文档库 最新最全的文档下载
当前位置:文档库 › 浅谈一元二次方程的应用

浅谈一元二次方程的应用

浅谈一元二次方程的应用
浅谈一元二次方程的应用

浅谈一元二次方程的应用

姓名:宋永安

年级:2011 级

专业:数学应用

指导教师:王元会

浅谈一元二次方程的应用

(宋永安,2011级,数学应用本科)

文章摘要:一元二次方程在初中教学内容中,站着举足轻重的地位,学好一元二次方程,是学好二次函数不可或缺的捷径,也是学好高中数学的奠基工程。因此,本文将从函数入手,着重探讨一下一元二次方程的概念、形式、解法以及应用,以求对于一元二次方程有个深入的解析。

关键词:函数一元二次方程应用

一元二次方程是在学习《一元一次方程》、《二元一次方程》和分式方程等基础之上学习的,它也是一种数学建模的方法。学好一元二次方程,是学好二次函数不可或缺的捷径,也是学好高中数学的奠基工程。应该说,一元二次方程是初中教学的重点内容。

一、函数

1、函数的概念

函数是描述客观世界变化规律的重要数学模型。

1755欧拉首次给出了函数变量定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后面的变量变化时,前者的这些量也随之变化,则将前面的变量称之为后一些变量的函数.由此演变为目前的函数的“变量说”,黎曼在1851定义:“我们假定z是一个变量,如果对它的每一个值,都有未知量W的

每一个值与之对应,则称W 是Z 的函数.1939年,布尔巴基学派主借用了笛卡儿积建立关系,进而定义函数:

(1)对A 中每一个元素x ,存在y B ∈,使(),x y F ∈;

(2)若()1,x y F ∈且()2,x y F ∈,则12y y =.数F 记作::F A B →. 分别称以上函数的定义为变量说、对应说和关系说. 2、函数概念的核心思想

数学的核心是研究关系,即数量关系、图形关系和随机关系.数研究的是两个变量之间的数量关系:一个变量的取值发生了变化,另一个变量的取值也发生变化,这就是函数表达的数量之间的对应关系.中有三点是重要的,一是变量的取值是实数;二是因变量的取值是唯一的;三是必须借助数字以外的符号表示函数.

函数的表达方式一般有三种:解析式法,表格法,图像法.

解析式是最常用的方法,适用于表示连续函数或者分段函数.析式有利于研究函数性质,构建数学模型,但对初学者来说也是抽象的.表法适用于表达变量取值是离散的情况.用图像法可以直观地表述函数的形态,有利于分析函数的性质,但作图是比较困难的,用何种方法来表达函数因题而异. 3、中学数学研究的函数性质

数学中研究函数主要是研究函数的变化特征.学阶段主要研究函数的周期性,也涉及奇偶性;在高中阶段主要研究函数的单调性、周期性,也讨论某些函数的奇偶性.

(1)函数的周期性

周期性反映了函数变化周而复始的规律.中学阶段学习函数的一个基本的性质.期函数是刻画周期变化的基本函数模型,使我们集中研究函数在一个周期里的变化,了解函数在整个定义域内的变化情况.

(2)函数的奇偶性

函数的奇偶性也是我们在中学阶段学习函数时要研究的函数的性质,但它不是最基本的性质.偶性反应了函数图形的对称性质,可以帮助我们用对称思想来研究函数的变化规律.

(3)函数的单调性

单调性是讨论函数“变化”的一个最基本的性质.几何的角度看,就是研究函数图像走势的变化规律.

4、函数与其它内容的联系

(1)函数与方程

用函数的观点看待方程可以把方程的根看成函数与x轴交点的横坐标,即零点的横坐标.程可看作函数的局部性质,求方程的根就变成了求函数图形与x轴的交点问题.

(2)函数与数列

数列是特殊的函数.的定义域一般是指非负的正整数集,有时也可以为自然数集,或者自然数集的子集.列通常称为离散函数.差数列是线性函数的离散化,而等比数列是指数函数的离散化.

(3)函数与不等式

我们首先确定函数图像与x轴的交点(方程f(x)=0的解),再根据函数的图像来求解不等式.

(4)函数与线性规划

是最优化问题的一部分,从函数的观点来看:首先,要确定目标函数,用目标函数来刻画“好、坏”或“大、小”等.次,需要确定目标函数的可行域.后,讨论目标函数在可行域(由约束条件确定的定义域)内的最值问题.线性规划问题,可归结为以下算法:第一步,确定目标函数;第二步,确定目标函数的可行域;第三步,确定目标函数在可行域内的最值.

5、函数模型

函数是对现实世界数量关系的抽象,是建立思想模型的基础,具有良好的普适性和代表意义.实生活中,普遍存在着最优化问题——最佳投资、最小成本等,常常归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数建模的思想进行解决.运用一次函数知识和方法建模解决时,有时要涉及到多种方案,通过比较,从中挑选出最佳的方案.

在实际的教学中,除了使学生了解所学习的函数在现实生活中有丰富的“原型”之外,还应通过实例介绍或让学生通过运算来体验函数模型的多样性.有通过实例,才能让学生体会、感受数据拟合在预测、规划等方面的重要作用,使学

生们学会并运用用数学的知识、思想方法、数学模型去解决生活中的实际问题,提高运用数学的能力.要鼓励学生收集一些社会生活中普遍使用的函数模型的实例进行探索实践.

下面我们通过常见的函数模型——一元二次方程,来揭开函数与方程这种数学思想的神秘面纱.

二、 一元二次方程

1、一元二次方程的概念

等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程. 2、一元二次方程的一般式

()2y 0,,0ax bx c a b c a =++=≠其中为常数,且,则称y 为x 的二次函数.顶

点坐标为(2b a

-,244ac b a -).

经过适当变形,继而我们可以得到:

(1)顶点式:2()y a x h k =-+(,,0a h k a ≠为常数,且).

(2)交点式(x 轴):12()()y a x x x x =--.

(3)两根式:12()()y a x x x x =--,其中1x ,2x 是抛物线与x 轴的交点的横坐标,即一元二次方程20ax bx c ++=()0a ≠的两个根. 注意:

(1)任何一个二次函数通过配方都可以化为顶点式2()y a x h k =-+,抛物线的顶点坐标是(,)h k ,h =0时,抛物线2y ax k =+的顶点在y 轴上;当k =0时,抛物线2()y a x h =-的顶点在x 轴上;当h ,k =0时,抛物线2y ax =的顶点在原点.

(2)当抛物线2y ax bx c =++与x 轴有交点时,即对应二次方程20ax bx c ++=有实数根1x 和2x 存在时,根据二次三项式的分解公式2ax bx c ++1()a x x =-2()x x -,二次函数2y ax bx c =++可转化为两根式12()()y a x x x x =--. 3、一元二次方程的解法

一元二次方程的求解和应用是初中数学的重点内容,方程思想也是学习数学的一种重要思想.一元二次方程的解法以一元一次方程为基础,解一元二次方程的基本思想就是降次,把二次变为两个一元一次方程再求解.一元二次方程的一般形式为()200ax bx c a ++=≠,特点是只含有一个未知数,未知数的最高次数是2,且是整式方程.如果不是整式方程,需要先把它整理成整式方程再进行判断.一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.下面我们将举例分析这四种方法的运用: 例1 用直接开方法解下面的一元二次方程. (1)()2

319x +=;(2)()()2

2

324x x -=+.

分析:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方

法解形如()2(0)x m n n -=≥的方程,就可以把方程变为x m -=. 通过观察可以发现(1)、(2)两个小题可以用直接开方法来求解. 解:(1)()2319x +=.

直接两边开方,得:3x +1=±3.(注意,不能漏了-3).

由3x +1=3得1x =

23,由3x +1=-3得2x =4

3

-, ∴原方程的解为:1x =23,2x =4

3

-.

(2)()()22

324x x -=+.

直接两边开方,得:324x x -=+或()()324x x -=-+.

由324x x -=+得1x =3,由()()324x x -=-+得2x =1

2

-,

∴原方程的解为:1x =3,2x =1

2

-.

说明:用直接开方法解一元二次方程,一般不用把方程转化为一般形式,再两边

同时开方的时候应注意方程只需在一边取正负号,还应注意不要丢解. 例2 用配方法解下列一元二次方程:22420x x --=.

分析:用配方法解方程()200ax bx c a ++=≠,应先将二次项系数化为1,常数a 移到方程右边,再将方程左边配成完全平方的形式.该题可变为221x x -=,然后在方程两边同时加上一次项系数的一半的平方,配方之后,就可以按照直接开方法来解方程了. 解:22420x x --=.

二次项系数化为1,移常数项,得:221x x -=. 配方,得:22111x x -+=+,即2(1)2x -=.

说明:用配方时应按下面的步骤进行:先把二次项系数化为1,并把常数项移到一边;再在方程两边同时加上一次项系数一半的平方,最后变为一边是完全平方的形式就可以用直接开方法进行解题. 例3 用公式法解2347x x +=.

分析:公式法就是指利用求根公式2b x a

-=,使用时应先把一元二次方

程化成一般形式,确定a ,b ,c 的值,然后代入到公式中进行计算.或者也可以先计算24b ac -的值,当24b ac -≥0时,把各项系数a ,b ,c 的值代入求根公式即可得到方程的根.

先判断解的情况之后,如果Δ<0,那么可以直接省去更多的运算,方程无解. 解:化为一般式:23740x x -+=,求出判别式的值:Δ=24b ac -=1>0,代入求根公式:716

x ±=

,∴11x =,24

3x =.

说明:公式法是解一元二次方程的通用的方法,如果对其他方法不熟悉的情况下,都可以使用公式法来解一元二次方程,因此,这个公式一定要熟记.用公式法一定要先把方程转化为一般形式,明确公式中字母在题中所表示的量,再代入公式进行计算.注意最后的根如果有根号要化成最简形式. 例4用分解因式法解26150x x +-=.

分析:分解因式法就是把方程的一边变为因式相乘的形式,另外一边的值为0,解题的方法就是让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.一般需要先把它整理成一般形式再进行分解因式.

解 左边分解成两个因式的积得:(2x-3)(3x+5)=0. ∴2x–3=0,3x+5=0,∴1x =

32,2x =5

3

-. 说明:在使用分解因式法时,方程的一边一定要化为0,这样才能把方程拆为两个一元一次方程达到降次的目的. 4、一元二次方程解法口诀

含有一个未知数,最高指数是二次; 整式方程最常见,一元二次方程式。 左边二次三项式,右边是零一般式。 方程缺少常数项,求根提取公因式; 方程没有一次项,直接开方最合适; 方程如果合家欢,十字相乘先去试; 分解二次常数项,叉乘求和凑中式; 如能做到这一点,十字相乘根求之; 否则可以去配方,自然能够套公式。

三、一元二次方程的应用

1、从函数图象看一元二次方程根的分布

一元二次方程根的分布是个比较复杂的问题,我们可从数形结合的思想上来看,即从二次函数的图像来考察一元二次方程根的分布。设方程

()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布

情况见下面各表(每种情况对应的均是充要条件).

表一:(两根与0的大小比较即根的正负情况)

k k k

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧

12,x m x n <>,(形分别如下)满足的条件是

(1)0a >时,()()00f m f n

f m f n >???>??

对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:

1? ()0f m =或()0f n =,则此时()()0f m f n < 不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m ,由213m

<<得

2

23

m <<即为所求; 2? 程有且只有一根,且这个根在区间()n m ,内,即0?=,此时由0?=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。分析:①由()()300f f -< 即()()141530

m m ++<得出15314m -<<-

;②由0?=即()2164260m m -+=得出1m =-或3

2

m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当3

2

m =时,根()33,0x =?-,

故32m =不满足题意;综上分析,得出15

314

m -<<-或1m =-.

2、二次函数在闭区间[]

n m ,上的最大、最小值问题探讨

设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的

两种结论: (1)若[]n m a b ,2∈-

,则()()()?

????????

??-=n f a b f m f x f ,2,max max ,()()()?

????????

??-=n f a b f m f x f ,2,min min ;

(2)若[]n m a

b

,2?-

,则()()(){}n f m f x f ,max m ax =,()()(){}n f m f x f ,min m in = 另外,当二次函数开口向上时,自变量的取值离开x 轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开x 轴越远,则对应的函数值越小。

3、一元二次方程根的判别式的应用

一元二次方程根的判别式,是初中数学的一个重点,中考必考知识点,它是解答数学问题的重要工具和方法,应用十分广泛,不仅用于方程的解和根的差别,而且作为一种解题方法,在代数、方程(组)、不等式、函数、几何等都有非常广泛的应用 .

(1)判别抛物线()2y 0ax bx c a =++≠与x 轴的交点. 若Δ>0,则该抛物线与x 轴有两个交点;若Δ=0,则该抛物线与x 有一个交点;若Δ<0,则该抛物线与x 轴无交点.

(2)判别抛物线()2y 0ax bx c a =++≠与直线y kx m =+的位置. 将两式组成方程组,消去y 得关于x 的一元二次方程. 当Δ>0时,抛物线与直线相交;当Δ=0时,抛物线与直线相切;当Δ<0时,抛物线与直线相离. 只要我们潜心研究,还可发现一元二次方程判别式在更多领域的应用. 在教学中,教师只要对学生认真引导,培养学生自主学习、合作学习、探究学习的学习精神,学生就会掌握更多解决数学问题的方法,感受学习成果的愉悦,提高数学兴起,也为学生终身学习数学、研究数学打下良好基础. 4、一元二次方程的根与系数的关系

当今教科书指出:一元二次方程的根与系数的关系属选学内容,只供学有余力的学生学习.但是一元二次方程的根与系数的关系这个知识点的应用却是相当的广泛,习题的内容之多,题目的形式灵活多样,在中考及平时的考试中所占分值却很重,而大部分同学对这个内容却学得不好.在此简单讲解一下一元二次方程的根与系数的关系的相关知识及相关应用,望对同学们有所帮助. 二次方程的根与系数的关系(以前的教科书叫韦达定理):如果方程

()200ax bx c a ++=≠的两个根是1x 、2x ,那么1x +2x =-b/a ,1x 2x =c/a .也就是

说,两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数与二次项系数的比.

二次方程的根与系数的关系是通过求根公式演变过来的,下面是证明的过程:

一元二次方程()200ax bx c a ++=≠,当判别式△时,方程有

两个实数根,x =,故有1x +2x =-b/a ,1x 2x =c/a .知识点的使用

方法:先把一元二次方程化成一般形式()200ax bx c a ++=≠,然后确定二次项系数、一次项系数及常数项(特别是要注意这些系数的符号),最后再根据根与

系数的关系,求出相关值. (1)根与系数的关系的直接应用

例1:不解方程,求出2241x x +=的两根的和与两根的积。 解:将原方程化为一般形式得:22410x x +-= 确定a ,b ,c 的值为a=2,b=4,c=-1 于是1x +2x =-c/a=-2,1x 2x =c/a=-1/2。 (2)根与系数的关系的几种变形

例2:1x 、2x 是方程22350x x --=的两个根,不解方程,求下列代数式的值: <1>2212x x + <2>|1x -2x | <3>2212233x x x +- 解:由根与系数关系可知1x +2x =3/2,1x 2x =-5/2

<1>2212x x +=()2

12x x +-21x 2x =

294

<2>|1x -2x =72

<3>由22350x x --=可得:2235x x -= 故:原式=2212x x ++5=

494

(3)由根与系数的关系求字母的值

例3:已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.

分析:方程有实数根,则△≥0,且2212x x +=1x 2x +16,联立解得m 的值. 解:依题意有:

解上面方程组可得:m=-1或m=-15, 又由△≥0可知m≥-9/4 ∴m=-15舍去,故m=-1

(4)根与系数的关系与反证法联系

例4:证明:方程2199719970x x -+=无整数根. 反证法:假设原方程有整数根

则可得,1x 、2x 均为整数根, ∵1x 2x =1997 ∴1x 、2x 均为奇数

但1x +2x 应为偶数,这与1x +2x 相矛盾. 因此,假设不成立,原命题得证.

一元二次方程作为最基本的初等函数,它既简单又具有丰富的内涵和外延。可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间的关系。这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题。同时,有关二次函数的内容,与近现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础。

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程的实际应用题

一元二次方程的实际应用题 (一)传播问题 1.市政府为了解决市民看病难的问题,决定下调药品的价格。某种药品经过连续两次降价后,由每盒200元下调至 128元,则这种药品平均每次降价的百分率为 2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。 3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每 个支干长出小分支。 4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。 5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。 6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少 名同学? 7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人? 8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分 析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? (二)平均增长率问题 变化前数量×(1 x)n=变化后数量 1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长 率为。 2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。 3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500 元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子) 。 4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3 月份价格的平均增长率。 5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率? 6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平 均每年增长的百分数。

一元二次方程及其应用练习题

一元二次方程及其应用 一、选择题 1(2015?酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是() A.2500x2=3500 B.2500(1+x)2=3500 C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500 2.(2015?安徽)我省2013年的快递业务量为亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.(1+x)= B.(1+2x)= C.(1+x)2= D.(1+x)+(1+x)2= 3.(2015?日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资亿元人民币,那么每年投资的增长率为()A.20% B.40% C.-220% D.30% ( 1. (2016·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为万人次,设观赏人数年均增长率为x,则下列方程中正确的是() A.20(1+2x)= B.(1+x)2=20 C.20(1+x)2= D.20+20(1+x)+20(1+x)2= 2. (2016·江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是() A.2B.1C.﹣2D.﹣1 3. (2016·辽宁丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为. 4.(2016·四川攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4 5.(2016·广西桂林)若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是() A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5 ] 6.(2016·贵州安顺)已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b的值可以是() A.b=﹣3B.b=﹣2C.b=﹣1D.b=2 8. (2016·云南省昆明市)一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 9.(2016河北3分)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案) 一.选择题 1.一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 2.一元二次方程3x2﹣4x+1=0的根的情况为() A.没有实数根 B.只有一个实数根 C.两个相等的实数根D.两个不相等的实数根 3.一元二次方程x2﹣7x﹣2=0的实数根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根D.有一根为0 6.一元二次方程2x2﹣3x+1=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.一元二次方程2x2﹣3x+1=0根的情况是()

C.只有一个实数根D.没有实数根 8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为() A.没有实数根 B.有一个实数根 C.有两个不相等的实数根D.有两个相等的实数根 9.一元二次方程x2+2x+1=0的根的情况() A.有一个实数根B.有两个相等的实数根 C.有两个不相等的实数根D.没有实数根 10.一元二次方程x2﹣x﹣1=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 11.一元二次方程x2﹣2x﹣1=0的根的情况为() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 12.一元二次方程4x2+1=4x的根的情况是() A.没有实数根 B.只有一个实数根 C.有两个相等的实数根D.有两个不相等的实数根 13.方程x2﹣2x+3=0的根的情况是() A.有两个相等的实数根B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根 14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

实际问题与一元二次方程的应用

《实际问题与一元二次方程的应用》说课稿尊敬的各校评委、各位老师: 大家好!我是永靖县第六中学的数学教师张红红,今天我说课的内容是人教版九年级数学第二十三章实际问题与一元二次方程应用的第二课时,下面我谈一下,我对这部分教材的理解、以及自己课后的一点体会。 一、教材分析 1、教材的地位与作用 一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位,其中一元二次方程的应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是函数学习的基础,它是研究现实世界数量关系和变化规律的重要的数学模型。本节课以一元二次方程解决的实际问题为载体,通过对它的学习和研究,体现数学建模的过程,帮助学生形成应用意识,其应用的广泛性让学生激发出学习数学的兴趣,能让学生体会到学数学、做数学、用数学的快乐。由于列出一元二次方程解应用题及应用相当广泛,在几何,物理及其它学科中都有大量的问题存在;因此,它是学习的重点。本节课侧重于几何方面的应用,现代心理学的研究表明,学生解应用题最常见的困难是,不会将实际问题提炼成数学问题,鉴于学生比较缺乏社会生活经历,搜集信息,处理信息的能力较弱,由此,这些是本节课的难点。而用一元二次方程解应用题的数量关系也比用一元一次方程解应用题的数量也要复杂一些,根据教学大纲的要求,以及本节教材的内容和九年级学生的认知特点,我这样设定了教学目标。 2、说教学目标 知识方面:以一元二次方程解决的实际问题为载体,让学生初步掌握数学建模的基本方法。 能力方面:通过对一元二次方程的应用问题的学习和研究,让学生体验数学建模的过程,从而学会发现、提出日常生活、生产或其它学科中可以用一元二次方程来解决的实际问题,并能用正确的语言表述问题、及其解决过程。

(完整版)一元二次方程知识点及其应用

一、相关知识点 1.理解并掌握一元二次方程的意义 未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数 (1)明确只有当二次项系数0≠a 时,整式方程02 =++c bx ax 才是一元二次方程。 (2)各项的确定(包括各项的系数及各项的未知数). (3)熟练整理方程的过程 3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 二.解法 1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解; 2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题: (1)开平方法:对于形如n x =2 或)0()(2 ≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未 知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如n x =2 的方程的解法: 当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0-ac b 时,方程有两个实数根,且这两个实数根不相等; 当042 =-ac b 时,方程有两个实数根,且这两个实数根相等,写为a b x x 221- ==;

一元二次方程根的分布教学设计

一元二次方程根的分布教学设计 大庆一中高中部孙庆夺 一、教学分析 (一)教学内容分析 本节课所讲的内容是高中数学必修一第三章第一节《函数与方程》之后的一个专题内容,是中学数学的重要内容之一。这段内容与一元二次不等式,二次函数等内容有着紧密的联系。它是在前面学习了函数与方程,二次方程,二次不等式基础上对函数与方程内容的深化和拓展,通过根的分布的不同情况,充分体现了由简单到复杂、特殊到一般的化归的数学思想。从而提升学生对数学知识的应用能力。通过学习一元二次方程根的分布,有助于学生进一步理解二次方程,二次函数,加深函数与方程思想,数形结合思想在数学学习中的应用的认识,同时也为以后数学的学习打下扎实的基础。 (二)教学对象分析 高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。学生学习了函数与方程,二次方程,二次函数的知识, 已经具有用数学知识解决实际问题的能力。学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。 (三)教学环境分析 由于本节课涉及到根的分布情况较多,对老师的的作图提出了很高的要求。采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。多媒体网络教学,是现代高中数学教学全新的教育技术,

使传统的教学方式得到补充。在计算机的帮助下,利用制作好的几何画板课件,操作演示,感受根的分布的不同情况,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。 (四)教学手段 采用多媒体网络教学。《普通高中数学课程标准》指出:“现代信息技术的广泛应用真正对数学教学、数学学习方面产生深刻的影响,数学课程的设计应重视运用现代信息技术,大力开发并向学生提供更为丰富的学习资源,提倡实现信息技术与课程内容的有机结合。”本节课涉及到的图象信息较多,利用多媒体网络教学可以实现最大容量地向学生提供图象信息,并让学生整理归纳信息,增强学生的动手能力、思考能力和自主学习能力,也能实现数学课堂中学生的高参与度,从而实现资源、时间、效率的最优化。 (五)教学方式 自主式探究,学案式导学。自主探究,学案导学的教学方式,能够激发学生的学习兴趣、突出学生的主题地位,培养学生的数学应用意识、合作精神,这与《新课标》的要求是吻合的。 二、教学目标 1.知识与能力 加深对一元二次方程,二次函数图象与性质的认识;会利用函数知识,方法重新审视一元二次方程. 2.过程与方法 体验“观察-猜想-验证”探究问题的方法,领会由简单到复杂,由特殊到一般的化归思想,加深对函数与方程,数形结合思想的理解。

一元二次方程的实际应用只是分享

一元二次方程的实际 应用

一元二次方程的实际应用 1、阅读下面解题过程,解方程x2-1x1-2=0 解分以下两种情况:(1)当x≥0时,原方程可化为x 2、阅读下面解题过程,解方程x2-1x1-2=0 3、解分以下两种情况: 4、(1)当x≥0时,原方程可化为x2-x=0,解得x1=2 x2=-1(不和题意,舍去) 5、(2)当x<0时,原方程可化为x2+x-2=0,解得x1=-2 x2=1 (不合题意,舍去)∴原方程的根是x1=2 x2=-2 6、请照此方法解方程 x2-| x-1 |-1=0 7、已知关于x的方程x2-(k+2)x+2k=0. 8、(1)求证:无论k取任意实数值,方程总有实数根. 9、(2)若等腰三角形ABC的一边a=1,另两边长b、c恰是这个方程的两个根,求△A BC的周长. 10、已知函数y=2/x和y=kx+1(k不等于0). (1)若这两个函数的图像都经过(1,a),求a和k的值 (2)(2)当K取何值时,这两个函数的图像总有公共点 4、已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动. (1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°; (2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与 证明;若不存在,请说明理由; (3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由. 5、已知关于x的方程x2-(m+2)x+(2m-1)=0 (1)求证:方程有两个不相等的实数根 (2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长. 如图,要设计一幅宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3:2,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度(结果保留

一元二次方程及其应用

一元二次方程及其应用 ◆课前热身文档设计者: 设计时间 : 文档类型: 文库精品文档,欢迎下载使用。Word 精品文档,可以编辑修改,放心下载 1.如果2是一元二次方程x 2 +bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x = B .2x =- C .1222x x ==-, D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.2 16(1)9x -= ◆考点聚焦 知识点: 一元二次方程、解一元二次方程及其应用 大纲要求: 1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。 2.会用配方法、公式法、分解因式法解一元二次方程、 3.能利用一元二次方程的数学模型解决实际问题。 考查重点与常见题型: 考查一元二次方程、有关习题常出现在填空题和解答题。 ◆备考兵法 (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断, 注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. ◆考点链接

1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如)0(2 ≥=a a x 或)0()(2 ≥=-a a b x 的一元二次方程,就可用 直接开平方的方法. (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2 ()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解. (3)公式法:一元二次方程2 0(0)ax bx c a ++=≠的求根公式是 221,2 4(40)2b b ac x b ac a -±-=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程 的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. ◆典例精析 例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1 B .1- C .2 D .2- 【答案】A 【解析】本题考查了一元二次方程的根。因为x=3是原方程的根,所以将x=3代入原方程, 原方程成立,即06332 =--k 成立,解得k=1。故选A 。 例2(湖北仙桃)解方程:2 420x x ++= 【分析】根据方程的特点, 灵活选用方法解方程.观察本题特点,可用配方法求解. 【答案】2 42x x +=-

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程的起源和应用

一元二次方程的起源与应用一年七班唐梦雷一、定义:(quadratic equation of one variable)是指含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。二、起源在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数

学家们为了解三次方程而开始应用复数根。韦达(1540-1603)除已知一元方程在复数范围内恒有解 外,还给出根与系数的关系。我国《九章算术.勾 股》章中的第二十题是通过求相当于的正根而解决的。 我国数学家还在方程的研究中应用了内插法。三、 一元二次方程的广泛应用x例1:下列关于的方程, 哪些是一元二次方程?;(1)(2); (3);(4);22222(5); (6);(7)(8); x注意点:① 二次项系数不为“0”;②未知数指数为“2”;③是整 式方程;④只含有一个未知数.22例1:当k 时,关于x的方程是一元二次方程。 m例2:方程是关于x的一元二次方程,则m的 值为。2例3:若方程是关 于x的一元二次方程,则m的取值范围 是。mn2例4:若方程nx+x-2x=0是一元二次方程, 则下列不可能的是() A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 2(一)、一元二次方程的一般 形式:,它的特征是:等式左2边是一 个关于未知数的二次多项式,等式右边是零,其中 叫做二次项,叫ax xa做二次项系数;叫做一次项,叫

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程的实际应用教案(供参考)

教学过程 一、复习预习 我们已经学习了一元二次方程的定义和四种解法,下面我们一块来复习一下: 1. 用直接开平方法解方程2 (3)8x -=,得方程的根为( )

A. 3x =+ B. 1233x x =+=- C. 3x =- D. 1233x x =+=- 2. 方程2(1)0x x -=的根是( ) A .0 B .1 C .0,-1 D .0,1 3. 设(1)(2)0x x --=的两根为12x x 、,且1x >2x ,则122x x -= 。 4. 已知关于x 的方程22440x kx k ++=的一个根是-2,那么k = 。 5.243 x x ++ =2(________)x + 今天我们将继续学习列方程解应用题。大家先来看这样一道题:某商场销售一批名牌衬衫,平均每天可以售出 20件,每件盈利40元,为了扩大销售,增加利润,尽量减少 库存,商场决定采取适当的降价措施,经调查发现,如果每 件衬衫降价1元,商场平均每天多售出2件,若商场平均 每天要盈利1200元,每件衬衫应降价多少元? 在一次数学检测中,赵亮对下道应用题的解答过程如下: 解:设每件衬衫应降价x 元,则每件所获得的利润为 (40-x)元,但每天可多销出2x 件,每天可卖(20+2x)件,根据题意可列方程: (40-x)(20+2x)=1200 x 2-30x+200=0 解得:x 2=20 x 2=10 答:若商场每天要盈利1200元,每件应降价10元或20元. 当试卷发下时,赵亮发现本题被扣去1分,他百思不得其解,为什么要扣去1分呢?你能帮赵亮同学找找原因吗? 当降价20元或10元时,每天都能盈利1200元, 因要尽量减少库存,在获利相同条件下,降价愈多,销售越快,才能满足题目中的要尽量减少库存的要求,故应选择每件降价20元.因而列方程解应用题时应认真审题, 不能漏掉任何一个条件,所以我们今天就来具体学习一下列方程解应用题。 二、知识讲解 1.列一元二次方程解应用题的一般步骤是: “审、设、列、解、答”.

一元二次方程及其应用

一元二次方程及其应用 ◆课前热身 1.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x = B .2x =- C .1222x x ==-, D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.216(1)9x -= ◆考点聚焦 知识点: 一元二次方程、解一元二次方程及其应用 大纲要求: 1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。 2.会用配方法、公式法、分解因式法解一元二次方程、 3.能利用一元二次方程的数学模型解决实际问题。 考查重点与常见题型:

考查一元二次方程、有关习题常出现在填空题和解答题。 ◆备考兵法 (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后 再进行判断,注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. ◆考点链接 1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程, 就可用直接开平方的方法. (2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是: ①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方

一元二次方程根与系数关系附答案

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根 D.无法确定 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为() A.﹣1 B.0 C.1 D.3 评卷人得分

二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为. 评卷人得分 三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.

相关文档
相关文档 最新文档