炼钢整个冶炼周期,主要是靠所留炉渣的物理热和炉渣化学性能,使其具有迅速参与反应、并促进前期炉渣的快速形成、提高去除P、S的效率、节省石灰用量。

3.1有利于去磷

在氧气顶吹转炉中,磷的氧化是在炉渣-金属界面中进行的,其反应式为:

生成的磷酸铁在高温下极其不稳定,它可以重新分解生成P2O5,而P2O5是不稳定的化合物,因此,仅靠生成P2O5。不能去除磷,但P2O5是酸性化合物,若用碱性化合物与其结合生成稳定的化合物可以去除。研究认为,在碱性渣中P2O5与CaO形成稳定的(CaO)x P2O5型的化合物,其中x为3或4,因此,操作中需加入石灰,使其生成稳定的化合物3CaO· P2O5。或4CaO·P2O5存在于渣中,才能有效去磷,其反应为:

从式中可以看出脱磷的条件,(1)提高CaO含量即提高炉渣碱度,(2)提高炉渣氧化性,即FeO含量,(3)降低熔池温度。

以上分析可以说明,留渣操作对脱磷是有利的,因为(1)冶炼初期熔池温度比较低,碱度一般在1.8~2.2之间,且渣中含有一定的FeO,满足脱磷的热力学条件,(2)留渣操作可以使初期成渣速度更快、流动性好,满足脱磷的动力学条件。

3.2提高钢水收得率

一般转炉终渣FeO含量在15%左右,渣中游离的铁渣按8%计算,每炉留渣

1000公斤,则每炉可以回收120公斤铁左右,按二炼钢目前的产能,每年可节约一千五百万元。

3.3冶炼前期反应

由于所留炉渣本身的特点,从兑铁开始到吹炼之前,炉渣就和铁水之间发生物理化学反应,其主要反应有:

这些反应的存在可以从留渣操作的纯供氧时间比不留渣的纯供氧时间短的实践得到印证,因此留渣操作炉次的吹炼时间比正常单渣法操作供氧时间有所缩短,一般缩短大约在2%左右。

4 留渣操作需要注意的几个问题

1)安全问题:兑铁时喷溅,因此所留的炉渣应予以确认,一是温度不能太高,一般在1500℃可以保证其安全性,二是溅渣时间必须保证,因为目前留渣操作一般与溅渣护炉并用,必要时可以加入一定量的改质剂稠渣。

2)初期渣化的早、来的快,尤其是前期低温时易发生喷溅,随之而来产生返干现象,导致沾枪沾罩操作困难。

3)开吹时打火困难,可以采用前后摇炉或者先点吹30~40s再加人废钢的办法。

4)初期渣化得早,前期渣来得快,低温炉渣容易从炉口涌出,特别是吹炼到6分钟左右,压料后易“返干”,Si数低时尤甚,铁水硅含量高时,过程渣不易控制易发生喷溅,当铁水硅数超过0.5%时喷溅率呈直线上升。

5)拉碳时火焰判断不准,易拉高碳,点吹时降碳量和升温速度都比单渣法低,由于留渣造成热平衡不好计算且留渣操作火焰比单渣法火焰亮,温度不好

控制。

5 结语

1)留渣操作方向性是可行的,关键是合适的留渣量及溅渣效果的保证。

2)留渣操作对P、S的去除有利,同时可以大大降低钢铁料的消耗,是值得我们重点研究的课题。

扒渣机使用安全技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 扒渣机使用安全技术措施 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9131-48 扒渣机使用安全技术措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1. 施工斜井时,使用ZLZY60/11.5型扒渣机,下井前应检查各零部件是否齐全,并在地面进行试运转。 2. 试运行前,应检查电机接法是否与电源电压相符,转动方向是否正确,否则不可运行。 3. 扒渣机司机必须持证上岗,严格按其操作规程作业。 4. 扒渣机运行期间,严禁扒渣机运行范围内有人,扒渣机距碛头距离3~25m。 5. 工作面风流中瓦斯浓度达到1%时,禁止使用扒渣机,并及时切断电源。 6. 每次放炮前,必须用木料掩盖扒渣机操作按钮及电缆,耙斗应拉到扒渣机跟前,防止被岩石埋住。 7. 放炮后,应对扒渣机进行检查确认正常后,方可开动扒渣机。 8. 扒渣机装货前认真清理货堆及工作面是否有

转炉炼钢过程工艺控制的发展与展望要求

转炉炼钢过程工艺控制的发展与展望要求 发表时间:2018-12-31T11:57:53.667Z 来源:《建筑学研究前沿》2018年第28期作者:亓传军[导读] 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力。山东泰山钢铁有限公司不锈钢炼钢厂技术科山东莱芜 271100 摘要:在转炉冶炼控制方面,钢厂关注更多的是终点钢水是否合格,但随着日益增加的市场竞争压力和环境要求,钢厂希望尽可能实现节能降耗,减少气体排放,而过程控制的优化是实现这一目标的有效手段。通过对转炉炼钢过程进行优化控制,使炼钢进程以合理的方式进行,使辅料和能源消耗最小化,才能使企业在市场经济条件下更具竞争力,并且过程控制也是转炉全自动控制发展的重要部分。文章 重点就转炉炼钢过程工艺控制的发展与展望进行研究分析,以供参考。关键字:转炉炼钢;工艺技术;发展对策;未来展望 引言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动炼钢业的经济发展。 1转炉炼钢工艺的目的 转炉冶炼主要是将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。按照配料要求,先把废钢等装入炉内,然后倒入铁水,并加入适量的造渣材料(如生石灰等)。加料后把氧气喷枪从炉顶插入炉内,吹入氧气(纯度大于99%的高压氧气流),使它直接跟高温的铁水发生氧化反应,除去杂质。用纯氧代替空气可以克服由于空气里的氮气的影响而使钢质变脆,以及氮气排出时带走热量的缺点。在除去大部分硫、磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备出钢。出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。因此,必须加以净化回收,综合利用,以防止污染环境。从回收设备得到的氧化铁尘粒可以用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水蒸气。此外,炼钢时生成的炉渣也可以用来做钢渣水泥,含磷量较高的炉渣,可加工成磷肥等。氧气顶吹转炉炼钢法具有冶炼速度快、炼出的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。但在冶炼过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗,因而所炼钢种和质量就受到一定的限制。 2转炉炼钢过程工艺控制现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,所以抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来,炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 3转炉炼钢过程工艺控制的发展对策3.1优化入炉料结构,合理使用好铁矿石有数据测得,与原材料成分相近的高炉铁水和铁块的实际金属收得率约为93%和92%,自产废钢和社会废钢的金属收得率约为97%和88%。根据铁钢产能的平衡及铁水废钢价格,通过热平衡和物料平衡计算,优化了入炉料结构。实际炉料结构中采用增大入炉原料中铁水比例,降低废钢配比,增加矿石使用量的工艺措施,可有效地提高炉料金属收得率,降低金属料消耗。为了尽量增加矿石用量,提高矿石还原效果和减少吹炼过程中矿石加入量过多对冶炼的影响,在实际生产中,对矿石加入工艺进行了调整。在转炉溅渣及加废钢后,根据铁水的条件直接将2/3左右的矿石加入炉内后再兑铁,在兑铁过程中与废钢搅拌以促进部分矿石的还原。在保证化渣效果和避免喷溅的原则下,尽量保证剩余矿石早加和均匀加入,以保证矿石化渣还原时间和效果。吹炼中期采用分批少量加入控制,避免吹炼中期加入量集中造成的喷溅,吹炼后期严禁加矿石,避免矿石加入过晚造成熔化还原效果差和炉渣氧化性强对脱氧合金化的影响。 3.2优化冶炼工艺,减少炉渣铁耗和氧耗3.2.1优化吹炼工艺,减少喷溅和氧耗喷溅是造成铁耗损失的主要原因之一,为消除或减轻喷溅采取了以下措施:根据天车限载的要求,进一步降低装入量,使转炉装入量得到合理控制,适当提高了炉容比,有效地保证了炉内有效工作容积,以利于减少喷溅;前期化好渣,在第二批造渣料加入前后,通过提前成渣的方法,将泡沫渣的高峰期前移,以便与脱碳的峰值时刻错开;改进吹炼工艺,吹炼前期采用大氧压适当降低枪位操作,利于熔解废钢,在硅氧化完毕之后、脱碳的高峰期到达之前,暂时降低供氧强度,然后再将其平缓地恢复到正常值,吹炼终期采用大氧压低枪位操作,加强熔池搅拌,保证终点钢水成分和温度的均匀,降低了氧耗,同时降低炉渣氧化性。 3.2.2优化造渣工艺,实施少渣炼钢,减少炉渣铁耗为了减少单炉产渣量,在生产中采取精料方针,在进一步完善转炉留渣溅、渣操作工艺应用基础上努力提高入炉原料质量,使用高品位石灰和矿石,采用轻烧白云石造渣。根据铁水Si、S含量情况合理调整造渣料消耗,在确保满足生产需要的情况下适当减少石灰量消耗。铁水中硅、锰含量低及无需脱硫,这些条件会改变造渣机理及动力特性,因为这时石灰消耗下降,渣量减少,渣碱度及氧化度增高。在这样的条件下,渣的精炼功能只限于铁水脱磷,这样就能在转炉冶炼本身中多次利用渣,使渣具有很高的精炼能力。4转炉冶炼工艺过程控制的未来展望

氧气转炉留渣-冶金之家

氧气转炉“留渣+双渣”炼钢工艺技术研究 王新华1,朱国森2,李海波2,吕延春2 (1.北京科技大学冶金与生态工程学院,北京100083;2.首钢技术研究院,北京100043) 摘要:首钢迁钢公司和首秦公司大规模采用了“留渣+双渣”转炉炼钢新工艺,大幅度减少了炼钢渣量和石灰、白云石消耗。文章介绍了其中所开发的3项重要技术:①脱磷阶段采用低碱度(w(CaO)/w(SiO2)∶1.3~1.5)和低MgO质量分数(≤7.5%)渣系,形成流动性良好和适度泡沫化炉渣,解决了脱磷阶段结束难以快速足量倒渣和渣中金属铁质量分数高这两大问题;②针对脱磷阶段底吹搅拌弱问题,采用了低枪位和高供氧强度吹炼方法,利用顶吹氧气流加强金属熔池搅拌,获得了良好脱磷效果;③通过加快生产速度,特别是对“炼钢-精炼-连铸”生产合理组织调配,在转炉冶炼时间增加大约4min情况下,钢产量并没有减少。 关键词:转炉炼钢;少渣;石灰消耗;脱磷;炉渣 中国钢铁工业近20年来发展迅速,对国民经济快速增长发挥了重要作用,但在节省资源、能源和减少炉渣等固体废弃物排放等方面,目前面临着巨大的压力和挑战。以占中国产钢量90%以上氧气转炉炼钢为例,每年生产约6.2亿t粗钢,要产生6000万t以上炉渣,消耗3100万t以上石灰和700万t以上轻烧白云石,而用于生产炼钢石灰和轻烧白云石的石灰石与生白云石矿产均为重要的不可再生资源。 2001年Ogawa等[1]报道了新日铁开发的MURC转炉炼钢新工艺及其在8t转炉的试验情况,该工艺将转炉冶炼分为2个阶段,在第1阶段主要进行脱硅、脱磷,结束后倒出部分炉渣,然后进行第2阶段吹炼,吹炼结束后出钢但将炉渣保持在炉内,下一炉在炉内留渣情况下装入废钢、铁水,然后进行第1和第2阶段吹炼,并以此循环往复。近年来,新日铁陆续报道了MUCR工艺相关情况[2-10],新日铁公司的大分、八幡、室兰、君津等钢厂采用了该工艺,产钢占新日铁总产钢量55%左右,转炉炼钢石灰消耗减少40%以上,但对其中许多关键技术,如液态渣固化、脱磷阶段炉渣碱度、供氧参数、脱磷工艺、倒渣控制等基本没有报道。 20世纪50~70年代,中国一些转炉钢厂在铁水硅、磷质量分数高时,为了降低石灰消耗,减少吹炼过程喷溅,改善脱磷效果,曾采用过出钢后留渣或“留渣+双渣”炼钢工艺。后来,随着高炉生产水平提高(铁水硅质量分数降低),高磷铁矿石用量减少(铁水磷质量分数降低),以及顾忌留渣造成铁水喷溅安全隐患,留渣或“留渣+双渣”炼钢工艺没有在更大规模推广采用。 近年来中国国内钢厂开始试验采用“留渣+双渣”转炉炼钢工艺,其中首钢在其迁钢公司5座210t复吹转炉和首秦公司3座100t复吹转炉大规模采用了该工艺方法,取得了炼钢石灰消耗减少47%以上,轻烧白云石消耗减少55%以上,渣量降低30%以上的效果。 1 首钢采用“留渣+双渣”炼钢工艺情况 首钢迁钢公司第一和第二炼钢分厂共拥有5座210t顶底复吹转炉,氧枪采用5孔喷头,马赫数为2.0,供氧强度在3.3~3.4m3/(min·t)范围,年产钢810万t,主要产品包括汽车、家电用冷轧钢板、电工钢板、管线钢板、容器板、造船板等。首秦公司拥有3座100t顶底复吹转炉,氧枪采用4孔喷头,马赫数为2.0,供氧强度在3.6~3.8m3/(min·t)范围,年产钢260万t,主要生产优质中厚板(管线、造船、桥梁、高层建筑、海洋平台用钢板等)。如图1所示,迁钢公司和首秦公司采用的氧气转炉“留渣+双渣”炼钢工艺主要包括以下环节: ①转炉冶炼结束出钢后将炉渣留在炉内;②采用溅渣护炉将部分炉渣溅至炉衬表面加以固化,再补加一定量石灰、白云石对炉底液态渣进行固化;③对炉渣固化加以确认,然后装入废钢、铁水;④进行第1阶段吹炼(脱磷阶段),结束后倒出炉内60%左右炉渣;⑤进行第2阶段(脱碳阶段)吹炼,结束后出钢,但将炉渣留在炉内,进入下炉次冶炼并以此循环往复。

炼钢工艺的发展历程

炼钢工艺的发展历程 2008年12月8日摘自冶金自动化网 炼钢方法(1) 最早出现的炼钢方法是1740年出现的坩埚法,它是将生铁和废铁装入由石墨和粘土制成的坩埚内,用火焰加热熔化炉料,之后将熔化的炉料浇成钢锭。此法几乎无杂质元素的氧化反应。 炼钢方法(2) 1856年英国人亨利·贝塞麦发明了酸性空气底吹转炉炼钢法,也称为贝塞麦法,第一次解决了用铁水直接冶炼钢水的难题,从而使炼钢的质量得到提高,但此法要求铁水的硅含量大于0.8%,而且不能脱硫。目前已淘汰。 炼钢方法(3) 1865年德国人马丁利用蓄热室原理发明了以铁水、废钢为原料的酸性平炉炼钢法,即马丁炉法。1880年出现了第一座碱性平炉。由于其成本低、炉容大,钢水质量优于转炉,同时原料的适应性强,平炉炼钢法一时成为主要的炼钢法。 炼钢方法(4) 1878年英国人托马斯发明了碱性炉衬的底吹转炉炼钢法,即托马斯法。他是在吹炼过程中加石灰造碱性渣,从而解决了高磷铁水的脱磷问题。当时,对西欧的一些国家特别适用,因为西欧的矿石普遍磷含量高。但托马斯法的缺点是炉子寿命底,钢水中氮的含量高。 炼钢方法(5) 1899年出现了完全依靠废钢为原料的电弧炉炼钢法(EAF),解决了充分利用废钢炼钢的问题,此炼钢法自问世以来,一直在不断发展,是当前主要的炼钢法之一,由电炉冶炼的钢目前占世界总的钢的产量的30-40%。 炼钢方法(6)

瑞典人罗伯特·杜勒首先进行了氧气顶吹转炉炼钢的试验,并获得了成功。1952年奥地利的林茨城(Linz)和多纳维兹城(Donawitz)先后建成了30吨的氧气顶吹转炉车间并投入生产,所以此法也称为LD法。美国称为BOF法(Basic Oxygen Furnace)或BOP法, 如图1所示。 图1 BOF法 炼钢方法(7) 1965年加拿大液化气公司研制成双层管氧气喷嘴,1967年西德马克西米利安钢铁公司引进此技术并成功开发了底吹氧转炉炼钢法,即OBM法(Oxygen Bottom Maxhuette) 。1971年美国钢铁公司引进OBM法,1972年建设了3座200吨底吹转炉,命名为Q-BOP (Quiet BOP) ,如图2所示。 图2 Q-BOP法 炼钢方法(8) 在顶吹氧气转炉炼钢发展的同时,1978-1979年成功开发了转炉顶底复合吹炼工艺,即从转炉上方供给氧气(顶吹氧),从转炉底部供给惰性气体或氧气,它不仅提高钢的质量,而且降低了炼钢消耗和吨钢成本,更适合供给连铸优质钢水,如图3所示。 图3 转炉顶底复合吹炼法 炼钢方法(9) 我国首先在1972-1973年在沈阳第一炼钢厂成功开发了全氧侧吹转炉炼钢工艺。并在唐钢等企业推广应用,如图4所示。

转炉留渣操作技术

转炉留渣操作技术 1 前言 氧气顶吹转炉留渣操作在20世纪80年代初期就已经提出,由于没有掌握留渣后操作安全规律,在兑铁时时常出现大喷,因此,留渣操作一直没有得到推广应用,但氧气顶吹转炉留渣操作可以大大降低钢铁料消耗、节约石灰,在转炉吹炼初期可以快速成渣,而且是高碱度氧化渣,有利于提高生产率,我们知道,钢铁料消耗占转炉生产成本80%左右的水平,因此,留渣操作具有显著的经济效益,特别是对于我们某厂公司,铁水资源不足的钢厂效益更是立竿见影,所以,只要从理论上找出留渣后兑铁发生大喷的根本原因,从操作上找出切实可行的规避措施,留渣操作从可持续发展和循环经济的层面上是大有可为的。2转炉留渣操作的可行性 某厂二炼钢铁水成分如下: 铁水平均温度1250~1300℃冶炼终渣成分为:CaO:52%、MgO:8%、Si02:10%、FeO:18%。 兑铁时发生喷溅的主要原因是在兑铁瞬间,铁水中的碳和钢渣中的FeO发生激烈的C-O反应,生成的CO气体急剧膨胀,把铁水和钢渣带出炉口,因此,只有解决兑铁时的C-O激烈反应,才能避免大的喷溅。 3留渣操作的特点 由于炼钢生产节奏快,一炉钢在冶炼过程中,其吹炼时间只有十几分钟,也就是说要在十几分钟的吹氧时间内形成具有一定碱度、良好流动性、合适且

TFe和MgO含量正常泡沫化的炉渣,以保证冶炼成分和温度同时双命中的钢水,并减少对炉衬的侵蚀,留渣操作贯穿于炼钢整个冶炼周期,主要是靠所留炉渣的物理热和炉渣化学性能,使其具有迅速参与反应、并促进前期炉渣的快速形成、提高去除P、S的效率、节省石灰用量。 3.1有利于去磷 在氧气顶吹转炉中,磷的氧化是在炉渣-金属界面中进行的,其反应式为: 生成的磷酸铁在高温下极其不稳定,它可以重新分解生成P2O5,而P2O5是不稳定的化合物,因此,仅靠生成P2O5。不能去除磷,但P2O5是酸性化合物,若用碱性化合物与其结合生成稳定的化合物可以去除。研究认为,在碱性渣中P2O5与CaO形成稳定的(CaO)x P2O5型的化合物,其中x为3或4,因此,操作中需加入石灰,使其生成稳定的化合物3CaO· P2O5。或4CaO·P2O5存在于渣中,才能有效去磷,其反应为: 从式中可以看出脱磷的条件,(1)提高CaO含量即提高炉渣碱度,(2)提高炉渣氧化性,即FeO含量,(3)降低熔池温度。 以上分析可以说明,留渣操作对脱磷是有利的,因为(1)冶炼初期熔池温度比较低,碱度一般在1.8~2.2之间,且渣中含有一定的FeO,满足脱磷的热力学条件,(2)留渣操作可以使初期成渣速度更快、流动性好,满足脱磷的动力学条件。 3.2提高钢水收得率 一般转炉终渣FeO含量在15%左右,渣中游离的铁渣按8%计算,每炉留渣

扒渣机使用安全技术措施

扒渣机使用安全技 术措施

扒渣机使用安全技术措施 1. 施工斜井时,使用ZLZY60/11.5型扒渣机,下井前应检查各零部件是否齐全,并在地面进行试运转。 2. 试运行前,应检查电机接法是否与电源电压相符,转动方向是否正确,否则不可运行。 3. 扒渣机司机必须持证上岗,严格按其操作规程作业。 4. 扒渣机运行期间,严禁扒渣机运行范围内有人,扒渣机距碛头距离3~25m。 5. 工作面风流中瓦斯浓度达到1%时,禁止使用扒渣机,并及时切断电源。 6. 每次放炮前,必须用木料掩盖扒渣机操作按钮及电缆,耙斗应拉到扒渣机跟前,防止被岩石埋住。 7. 放炮后,应对扒渣机进行检查确认正常后,方可开动扒渣机。 8. 扒渣机装货前认真清理货堆及工作面是否有残留火工品及瞎炮,发现及时处理后方可允许装货。 9. 启动扒渣机前,司机必须先发出信号,撤出工作面人员,扒渣机前方严禁有人进行其它操作。 10. 装岩过程中,如扒渣机受阻或过载太大。不应强行扒岩,必须用大锺砸成小块后,方可用耙斗装矸。 11. 扒渣机装岩完毕后,应使两个操纵手把置于松闸状态,最后切断电源,关闭送电手柄,切断扒渣机电源。 12. 斜井移动扒渣机时,必须应用提升绞车牵引。必须设专职信

号工和绞车司机,绞车司机必须持证上岗。施工中信号联系为:一点停、二点提、三点放、四点慢提、五点慢放,严格按信号执行,信号不清、不明严禁启动绞车。 13. 施工前必须指定现场负责人、现场安全负责人,必须有队干部跟班上岗。 (14)斜井移动扒渣机必须使用保险装置齐全的专用插销;把绞车钩头用插销固定于扒渣机车上,确保钩头与扒渣机连接牢固、安全。 (15)移动前,由专人对绞车的四压两戗、钢丝绳及其连接装置、信号系统、轨道铺设质量等进行一次全面检查,发现问题及时处理,确认无误后才能施工。 (16)移动时,扒渣机必须带电移动。移动过程中,在扒渣机下方禁止有人,上口必须设专人警戒,防止人员进入。(17)移动前,必须将开关、电缆等单独移到位,严禁将其放在扒渣机上与扒渣机一起移动。 (18)移动前,应先将信号系统移至扒渣机预设位置,并检查其灵敏性,保证信号灵敏可靠。 (19)移动扒渣机时,绞车开动使提升钢丝绳承受全部载荷后,再次检查各组稳绳受力是否均匀,确认无误后,方可撤出卡轨器,再用绞车向下移扒渣机到预定位置后,固定好卡轨器及辅助加固设备,确认安全后,方准松开绞车提升钢丝绳。 (20)移扒渣机时,若遇突然停电或需中途暂停时,绞车司机必

转炉炼钢工艺的优化实践

转炉炼钢工艺的优化实践 摘要: 目前,我国炼钢行业正在快速发展,同时炼钢技术的进步主要围绕着高效率、高质量、低成本、低能耗、少环境污染等方面。对于炼钢技术采取优化措施,结合工艺优化和综合降耗,从炉料消耗、氧气消耗、石灰、合金消耗、煤气回收、除尘灰、钢渣综合处理等环节有效控制,明显提高炼钢的经济和质量效益。在整体上提高炼钢行业的竞争性,创新炼钢工艺,不断优化炼钢工艺等方面,取得了明显的效果。 关键词: 转炉炼钢工艺优化 0 前言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动了炼钢业的经济发展。本文主要通过对炼钢行业现状的分析,结合成功经验,对炼钢工艺优化提出一些既有效又经济的方法,降低成本的同时,提高炼钢产量,节约能源。笔者分析探讨了炼钢工艺优化的重要性和可实施性。 1总述炼钢行业的现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,因此抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,略钢炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 2炉料结构优化思路 目前,常用的转炉金属炉料有高炉铁水、铁块(生铁)、自产废钢、社会废钢( 以中型和小型废钢为主)等。炉料结构优化应以满足转炉炼钢需要为基础,以提高炉料金属收得率为出发点,找出成本最低的炉料配比为目的。炉料金属收得率是指某一金属炉料的单位投入量通过冶炼可以产出合格钢水的百分率。它受两方面因素影响: 一方面是炉料自身含量,另一方面是在冶炼过程中的各种损耗,包括原料中杂质元素化学损失、烟尘损失、喷溅及炉渣带钢造成的铁耗等。 3 提高炉料金属收得率工艺措施 3.1 优化入炉料结构,合理使用好铁矿石

转炉脱磷热力学及双渣操作分析(精)

转炉脱磷热力学及双渣操作分析 一、转炉脱磷的冶金条件 众所周知, FeO 和 CaO 是生成稳定磷酸盐的最主要的氧化物。在转炉炼钢中, 我们以 FeO 为氧化剂,以 CaO 为磷氧化产物的稳定剂。通常炼钢脱磷反应如下: 1 在渣钢界面上 ][5][5 (5O Fe FeO += (1 2在与渣相相邻的金属层中 (][5][252O P O P =+ (2 3 在与金属相相邻的渣层中4( ( 4 (5252O P CaO CaO O P ?=+ (3 总反应描述为 []((([]Fe O P CaO CaO FeO P 5445252+?=++ (4 根据萨马林的数据 (5 在式(5中,氧化物和磷酸四钙的活度甩摩尔分数表示。 K p 随温度的升高急剧减小,在 1673 、 1773 和 1873K 下。 K p 相应为 7.8 ×108、 3.5 ×107、 2.1 ×106 。 根据式(5 ,在金属与炉渣平衡的情况下, (6 由式(6可见,促进炉渣对金属脱磷的热力学因素有: 1加人固体氧化剂(铁矿石、铁皮或用高枪位向熔池吹氧以增大 a (FeO 2加入石灰和促进石灰在碱性渣中迅速溶解的物质以增大 a (CaO ,亦即增大自由 CaO (不与酸性氧化物结合的的浓度; 3用更新与金属接触的渣相的方法,亦即放渣和加入 CaO 与 FeO 造新渣的方法来减小4(52O P CaO a ?

4保持适当的低温,因为温度从 1673 增到 1873K ,使反应(4的平衡常数 K p 减小到 1/370 。 应当指出, 上述关于温度对脱磷影响的结论, 仅仅是从热力学观点看是正确 06. 1547008 lg lg 4 (5 ( 4(52-==?T a a K a K CaO FeO p O P CaO p 4 (5 ( 4(52][%CaO FeO p O P CaO a a K a P ?= 的,为了加速脱磷必须有适当的高温,因为高温可以迅速生成高碱度铁质炉渣, 和保证得到均质流动的炉渣使传质过程加速。 我们引入脱磷指数 L P —熔渣的脱磷在渣—铁间的分配比作为衡量熔渣的脱磷能力的大小,其值越大则表明熔渣的脱磷能力越大。 L P 可由如下反应式推得 2[P]+5[O]=(P 2O 5 (7 [][] 5 5 2 2

转炉炼钢知识问答

转炉炼钢知识问答 1 转炉炼钢的原材料 1-1 转炉炼钢用原材料有哪些,为什么要用精料? 炼钢用原材料分为主原料、辅原料和各种铁合金。氧气顶吹转炉炼钢用主原料为铁水和废钢(生铁块)。炼钢用辅原料通常指造渣剂(石灰、萤石、白云石、合成造渣剂)、冷却剂(铁矿石、氧化铁皮、烧结矿、球团矿)、增碳剂以及氧气、氮气、氩气等。炼钢常用铁合金有锰铁、硅铁、硅锰合金、硅钙合金、金属铝等。 原材料是炼钢的物质基础,原材料质量的好坏对炼钢工艺和钢的质量有直接影响。国内外大量生产实践证明,采用精料以及原料标准化,是实现冶炼过程自动化、改善各项技术经济指标、提高经济效益的重要途径。根据所炼钢种、操作工艺及装备水平合理地选用和搭配原材料可达到低费用投入,高质量产出的目的。 转炉入炉原料结构是炼钢工艺制度的基础,主要包括三方面内容:一是钢铁料结构,即铁水和废钢及废钢种类的合理配比;二是造渣料结构,即石灰、白云石、萤石、铁矿石等的配比制度;三是充分发挥各种炼钢原料的功能使用效果,即钢铁料和造渣料的科学利用。炉料结构的优化调整,代表了炼钢生产经营方向,是最大程度稳定工序质量,降低各种物料消耗,增加生产能力的基本保证。1-2 转炉炼钢对铁水成分和温度有什么要求? 铁水是炼钢的主要原材料,一般占装入量的70%~100%。铁水的化学热与物理热是氧气顶吹转炉炼钢的主要热源。因此,对入炉铁水化学成分和温度必须有一定的要求。 A铁水的化学成分 氧气顶吹转炉炼钢要求铁水中各元素的含量适当并稳定,这样才能保证转炉冶炼操作稳定并获得良好的技术经济指标。 (1)硅(Si)。硅是转炉炼钢过程中发热元素之一。硅含量高,会增加转炉热源,能提高废钢比。有关资料表明,铁水中WSi每增加0.1%,废钢比可提高约1.3%。铁水硅含量高,渣量增加,有利于去除磷、硫。但是硅含量过高将会使渣料和消耗增加,易引起喷溅,金属的收得率降低。Si含量高使渣中SiO2含量过高,也

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

扒渣机安全操作规程

扒渣机安全操作规程 一、作业前的检查: 1、检查电源系统:电缆、插座、插头应完好,无破损现象;断路器、接触器及其连接线路应完好,无烧损、松脱现象:接上外电源后,电源指示灯应亮, 2、检查液压系统:液压系统的元件及其联接管路之间连接应紧固,无明显渗漏现象;液压油位应符合规定(油量约占油箱总容积的1/2至4 / 5)。 3、检查操纵系统:各操纵手柄、应处于中立位置,操纵应灵活,无卡滞现象。 4、检查输送系统:输送带应完好,张紧度合适;滚轮、链条、滚筒转动灵活,无异常音响。 二、工作过程 操作时:将60A三相电源插头安装在电源插座上,电源批示灯亮;按下起动按钮输送机开始启动,主电机开始工作,带动油泵开始旋转,液压油由油箱经泵至多路控制阀开始工作,回油从回油管经液压油散热器、液压油滤清器流回油箱。 三、注意事项 1、操作人员必须身体健康,年龄在18--50周岁,并经我矿登记培训后持有效的特种作业操作证上岗。 2、本车必须有专人操作,非操作人员不能随意操作机器。非工作时间挖斗应落地,严禁悬空停放。

3、工作之前要对岩堆洒水;扒渣机工作时要有良好的照明设施。 4、作业前须检查三相电源是否均衡,各相电压应指示正常(380V), 严禁缺相运行电机。 5、作业前须经空载运转和无负荷操作,待油温不低于20 C时方可进行作业,若油温高于80 C时应排查原因。 6、操作者应熟记每一手柄。要达到凭手感操纵,视线应集中在挖斗上。扳动手柄时,动作要平稳,以免造成液压冲击,损坏元件及结构件。 7、在作业或调试时,在挖斗所及范围内严禁有人,严禁接触转动部位。同时要有专人拖拉电缆,并与机器保持一定距离,避免拉坏或压坏电缆。司机在机器回转时要注意避免撞伤人员,同时注意棚梁被撞。出现故障或有异常杂音,应立即停车检查,并切断总电源。 8、严禁私白调整安全阀压力,以免损坏液压元件或影响性能。 9、操纵手柄时,不得硬行操作,应进行检查排除卡滞现象。 10、液压系统在不同的季节应使用相应型号的液压油;液压油应定期更换,首次100小时进行更换,以后每500小时更换一次。 11、后桥、变速箱、输送减速器应定期更换齿轮油,首次50小时, 以后每500小时更换一次。 12、特别注意:在输送架升起,人在输送架下进行维修作业时,必须在输送架下有可靠的安全支撑,以防输送架突然落下伤人。 13、对电源的安全要求:电源接入上侧必须配置不大于60A的漏电断路器,以防止漏电造成对人的伤害。

转炉少渣工艺技术分析

转炉少渣工艺技术分析 摘要:阐述了少渣炼钢的工艺路线,分析了转炉少渣吹炼的供气制度、造渣制度、温度制度、合金化制度等,介绍了国内外几家钢厂典型的少渣炼钢工艺及其冶金效果,指出少渣炼钢是未来炼钢的主要发展方向。 关键词:转炉;少渣炼钢;工艺制度 Progress and Prospect of Less Slag Steelmaking Process Abstract:The paper summarizes the process line of less slag steelmaking,and analyzes the system of gas supplying,slagging and alloying,that 0f the temperature and SO on.of less slag blowing in converter.introduces the typical processes of less slag steelmaking and its metallurgical effects of seven steel plants at home and abroad,meanwhile,points out that less slag steelmaking is the main development direction of the steelmaking in the future. Key words:converter;less 8lag steelmaking;process system 铁水“三脱”使传统炼钢工艺发生了显著变化,在铁水预处理阶段进行脱硅、脱磷和脱硫,使炼钢转炉的主要功能转变为调温和脱碳,同时炼钢渣量减少,形成了少渣炼钢工艺。由于少渣炼钢用的铁水硅含量很低,造渣用石灰加入量明显减少,降低了渣料消耗和能耗,喷溅少,铁损低,减少了污染物的排放。同时,因渣量少,氧的利用效率高,吹炼终点钢水中氧含量低,余锰高,合金元素收得率较高,从而降低了生产成本。另外,少渣炼钢工艺终点命中率高,改善了钢水的纯净度,为生产超纯净钢创造了条件。 1 少渣炼钢工艺路线 常见的转炉炼钢工艺路线有四种。第一种是传统的炼钢工艺,欧美各国的炼钢厂多采用这种模式,即铁水先脱硫预处理后,再转炉炼钢。通常转炉炼钢渣量占金属量的10%以上,转炉渣中FeO含量在17%左右。此外,渣中还含有约8%的铁珠,该工艺钢铁料消耗高。第二种炼钢工艺是先在铁水沟、混铁车或铁水罐内进行铁水“三脱”预处理,然后在复吹转炉进行少渣炼钢,这种工艺的不足之处是脱磷前必须先脱硅,废钢比低(≤5%),脱磷渣碱度过高,难于利用。第三种炼钢工艺是20世纪90年代中后期日本各大钢厂试验研究成功的转炉铁水脱磷工艺,该工艺解决了超低磷钢的生产难题。与第二种工艺路线的明显区别是脱磷预处理移到转炉内进行,转炉内自由空间大,反应动力学条件好,生产成本较低。具体工艺是采用两座转炉双联作业,一座脱磷,另一座接受来自脱磷炉的低磷铁水脱碳[1、2],即“双联法”。典型的双联法工艺流程为:高炉铁水_+铁水预脱硫-+转炉脱磷_+转炉脱碳_+炉外精炼.+连铸。由于受设备和产品的限制,也有在同一座转炉上进行铁水脱磷和脱碳的操作模式,类似传统的“双渣法”。第四种炼钢工艺是对第三种炼钢工艺进行了改进,与第三种工艺的明显不同是将部分脱碳渣(约8%)返回脱磷转炉,脱磷后的铁水进入脱碳转炉脱碳。该工艺是目前渣量最少、最先进的转炉生产纯净钢的工艺路线。在上述四种转炉炼钢工艺路线中,后三种炼钢工艺铁水经过“三脱”预处理后再脱碳炼钢,能够做到少渣操作。四种

试谈转炉炼钢法的分类

转炉炼钢工艺 转炉炼钢工艺 绪论 1、转炉炼钢法的分类 转炉是以铁水为主要原料的现代炼钢方法。该种炼钢炉由圆台型炉帽、圆柱型炉身和球缺型炉底组成。炉身设有可绕之旋转的耳轴,以满足装料和出钢、倒渣操作,故而得名。 酸性空气底吹转炉——贝塞麦炉(英国1856年) 空气转炉{ 碱性空气底吹转炉——托马斯炉(德国1878年) 碱性空气侧吹转炉(中国1952年) 转炉{ 氧气顶吹转炉——LD(奥地利1952年) 氧气转炉{ 氧气底吹转炉——OBM(德国1967年) 顶底复吹转炉(法国1975年) 2、氧气顶吹转炉炼钢法简介 (1) 诞生的背景及简称 现代炼钢生产首先是一个氧化精炼过程,最初的贝氏炉和托马斯炉之所以采用空气吹炼正是利用其中的氧。二次世界大战以后,工业制氧机在美国问世,使利用纯氧炼钢成为可能,但原来的底吹方式炉底及喷枪极易烧坏。美国联合碳化物公司于1947年在实验室进行氧气顶吹转炉的实验并获成功,命名为BOF。奥地利闻之即派有关专家前往参观学习,回来后于1949年在2吨的转炉上进行半工业性实验并获成功,1952年、1953年30吨氧气顶吹转炉分别在Linz和Donawitz建成投产,故常简称LD。 1967年12月德国与加拿大合作发明了氧气底吹转炉,使用双层套管喷嘴并通以气态碳氢化合物进行冷却。 1975年法国研发了顶底复吹转炉,综合了LD和OBM的优点,77年在世界年会上发表。 (2) 氧气顶吹转炉的特点 1)优点 氧气顶吹转炉一经问世就显示出了极大的优越性,世界各国竟相发展,目前成为最主要的炼钢法。其优点主要表现在: (1)熔炼速度快,生产率高(一炉钢只需20分钟); (2)热效率高,冶炼中不需外来热源,且可配用10%~30%的废钢; (3)钢的品种多,质量好(高低碳钢都能炼,S、P、H、N、O及夹杂含量低); (4)便于开展综合利用和实现生产过程计算机控制。 2)缺点 当然,LD尚存在一些问题,如吹损较高(10%,)、所炼钢种仍受一定限制(冶炼含大量难熔元素和易氧化元素的高合金钢有一定的困难)等。 3 氧气转炉的发展趋势

炼钢工艺流程图

炼钢工艺流程 1炼钢厂简介 炼钢厂主要将铁水冶炼成钢水,再经连铸机浇铸成合格铸坯。现有5座转炉,5台连铸机,年设计生产能力为500万吨,现年生产钢坯400万吨。其中炼钢一分厂年生产能力达到240万吨;炼钢二厂年生产能力为160万吨。 2炼钢的基本任务 钢是以Fe为基体并由C、Si、Mn、P、S等元素以及微量非金属夹杂物共同组成的合金。 炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧去除有害气体和夹杂,提高温度,调整成分,炼钢过程通过供氧造渣,加合金,搅拌升温等手段完成炼钢基本任务,“四脱两去两调整”。 3氧气转炉吹炼过程 氧气顶吹转炉的吹氧时间仅仅是十分钟,在这短短的时间内要完成造渣,脱碳、脱磷、脱硫、去气,去除非金属夹杂物及升温等基本任务。 由于使用的铁水成分和所炼钢种的不同,吹炼工艺也有所区别。氧气顶吹转炉炼钢的吹炼过程,根据一炉钢吹炼过程中金属成分,炉渣成分,熔池温度的变化规律,吹炼过程大致可以分为以下3个阶段: (1)吹炼前期。(2)吹炼中期。(3)终点控制。 炼好钢必须抓住各阶段的关键,精心操作,才能达到优质、高产、低耗、长寿的目标。 装入制度 装入制度是保证转炉具有一定的金属熔池深度,确定合理的装入数量,合适的铁水废钢比例。

3.1.1装入量的确定 装入量是指转炉冶炼中每炉次装入的金属料总重量,它主要包括铁水和废钢量。目前国内外装入制度大体上有三种方式: (1)定深装入;(2)分阶段定量装入;(3)定量装入 3.2.2装入次序 目前永钢的操作顺序为,钢水倒完后进行溅渣护炉溅渣完后装入废钢,然后兑入铁水。 为了维护炉衬,减少废钢对炉衬的冲击,装料次序也可以先兑铁水,后装废钢。若采用炉渣预热废钢,则先加废钢,再倒渣,然后兑铁水。如果采用炉内留渣操作,则先加部分石灰,再装废钢,最后兑铁水。 供氧制度 制订供氧制度时应考虑喷头结构,供氧压力,供氧强度和氧枪高度控制等因素。 3.2.1氧枪喷头 转炉供氧的射流特征是通过氧枪喷头来实现的,因此,喷头结构的合理选择是转炉供氧的关键。氧枪有单孔,多孔和双流道等多种结构。永钢使用的是4孔拉瓦尔喷头形式喷枪。 3.2.2氧气压力控制 氧气压力控制受炉内介质和流股马赫数的影响。经测定,炉内介质压力一般为—,流股马赫数在—之间。因此目前在转炉上使用的工作压力为—,视各种扎容量而定。一般说来,转炉容量大,使用压力越高。 3.2.3氧气流量和供氧强度 (1)氧气流量:

扒渣机使用安全技术措施

编号:AQ-JS-03795 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 扒渣机使用安全技术措施 Safety technical measures for slag pickling machine

扒渣机使用安全技术措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1.施工斜井时,使用ZLZY60/11.5型扒渣机,下井前应检查各零部件是否齐全,并在地面进行试运转。 2.试运行前,应检查电机接法是否与电源电压相符,转动方向是否正确,否则不可运行。 3.扒渣机司机必须持证上岗,严格按其操作规程作业。 4.扒渣机运行期间,严禁扒渣机运行范围内有人,扒渣机距碛头距离3~25m。 5.工作面风流中瓦斯浓度达到1%时,禁止使用扒渣机,并及时切断电源。 6.每次放炮前,必须用木料掩盖扒渣机操作按钮及电缆,耙斗应拉到扒渣机跟前,防止被岩石埋住。 7.放炮后,应对扒渣机进行检查确认正常后,方可开动扒渣机。 8.扒渣机装货前认真清理货堆及工作面是否有残留火工品及瞎炮,发现及时处理后方可允许装货。

9.启动扒渣机前,司机必须先发出信号,撤出工作面人员,扒渣机前方严禁有人进行其它操作。 10.装岩过程中,如扒渣机受阻或过载太大。不应强行扒岩,必须用大锺砸成小块后,方可用耙斗装矸。 11.扒渣机装岩完毕后,应使两个操纵手把置于松闸状态,最后切断电源,关闭送电手柄,切断扒渣机电源。 12.斜井移动扒渣机时,必须应用提升绞车牵引。必须设专职信号工和绞车司机,绞车司机必须持证上岗。施工中信号联系为:一点停、二点提、三点放、四点慢提、五点慢放,严格按信号执行,信号不清、不明严禁启动绞车。 13.施工前必须指定现场负责人、现场安全负责人,必须有队干部跟班上岗。 (14)斜井移动扒渣机必须使用保险装置齐全的专用插销;把绞车钩头用插销固定于扒渣机车上,确保钩头与扒渣机连接牢固、安全。 (15)移动前,由专人对绞车的四压两戗、钢丝绳及其连接装

转炉炼钢低氮控制实践

转炉炼钢低氮控制实践 2009-11-23 9:50:39 李安东、郑皓宇、徐文杰 (宝山钢铁股份有限公司不锈钢事业部炼钢厂) 摘要:宝钢不锈钢事业部炼钢厂引进宝钢分公司的转炉低氮控制技术,结合不锈钢分公司碳钢炼钢的自身特点,在重点品种IF钢的冶炼过程中,进行转炉低氮控制工艺转化,得出了可操作工艺参数,并推广应用到其它优质低氮钢,形成了规范的转炉低氮控制技术,为不锈钢事业部生产高等级的汽车面板钢作了充分的技术储备。 关键词:转炉冶炼,钢水脱氮 Study on Low-Nitrogen Controlling Technology Li Andong、Zhen Hao yu、Xu Wen Jie (Melting Shop of Baoshan Iron & Steel Co. Ltd. Stainless Steel Business Unit) Abstract: The melting shop of Baosteel Stainless Steel Branch introduced low- nitrogen controlling technology from Baosteel Branch. Combining with the smelting process characteristics of carbon steel, Baosteel Stainless steel Branch applied the technology to the converter in smelting process of IF steel to draw the operational process parameters. And the technology has also been applied to other high-quality low–nitrogen steel and become a standardized low-nitrogen converter controlling technology that is existing as the sufficient technical reserves for the production of high-grade steel panels of motor vehicles. Key words: smelting in converter, denitrigenation from steel 1 前言 钢水中氮的控制贯穿于铁水预处理-BOF-精炼-CC的全过程,基本的控制方法可分为两个方面,即脱氮+防止增氮[1,2]。从理论上讲,铁水预处理、转炉冶炼、RH真空精炼工序均可

相关文档