文档库 最新最全的文档下载
当前位置:文档库 › 超级资源:七年级数学竞赛讲义附练习及答案(12套)

超级资源:七年级数学竞赛讲义附练习及答案(12套)

超级资源:七年级数学竞赛讲义附练习及答案(12套)
超级资源:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套)

初一数学竞赛讲座

第1讲数论的方法技巧(上)

数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有:

1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:

d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法

对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。这些常用的形式有:

1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;

2.带余形式:a=bq+r;

4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。问:红、黄、蓝3张卡片上各是什么数字?

解:设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a0,则这个四位

数可以写成:1000a3+100a2+10a1+a0,它的各位数字之和的10倍是10(a3+a2+a1+a0)

=10a3+10a2+10a1+10a0,这个四位数与它的各位数字之和的10倍的差是:

990a3+90a2-9a0=1998,110a3+10a2-a0=222。

比较上式等号两边个位、十位和百位,可得a0=8,a2=1,a3=2。

所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。

例2在一种室内游戏中,魔术师请一个人随意想一个三位数abc(a,b,c依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab

,

,与

bac

acb,

bca

cba的和N,把N告诉魔术师,于是魔术师就可以说出这个人所想的数abc。现在设N=3194,请你当魔术师,求出数abc来。

解:依题意,得

a+b+c >14,

说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程。

例3 从自然数1,2,3,…,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?

解:设a ,b ,c ,d 是所取出的数中的任意4个数,则a+b+c=18m ,a+b+d=18n ,其中m ,n 是自然数。于是c-d=18(m-n )。

上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。设这个余数为r ,则a=18a 1+r ,b=18b 1+r ,c=18c 1+r , 其中a 1,b 1,c 1是整数。于是a+b+c=18(a 1+b 1+c 1)+3r 。

因为18|(a+b+c ),所以18|3r ,即6|r ,推知r=0,6,12。因为1000=55×18+10,所以,从1,2,…,1000中可取6,24,42,…,996共56个数,它们中的任意3个数之和能被18整除。

例4 求自然数N ,使得它能被5和49整除,并且包括1和N 在内,它共有10个约数。

解:把数N 写成质因数乘积的形式:N=n a

n a a a a P ????? 43217532

由于N 能被5和72=49整除,故a 3≥1,a 4≥2,其余的指数a k 为自然数或零。依题意,有(a 1+1)(a 2+1)…(a n +1)=10。

由于a 3+1≥2,a 4+1≥3,且10=2×5,故a 1+1=a 2+1=a 5+1=…=a n +1=1, 即a 1=a 2=a 5=…a n =0,N 只能有2个不同的质因数5和7,因为a 4+1≥3>2,故由(a 3+1)(a 4+1)=10知,a 3+1=5,a 4+1=2是不可能的。因而a 3+1=2,a 4+1=5,即N=52-1×75-1=5×74=12005。

例5 如果N 是1,2,3,…,1998,1999,2000的最小公倍数,那么N 等于多少个2与1个奇数的积?

解:因为210=1024,211=2048>2000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=210,所以,N 等于10个2与某个奇数的积。

说明:上述5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解。

二、枚举法

枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。

运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。正确的分类有助于暴露问题的本质,降低问题的难度。数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。

例6 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。 分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。

设这个三位数的百位、十位、个位的数字分别为x,y,z。由于任何数除以11所得余数都不大于10,所以x2+y2+z2≤10,

从而1≤x≤3,0≤y≤3,0≤z≤3。所求三位数必在以下数中:

100,101,102,103,110,111,112,120,121,122,130,200,201,202,211,212,220,221,300,301,310。

不难验证只有100,101两个数符合要求。

例7 将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数。问:小于2000的自然数中有多少个魔术数?

解:设P为任意一个自然数,将魔术数N(N<2000=接后得PN,下面对N 为一位数、两位数、三位数、四位数分别讨论。

⑴当N为一位数时,PN=10P+N,依题意N︱PN,则N︱10P,由于需对任意数P成立,故N︱10,所以N=1,2,5;

⑵当N为两位数时,PN=100P+N,依题意N︱PN,则N︱100P,故N|100,所以N=10,20,25,50;

⑶当N为三位数时,PN=1000P+N,依题意N︱PN,则N︱1000P,故N|1000,

所以N=100,125,200,250,500;

⑷当N为四位数时,同理可得N=1000,1250,2000,2500,5000。符合条件的有1000,1250。

综上所述,魔术数的个数为14个。

说明:(1)我们可以证明:k位魔术数一定是10k的约数,反之亦然。

(2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决。

例8 有3张扑克牌,牌面数字都在10以内。把这3张牌洗好后,分别发给小明、小亮、小光3人。每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为13,15,23。问:这3张牌的数字分别是多少?

解:13+15+23=51,51=3×17。

因为17>13,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是17,可能的情况有下面15种:

①1,6,10 ②1,7,9 ③1,8,8 ④2,5,10 ⑤2,6,9

⑥2,7,8 ⑦3,4,10 ⑧3,5,9 ⑨3,6,8 ⑩3,7,7

(11)4,4,9 (12)4,5,8 (13)4,6,7 (14)5,5,7 (15)5,6,6

只有第⑧种情况可以满足题目要求,即3+5+5=13;3+3+9=15;5+9+9=23。

这3张牌的数字分别是3,5和9。

例9 写出12个都是合数的连续自然数。

分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。我们把筛选法继续运用下去,把考查的范围扩大一些就行了。

解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:

114,115,116,117,118,119,120,121,122,123,124,125,126。

分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数……第12个是13的倍数,那么这12个数就都是合数。

又m+2,m+3,…,m+13是12个连续整数,故只要m是2,3,…,13的公倍数,这12个连续整数就一定都是合数。

解法2:设m为2,3,4,…,13这12个数的最小公倍数。m+2,m+3,m+4,…,m+13分别是2的倍数,3的倍数,4的倍数……13的倍数,因此12个数都是合数。

说明:我们还可以写出13!+2,13!+3,…,13!+13(其中n!=1×2×3×…×n)这12个连续合数来。

同样,(m+1)!+2,(m+1)!+3,…,(m+1)!+m+1是m个连续的合数。

三、归纳法

当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径。这种从特殊到一般的思维方法称为归纳法。

例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:

(1)将左边第一个数码移到数字串的最右边;

(2)从左到右两位一节组成若干个两位数;

(3)划去这些两位数中的合数;

(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;

(5)所余的两位质数保持数码次序又组成一个新的数字串。

问:经过1999次操作,所得的数字串是什么?

解:第1次操作得数字串711131131737;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173。

不难看出,后面以4次为周期循环,1999=4×499+3,所以第1999次操作所得数字串与第7次相同,是3117。

例11 有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张卡片舍去,把下一张卡片放在这一摞卡片的最下面。再把原来的第三张卡片舍去,把下一张卡片放在最下面。反复这样做,直到手中只剩下一张卡片,那么剩下的这张卡片是原来那一摞卡片的第几张?

分析与解:可以从简单的不失题目性质的问题入手,寻找规律。列表如下:

设这一摞卡片的张数为N,观察上表可知:

(1)当N=2a(a=0,1,2,3,…)时,剩下的这张卡片是原来那一摞卡片的最后一张,即第2a张;

(2)当N=2a+m(m<2a)时,剩下的这张卡片是原来那一摞卡片的第2m张。

取N=100,因为100=26+36,2×36=72,所以剩下这张卡片是原来那一摞卡

片的第72张。

说明:此题实质上是著名的约瑟夫斯问题:传说古代有一批人被蛮族俘虏了,敌人命令他们排成圆圈,编上号码1,2,3,…然后把1号杀了,把3号杀了,总之每隔一个人杀一个人,最后剩下一个人,这个人就是约瑟夫斯。如果这批俘虏有111人,那么约瑟夫斯的号码是多少?

例12要用天平称出1克、2克、3克……40克这些不同的整数克重量,至少要用多少个砝码?这些砝码的重量分别是多少?

分析与解:一般天平两边都可放砝码,我们从最简单的情形开始研究。

(1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的。

(2)称重2克,有3种方案:

①增加一个1克的砝码;

②用一个2克的砝码;

③用一个3克的砝码,称重时,把一个1克的砝码放在称重盘内,把3克的砝码放在砝码盘内。从数学角度看,就是利用3-1=2。

(3)称重3克,用上面的②③两个方案,不用再增加砝码,因此方案①淘汰。

(4)称重4克,用上面的方案③,不用再增加砝码,因此方案②也被淘汰。总之,用1克、3克两个砝码就可以称出(3+1)克以内的任意整数克重。

(5)接着思索可以进行一次飞跃,称重5克时可以利用:9-(3+1)=5,即用一个9克重的砝码放在砝码盘内,1克、3克两个砝码放在称重盘内。这样,可以依次称到1+3+9=13(克)以内的任意整数克重。而要称14克时,按上述规律增加一个砝码,其重为:14+13=27(克),可以称到1+3+9+27=40(克)以内的任意整数克重。

总之,砝码的重量为1,3,32,33克时,所用砝码最少,称重最大,这也

是本题的答案。

这个结论显然可以推广,当天平两端都可放砝码时,使用1,3,

这是使用砝码最少、称重最大的砝码重量设计方案。

练习1

1.已知某个四位数的十位数字减去1等于其个位数字,个位数字加2等于百位数字,这个四位数的数字反着顺序排列成的数与原数之和等于9878。试求这个四位数。

3.设n是满足下列条件的最小自然数:它们是75的倍数且恰有75

4.不能写成两个奇合数之和的最大偶数是多少?

5.把1,2,3,4,…,999这999个数均匀排成一个大圆圈,从1开始数:隔

过1划掉2,3,隔过4,划掉5,6……这样每隔一个数划掉两个数,转圈划下去。问:最后剩下哪个数?为什么?

6.圆周上放有N枚棋子,如下图所示,B点的一枚棋子紧邻A点的棋子。小洪首先拿走B点处的1枚棋子,然后顺时针每隔1枚拿走2枚棋子,连续转了10周,

发现圆周上余下20多枚棋子。若N是14的倍数,则圆周上还有

多少枚棋子?

7.用0,1,2,3,4五个数字组成四位数,每个四位数中均

没有重复数字(如1023,2341),求全体这样的四位数之和。

8.有27个国家参加一次国际会议,每个国家有2名代表。求证:不可能将54位代表安排在一张圆桌的周围就座,使得任一国的2位代表之间都夹有9个人。

练习1答案:

1.1987。

(a+d)×1000+(b+c)×110+(a+d)= 9878。

比较等式两边,并注意到数字和及其进位的特点,可知:a+d=8,b+c=17。

已知c-1=d,d+2=b,可求得:a=1,b=9,c=8,d=7。

即所求的四位数为1987。

2.1324,1423,2314,2413,3412,共5个。

3.432。

解:为保证n是75的倍数而又尽可能地小,因为75=3×5×5,所以可设n 有三个质因数2,3,5,即n=2α×3β×5γ,其中α≥0,β≥1,γ≥2,并且

(α+1)(β+1)(γ+1)=75。

易知当α=β=4,γ=2时,符合题设条件。此时

4.38。

解:小于38的奇合数是9,15,21,25,27,33。

38不能表示成它们之中任二者之和,而大于38的偶数A,皆可表示为二奇合数之和:A末位是0,则A=15+5n;A末位是2,则A=27+5n;A末位是4,

则A=9+5n;A末位是6,则A=21+5n;A末位是8,则A=33+5n。

其中n为大于1的奇数。因此,38即为所求。

5.406。

解:从特殊情况入手,可归纳出:如果是3n个数(n为自然数),那么划1圈剩下3n-1个数,划2圈剩下3n-2个数……划(n-1)圈就剩3个数,再划1圈,最后剩下的还是起始数1。

36<999<37,从999个数中划掉(999-36=)270个数,剩下的(36=)729个数,

即可运用上述结论。

因为每次划掉的是2个数,所以划掉270个数必须划135次,这时划掉的第270个数是(135×3=)405,则留下的36个数的起始数为406。所以最后剩下的那个数是406。

6.23枚。

解:设圆周上余a枚棋子。因为从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时小洪拿走了2a枚棋子,所以,在第9次将要越过A处棋子

时,圆周上有3a枚棋子。依此类推,在第8次将要越过A处棋子时,圆周上有32a枚棋子……在第1次将要越过A处棋子时,圆周上有39a枚棋子,在第1次将要越过A处棋子之前,小洪拿走了[2(39a-1)+1]枚棋子,所以N=2(39a-1)+1+39a=310a-1。

若N=310a=59049a-1是14的倍数,则N就是2和7的公倍数,所以a必须是奇数;

若N=(7×8435+4)a-1=7×8435a+4a-1是7的倍数,则4a-1必须是7的倍数,当a=21,25,27,29时,4a-1不是7的倍数,当a=23时,4a-1=91=7×13,是7的倍数。

当N是14的倍数时,圆周上有23枚棋子。

7.259980。

解:用十进位制表示的若干个四位数之和的加法原理为:

若干个四位数之和=千位数数字之和×1000+百位数数字之和×100+十位数数字之和×10+个位数数字之和。

以1,2,3,4中之一为千位数,且满足题设条件的四位数有4×3×2=24(个)。这是因为,当千位数确定后,百位数可以在其余4个数字中选择;千、百位数确定后,十位数可以在其余3个数字中选择;同理,个位数有2种可能。因此,满足条件的四位数的千位数数字之和为(1+2+3+4)×4×3×2=240。

以1,2,3,4中之一为百位数时,因为0不能作为千位,所以千位数也有3种选择;十位数也有3种选择(加上0);个位数有2种选择。因此,百位数数字之和=(1+2+3+4)×18=180。同理,十位数数字之和、个位数数字之和都是180。

所以满足条件的四位数之和为240×1000+180×(1+10+100)= 259980。

8.将54个座位按逆时针编号:1,2,…,54。由于是围圆桌就座,所以从1号起,逆时针转到55,就相当于1号座;转到56,就相当于2号座;如此下去,显然转到m,就相当于m被54所除的余数号座。

设想满足要求的安排是存在的。不妨设1和11是同一国的代表,由于任一国只有2名代表,于是11和21不是同一国代表,下面的排法是:21和31是同一国的代表;31和41不是同一国的代表;41和51是同一国的代表;51和61不是同一国的代表(61即7号座)。

由此,20k+1和20k+11是同一国的代表,若20k+1,20k+11大于54,则取这个数被54除的余数为号码的座位。

取k=13,则261和271是同一国的,而261被54除的余数是45,271被54除的余数是1,这就是说,1号座与45号座是同一国的代表,而我们已设1号与11号座是同一国的代表。这样,1号、11号、45号的三位代表是同一国的,这是不可能的。所以题目要求的安排不可能实现。

初一数学竞赛讲座

第2讲数论的方法技巧(下)

四、反证法

反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。

反证法的过程可简述为以下三个步骤:

1.反设:假设所要证明的结论不成立,而其反面成立;

2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;

3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。

运用反证法的关键在于导致矛盾。在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。

解:如果存在这样的三位数,那么就有

100a+10b+c=(10a+b)+(10b+c)+(10a+c)。上式可化简为 80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。这表明所找的数是不存在的。

说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。

例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。试说明,得到的和中至少有一个数字是偶数。

解:假设得到的和中没有一个数字是偶数,即全是奇数。在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此

第二列数字的和b+c≤9。将已知数的前两位数字a,b与末两位数

字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数

与它相加,和的数字都是奇数”这一性质。照此进行,每次去掉首

末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。故和的数字中必有偶数。

说明:显然结论对(4k+1)位数也成立。但对其他位数的数不一定成立。如12+21,506+605等。

例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。小红由1枚1分硬币和1枚5分硬币开始,反复将硬币塞入机器,能否在某一时刻,小红手中1分的硬币刚好比1角的硬币少10枚?

解:开始只有1枚1分硬币,没有1角的,所以开始时1角的和1分的总枚数为 0+1=1,这是奇数。每使用一次该机器,1分与1角的总枚数记为Q。下面考查Q的奇偶性。

如果塞入1枚1分的硬币,那么Q暂时减少1,但我们取回了1枚1角的硬币(和1枚5分的硬币),所以总数Q没有变化;如果再塞入1枚5分的硬币(得到4枚1角硬币),那么Q增加4,而其奇偶性不变;如果塞入1枚1角硬币,那么Q增加2,其奇偶性也不变。所以每使用一次机器,Q的奇偶性不变,因为开始时Q为奇数,它将一直保持为奇数。

这样,我们就不可能得到1分硬币的枚数刚好比1角硬币数少 10的情况,因为如果我们有P枚1分硬币和(P+10)枚1角硬币,那么1分和1角硬币的总枚数为(2P+10),这是一个偶数。矛盾。

例 4在3×3的方格表中已如右图填入了9个质数。将表中

同一行或同一列的3个数加上相同的自然数称为一次操作。问:

你能通过若干次操作使得表中9个数都变为相同的数吗?为什么?

解:因为表中9个质数之和恰为100,被3除余1,经过每一

次操作,总和增加3的倍数,所以表中9个数之和除以3总是余1。如果表中9个数变为相等,那么9个数的总和应能被3整除,这就得出矛盾!

所以,无论经过多少次操作,表中的数都不会变为9个相同的数。

五、构造法

构造法是一种重要的数学方法,它灵活多样,数论中的许多问题都可以通过构造某些特殊结构、特殊性质的整数或整数的组合来解决。

例5 9999和99!能否表示成为99个连续的奇自然数之和?

解:9999能。因为9999等于99个9998之和,所以可以直接构造如下:

9999=(9998-98)+(9998-96)+…=(9998-2)+9998+(9998+2)+…=(9998+96)+(9998+98)。

99!不能。因为99!为偶数,而99个奇数之和为奇数,所以99!不能表示为99个连续奇数之和。

说明:利用构造法证明存在性问题,只要把满足题设要求的数学对象构造出来就行。

例6 从1,2,3,…,999这999个数中,要求划去尽量少的数,使得余下的数中每一个数都不等于另外两个数的乘积。应划去哪些数?

解:我们可划去2,3,…,30,31这30个数,因为划去了上述这30个数之后,余下的数中,除1以外的任何两个数之积将大于322

=1024>999。 另一方面,可以通过构造三元数组来证明30是最少的个数。

(2,61,2×61),(3,60,3×60),(4,59,4×59),…, (30,33,30×33),(31,32,31×32)。

上面写出的这些数都是互不相同的,并且这些数中的最大数为 31×32=992。如果划去的数少于30个,那么上述三元数组至少剩下一个,这样就不满足题设条件。所以,30是最少的个数。

六、配对法

配对的形式是多样的,有数字的凑整配对,也有集合间元素与元素的配对(可用于计数)。传说高斯8岁时求和(1+2+…+100)首创了配对。像高斯那样,善于使用配对技巧,常常能使一些表面上看来很麻烦,甚至很棘手的问题迎刃而解。 例7 求1,2,3,…,9999998,9999999这9999999个数中所有数码的和。 解:在这些数前面添一个数0,并不影响所有数码的和。将这1000万个数两两配对,因为0与9999999,1与9999998,…,4999999与5000000各对的数码和都是9×7=63。这里共有5000000对,故所有数码的和是63×5000000=315000000。

例8 某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号。若号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”。例如号码 0734,因 0+7=3+4,所以这个号码的购物券是幸运券。试说明,这个商场所发的购物券中,所有幸运券的号码之和能被101整除。

解:显然,号码为9999的是幸运券,除这张幸运券外,如果某个号码n 是幸运券,那么号码为m=9999-n 的购物券也是幸运券。由于9999是奇数,所以m ≠n 。

由于m+n=9999,相加时不出现进位,所以除去号码是9999这张幸运券之外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的倍数。

因为9999=99×101,所以所有幸运券号码之和能被101整除。

例9已知最简分数n m 可以表示成: 88

131211++++= n m 。试说明分子m 是质数89的倍数。

解法一:仿照高斯求和(1+2+3+…+n )的办法,将和

①②两式相加,得

从而2m ×88!=89×k (k 是正整数)。

因为89为奇质数,所以89不能整除 88!,从而89|m 。

解法二:作配对处理

??? ???++?+?=??? ??+++??? ??++??? ??+=4544187

21881189451441871218811 n m 将括号内的分数进行通分,其公分母为1×88×2×87×3×86×…×44×45=88!,

从而m ×88!=89×k (k=n ×q )。

因为89为奇质数,所以89不能整除88!,从而89|m 。

七、估计法

估计法是用不等式放大或缩小的方法来确定某个数或整个算式的取值范围,以获取有关量的本质特征,达到解题的目的。

在数论问题中,一个有限范围内的整数至多有有限个,过渡到整数,就能够对可能的情况逐一检验,以确定问题的解。

例10已知一个整数等于4个不同的形如1

+m m (m 是整数)的真分数之和,求这个数,并求出满足题意的5组不同的真分数。

解:因每一真分数满足11

21<+≤m m ,而所求的数整S 是四个不同的真分数之和,因此2<S <4,推知S=3。于是可得如下5组不同的真分数:

??????????????????????????????1211,65,43,21,2019,54,43,21,1514,109,32,21,2423,87,32,21,4241,76,32,21 例11 已知在乘积1×2×3×…×n 的尾部恰好有106个连续的零,求自然数n 的最大值。

分析:若已知n 的具体数值,求1×2×…×n 的尾部零的个数,则比较容易解决,现在反过来知道尾部零的个数,求n 的值,不大好处理,我们可以先估计n 大约是多少,然后再仔细确定n 的值。

解:当n =400时,数1,2,3,…,400中共有805400=??

????个数是5的倍数,其中有1654002=??????个数是52的倍数,有354002=??

????个数是53的倍数。 因此,乘积1×2×3×…×400中含质因数5的个数为80+16+3=99(个)。又乘积中质因数2的个数多于5的个数,故n=400时,1×2×…×n 的尾部有99个零,还需 7个零,注意到425中含有2个质因数5,所以

当n=430时,1×2×…×n 的尾部有106个零;

当n=435时,1×2×…×n 的尾部有107个零。

因此,n 的最大值为434。

练习2

1.将两个自然数的差乘上它们的积,能否得到数45045?

2.如下图,给定两张3×3方格纸,并且在每

一方格内填上“+”或“-”号。现在对方格纸中任

何一行或一列进行全部变号的操作。问:可否经过

若干次操作,使图(1)变成图(2)? 3.你能在3×3的方格表中每个格子里都填一

个自然数,使得每行、每列及两条对角线上的三数之和都等于1999吗?若能,请举出一例;若不能,请说明理由。

示,求出表达式;若不能表示,请给出证明。

5.公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。试说明,所有幸运车票号码的和能被13整除。

6.N 是由5个不同的非零数字组成的五位数,且N 等于这5个数字中取3个不同数字构成的所有三位数的和,求出所有的这种五位数N 。

7.证明:没有最大的质数。

练习2 答案:

1.不可能。因为45045是奇数,所以它只能表示成3个奇数的连乘积,但是对任何两个奇数x 和y (x <y )来说,y-x 都是偶数,从而45045≠xy (x-y )。而如果x 和y 中有偶数,则亦不可能。

2.不能。假设图(1)在第一、二、三行经过m 1,m 2,m 3次操作,而第一、

二、三列经过n 1,n 2,n 3次操作变成图(2)。由于图(1)和图(2)左上角符号相反,而从“+”号变到“-”号要进行奇数次变号,故(m 1+n 1)是奇数。同理(m 1+n 2)是偶数,(m 2+n 1),(m 2+n 2)都是奇数。这样(m 1+n 1)+(m 1+n 2

+(m 2+n 1)+(m 2+n 2)是奇数。但这个和又等于2(m 1+m 2+n 1+n 2),是偶数,矛盾。

3.不能。若能填入九个自然数a 1,a 2,…,a 8,a 9满足题

设条件(如图所示),则有a 1+a 5+a 9=1999,a 2+a 5+a 8=1999,

a 3+a 5+a 7=1999,a 4+a 5+a 6=1999。

相加得(a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9)+3a 5=4×1999,

而a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9=3×1999,所以3a 5=1999,

a 5=3

1999与a 5是自然数矛盾。 4.1999

1949;398414813327+=不能。 解:因为

3984

14811283411241128641831283412783473327+=??+?=??+=???=?= 所以3327能表示成m

l 11+的形式,且398414813327+=。 将一切形如m

l 11+的数(其中m l ,为大于1的自然数),从大到小排列,前几项为4

34121,653121,12121=+=+=+。 显然,凡界于65与1之间的分数p

q 不能表示成m l 11+的形式,而19991949却界于65与1之间,所以不能表示成m

l 11+的形式。 5.解:设幸运车票的号码为A ,则号码为A ′=999999-A 的车票也是幸运的,并且A ′≠A (因为999999是奇数),因而A+A ′=1001×999=13×77×999能被 13整除。所以,所有幸运车票号码的和也能被13整除。

6.35964。

=(a 1+a 2+a 3+a 4+a 5)(100×12+10×12+12)

=1332(a 1+a 2+a 3+a 4+a 5)。

应是1332×9=11988的倍数。又15=1+2+3+4+5≤a 1+a 2+a 3+a 4+a 5≤9+8+7+6+5=35,

所以a 1+a 2+a 3+a 4+a 5只能为18,27。

当a 1+a 2+a 3+a 4+a 5=18时,

但2+3+9+7+6≠18,不合题意;

当a 1+a 2+a 3+a 4+a 5=27时,符合题意。

所以,所求的五位数为35964。

7.证明:假设有最大质数P。将所有小于等于P的质数相乘再加1,所得结果如果是质数,那么这个质数大于P,与假设矛盾;所得结果如果不是质数,那么它的每一个质因数都不同于小于等于P的质数,也就是说这些质因数都是大于P的质数,与假设矛盾。所以假设不成立,即没有最大的质数。

8.9504。

解:若先依次计算

的值再求和,则很繁杂。我们的解法是采用配对,这也是求和的一种有效技巧。

=199,(这里{x}=x[x])

同理可知

我们有

=198×48=9504。

初一数学竞赛讲座

第3讲奇偶分析

我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。被2除余1的属于一类,被2整除的属于另一类。前一类中的数叫做奇数,后一类中的数叫做偶数。关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等。灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果。

例1 右表中有15个数,选出5个数,使它们

的和等于30,你能做到吗?为什么?

分析与解:如果一个一个去找、去试、去算,

那就太费事了。因为无论你选择哪5个数,它们的

和总不等于30,而且你还不敢马上断言这是做不到的。最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。

例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。试问,小丽所加得的和数能否为2000?

解:不能。

由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。

说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。

例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。

解:不能。

如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数。所以这98个号码数的总和是个偶数,但是这98个数的总和为

1+2+…+98=99×49,是个奇数,矛盾!所以不能按要求排成。

例4 如右图,把图中的圆圈任意涂上红色或蓝色。

问:有无可能使得在同一条直线上的红圈数都是奇数?

请说明理由。

解:不可能。

如果每条直线上的红圈数都是奇数,而五角星有五

条边,奇数个奇数之和为奇数,那么五条线上的红圈共

有奇数个(包括重复的)。从另一个角度看,由于每个 圆圈是两条直线的交点,则每个圆圈都要计算两次,因

此,每个红圈也都算了两次,总个数应为偶数,得出矛盾。所以,不可能使得在同一条直线上的红圈数都是奇数。

说明:上述两题都是从两个不同的角度去分析处理同一个量,而引出矛盾的。 例5 有20个1升的容器,分别盛有1,2,3,…,20厘米3

水。允许由容器A 向容器B 倒进与B 容器内相同的水(在A 中的水不少于B 中水的条件下)。问:在若干次倒水以后能否使其中11个容器中各有11厘米3的水? 解:不可能。

在倒水以后,含奇数立方厘米水的容器数是不会增加的。事实上以(偶,偶)(偶,奇)(奇,奇)来表示两个分别盛有偶数及偶数,偶数及奇数,奇数及奇数立方厘米水的容器。于是在题中条件限制下,在倒水后,(偶,偶)仍为(偶,偶);而(偶,奇)会成为(偶,奇)或(奇,偶);(奇,奇)却成为(偶,偶)。在任何情况下,盛奇数立方厘米水的容器没有多出来。

因为开始时有10个容器里盛有奇数立方厘米的水,所以不会出现有11个盛有奇数立方厘米水的容器。

例6 一个俱乐部里的成员只有两种人:一种是老实人,

永远说真话;一种是骗子,永远说假话。某天俱乐部的全

体成员围坐成一圈,每个老实人两旁都是骗子,每个骗子

两旁都是老实人。外来一位记者问俱乐部的成员张三:

“俱乐部里共有多少成员?”张三答:“共有45人。”

另一个成员李四说:“张三是老实人。”请判断李四是老

实人还是骗子?

分析与解:根据俱乐部的全体成员围坐一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人的条件,可知俱乐部中的老实人与骗子的人数相等,也就是说俱乐部的全体成员总和是偶数。而张三说共有45人是奇数,这说明张三是骗子,而李四说张三是老实人,说了假话,所以李四也是骗子。

说明:解答此题的关键在于根据题设条件导出老实人与骗子的人数相等,这里实质上利用了对应的思想。

类似的问题是:

围棋盘上有19×19个交叉点,现在放满了黑子与白子,且黑子与白子相间地放,并使黑子(或白子)的上、下、左、右的交叉点上放着白子(或黑子)。问:能否把黑子全移到原来的白子的位置上,而白子也全移到原来黑子的位置上?

提示:仿例6。答:不能。

例7 某市五年级99名同学参加数学竞赛,竞赛题共30道,评分标准是基础分15分,答对一道加5分,不答记1分,答错一道倒扣1分。问:所有参赛同学得分总和是奇数还是偶数?

解:对每个参赛同学来说,每题都答对共可得165分,是奇数。如答错一题,就要从165分中减去6分,不管错几道,6的倍数都是偶数,165减去偶数,差还是奇数。同样道理,如有一题不答,就要减去4分,并且不管有几道题不答,4的倍数都是偶数,因此,从总分中减去的仍是偶数,所以每个同学的得分为奇数。而奇数个奇数之和仍为奇数,故99名同学得分总和一定是奇数。

例8 现有足够多的苹果、梨、桔子三种水果,最少要分成多少堆(每堆都有苹果、梨和桔子三种水果),才能保证找得到这样的两堆,把这两堆合并后这三种水

果的个数都是偶数。

分析与解:当每堆都含有三种水果时,三种水果的奇偶情况如下表:

可见,三种水果的奇偶情况共有8种可能,所以必须最少分成9堆,才能保证有两堆的三种水果的奇偶性完全相同,把这两堆合并后这三种水果的个数都是偶数。

说明:这里把分堆后三种水果的奇偶情况一一列举出来,使问题一目了然。

例9 有30枚2分硬币和8枚5分硬币,5角以内共有49种不同的币值,哪几种币值不能由上面38枚硬币组成?

解:当币值为偶数时,可以用若干枚2分硬币组成;

当币值为奇数时,除1分和3分这两种币值外,其余的都可以用1枚5分和若干枚2分硬币组成,所以5角以下的不同币值,只有1分和3分这两种币值不能由题目给出的硬币组成。

说明:将全体整数分为奇数与偶数两类,分而治之,逐一讨论,是解决整数问题的常用方法。

若偶数用2k表示,奇数用2k+1表示,则上述讨论可用数学式子更为直观地表示如下:

当币值为偶数时,2k说明可用若干枚2分硬币表示;

当币值为奇数时,2k+1=2(k-2)+5,

其中k≥2。当k=0,1时,2k+1=1,3。1分和3分硬币不能由2分和5分硬币组成,而其他币值均可由2分和5分硬币组成。

例10 设标有A,B,C,D,E,F,G的7盏灯顺次排成一行,每盏灯安装一个开关。现在A,C,D,G这4盏灯亮着,其余3盏灯没亮。小华从灯A开始顺次拉动开关,即从A到G,再从A开始顺次拉动开关,他这样拉动了999次开关后,哪些灯亮着,哪些灯没亮?

解:一盏灯的开关被拉动奇数次后,将改变原来的状态,即亮的变成熄的,熄的变成亮的;而一盏灯的开关被拉动偶数次后,不改变原来的状态。由于999=7×142+5,

因此,灯A,B,C,D,E各被拉动143次开关,灯F,G各被拉动142次开关。所以,当小华拉动999次后B,E,G亮,而A,C,D,F熄。

例11 桌上放有77枚正面朝下的硬币,第1次翻动77枚,第2次翻动其中的76枚,第3次翻动其中的75枚……第77次翻动其中的1枚。按这样的方法翻动硬币,能否使桌上所有的77枚硬币都正面朝上?说明你的理由。

分析:对每一枚硬币来说,只要翻动奇数次,就可使原先朝下的一面朝上。这一事实,对我们解决这个问题起着关键性作用。

解:按规定的翻动,共翻动1+2+…+77=77×39次,平均每枚硬币翻动了39次,这是奇数。因此,对每一枚硬币来说,都可以使原先朝下的一面翻朝上。注意到:

77×39=77+(76+1)+(75+2)+…+(39+38),

根据规定,可以设计如下的翻动方法:

第1次翻动77枚,可以将每枚硬币都翻动一次;第2次与第77次共翻动77枚,又可将每枚硬币都翻动一次;同理,第3次与第76次,第4次与第75次……第39次与第40次都可将每枚硬币各翻动一次。这样每枚硬币都翻动了39次,都由正面朝下变为正面朝上。

说明:(1)此题也可从简单情形入手(如9枚硬币的情形),按规定的翻法翻动硬币,从中获得启发。

(2)对有关正、反,开、关等实际问题通常可化为用奇偶数关系讨论。

例12 在8×8的棋盘的左下角放有9枚棋子,组成一个3×3的正方形(如左下图)。规定每枚棋子可以跳过它身边的另一枚棋子到一个空着的方格,即可以以它旁边的棋子为中心作对称运动,可以横跳、竖跳或沿着斜线跳(如右下图的1号棋子可以跳到2,3,4号位置)。问:这些棋子能否跳到棋盘的右上角(另一个3×3的正方形)?

解:自左下角起,每一个方格可以用一组数(行标、列标)来表示,(自下而上)第i行、(自左而右)第j列的方格记为(i,j)。问题的关键是考虑9枚棋子(所在方格)的列标的和S。

一方面,每跳一次,S增加0或偶数,因而S的奇偶性不变。另一方面,右上角9个方格的列标的和比左下角9个方格的列标之和大

3×(6+7+8)-3×(1+2+3)=45,

这是一个奇数。

综合以上两方面可知9枚棋子不能跳至右上角的那个3×3的正方形里。

奇偶分析作为一种分析问题、处理问题的方法,在数学中有广泛的应用,是处理存在性问题的有力工具,本讲所举例题大多属于这类问题。这种方法具有很强的技巧性,尤其是选择什么量进行奇偶分析往往是很困难的。选准了,只须依据奇偶数的性质,分析这个量的奇偶特征,问题便迎刃而解;选不好,事倍功半。同学们应认真领会本讲所举例题,以把握选择合适的量进行奇偶分析的技巧。

练习3

1.下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□□-□=□

□×□=□□÷□=□

2.任意取出1234个连续自然数,它们的总和是奇数还是偶数?

3.一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每一个数都是前两个数的和。如右所示:1,1,2,3,5,8,13,21,34,55,…

试问:这串数的前100个数(包括第100个数)中,有多少个偶数?

4.能不能将1010写成10个连续自然数之和?如果能,把它写出来;如果不能,说明理由。

5.能否将1至25这25个自然数分成若干组,使得每一组中的最大数都等于组内其余各数的和?

6.在象棋比赛中,胜者得1分,败者扣1分,若为平局,则双方各得0分。今有若干个学生进行比赛,每两人都赛一局。现知,其中有一位学生共得7分,另一位学生共得20分,试说明,在比赛过程中至少有过一次平局。

7.在黑板上写上1,2,…,909,只要黑板上还有两个或两个以上的数就擦去其中的任意两个数a,b,并写上a-b(其中a≥b)。问:最后黑板上剩下的是奇数还是偶数?

8.设a1,a2,…,a64是自然数1,2,…,64的任一排列,令b1=a1-a2,b2=a3-a4,…,b32=a63-a64;

c1=b1-b2,c2=b3-b4,…,c16=b31-b32;

d1=c1-c2,d2=c3-c4,…,d8=c15-c16;

……

这样一直做下去,最后得到的一个整数是奇数还是偶数?

练习3答案:

1.至少有6个偶数。

2.奇数。解:1234÷2=617,所以在任取的1234个连续自然数中,奇数的个数是奇数,奇数个奇数之和是奇数,所以它们的总和是奇数。

3.33。提示:这串数排列的规律是以“奇奇偶”循环。

4.不能。

如果1010能表示成10个连续自然数之和,那么中间2个数的和应当是1010÷5=202。但中间2个数是连续自然数,它们的和应是奇数,不能等于偶数202。所以,1010不能写成10个连续自然数之和。

5.不能。提示:仿例3。

6.证:设得7分的学生胜了x1局,败了y1局,得20分的学生胜了x2局,败了y2局。由得分情况知:

x1-y1=7,x2-y2=20。

如果比赛过程中无平局出现,那么由每人比赛的场次相同可得x1+y1=x2+y2,即x1+y1+x2+y2是偶数。另一方面,由x1-y1=7知x1+y2为奇数,由x2-y2=20知x2+y2为偶数,推知x1+y1+x2+y2为奇数。这便出现矛盾,所以比赛过程中至少有一次平局。

七年级数学竞赛讲义附练习及答案全套下载(共12份)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即 其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的. (1)式称为n的质因数分解或标准分解. 4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)=(a1+1)(a2+1)…(a k+1).

5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

2017七年级,下册数学期末试卷

E D A 2017七年级下册数学期末模拟试卷 一、选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一个是正确的.) 1、下面四个图形中,∠1与∠2为对顶角的图形是() A、B、C、D、 2、调查下面问题,应该进行抽样调查的是() A、调查我省中小学生的视力近视情况 B、调查某校七(2)班同学的体重情况 C、调查某校七(5)班同学期中考试数学成绩情况 D、调查某中学全体教师家庭的收入情况 3、点3 (- P,)2位于() A、第一象限 B、第二象限 C、第三象限 D、第四象限 4、如图是某机器零件的设计图纸, 在数轴上表示该零件长度(L)合格尺寸, 正确的是( ) A、 B、 C、 D、 5、下列命题中,是假命题的是() A、同旁内角互补 B、对顶角相等 C、直角的补角仍然是直角 D、两点之间,线段最短 6、下列各式是二元一次方程的是() A.0 3= + -z y x B. 0 3= + -x y xy C. 0 3 2 2 1 = -y x D. 0 1 2 = - +y x 7、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x,y的是(). A、 ? ? ?x–y= 49 y=2(x+1)B、?? ?x+y= 49 y=2(x+1)C、?? ?x–y= 49 y=2(x–1)D、?? ?x+y= 49 y=2(x–1) 8、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多 少道题?如果设小明答对x道题,则他答错或不答的题数为20-x. 根据题意得:() A、10x-5(20-x)≥120 B、10x-5(20-x)≤120 C、10x-5(20-x)> 120 D、10x-5(20-x)<120 二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上. 9、电影票上“6排3号”,记作(6,3),则8排6号记作__________ . 10、 ? ? ? = - = + = 9 6 2 _________ y x y ax a时,方程组 ? ? ? - = = 1 8 y x 的解为. 11、如图,直线a、b被直线c所截,若要a∥b,需增加条件(填一个即可). 12、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200 名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约 有名学生“不知道”. 13、甲地离学校4km,乙地离学校1km,记甲乙两地之间的距离为km d,则d的取值范围为. 三、解答题(本大题共5小题,每小题7分,共35分) 14、解方程组 1 528 y x x y =- ? ? += ? . 15、解不等式 1 32 2 x x - ≥+,并把它的解集在数轴上表示出来. 16、将一副直角三角尺如图放置,已知∠EAD=∠E=450,∠C=300, AE BC ∥,求AFD ∠的度数. 17、已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长. 9.9 10.1 9.9 10.1 L=10±0.1

(完整版)七年级数学下册垂线练习题

七年级数学下册《垂线》练习1 一、选择题:(每小题3分,共18分) 1.如图1所示,下列说法不正确的是( ) A.点B到AC的垂线段是线段AB; B.点C到AB的垂线段是线段AC C.线段AD是点D到BC的垂线段; D.线段BD是点B到AD的垂线段 D C B A D C B A O D C B A G O F E D C B A (1) (2) (3) (4) 2.如图1所示,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条 3.下列说法正确的有( ) ①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个 4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( ) A.大于acm B.小于bcm C.大于acm或小于bcm D.大于bcm且小于acm 5.到直线L的距离等于2cm的点有( ) A.0个 B.1个; C.无数个 D.无法确定 6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的 距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm 二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______, 记作_______,此时,? ∠AOD=∠_______=∠_______=∠_______=90°. 2.过一点有且只有________直线与已知直线垂直. 3.画一条线段或射线的垂线,就是画它们________的垂线. 4.直线外一点到这条直线的_________,叫做点到直线的距离. 三、训练平台:(共15分) 如上图4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF, ∠AOE=70°,?求∠DOG的度数.

初中七年级数学竞赛培优讲义全套专题07 整式的加减

专题07 整式的加减 阅读与思考 整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点: 1.透彻理解“三式”和“四数”的概念 “三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数. 2.熟练掌握“两种排列”和“三个法则” “两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则. 物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项. 例题与求解 [例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______. (江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手. [例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( ) A.a+b B.a-b C.a+b2D.a2+b (“希望杯”初赛试题) 解题思路:采用赋值法,令a=1 2 ,b=- 1 2 ,计算四个式子的值,从中找出值最大的 式子. [例3]已知x=2,y=-4时,代数式ax2+1 2 by+5=1997,求当x=-4,y=- 1 2 时, 代数式3ax-24by3+4986的值. (北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值. (北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式. [例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?

(新)浙教版七年级下册数学基础竞赛试卷(最新整理)

武康中学七(下)第一次数学基础知识竞赛 班级 姓名 学号 一、选一选(每小题 4 分,共 32 分) 1.下列各式从左到右的变形中,是因式分解的为( ) (A ) x (a - b ) = ax - bx (B ) ax + bx + c = x (a + b ) + c (C ) x 2 - 2x +1 = (x -1)2 (D ) x 2 -1+ y 2 = (x -1)(x +1) + y 2 2. 已知某种植物花粉的直径为 0.00035 米,用科学记数法表示 该种花粉的直径是( ) (A )3.5×10 4 米 (B )3.5×10 -4 米 (C )3.5×10 -5 米 (D )3.5×10 -6 米 3. 如图,由△ABC 平移得到的三角形有几个 ( ) (A )3 (B )5 (C )7 (D )15 4.小马虎在下面的计算中做对的题目是( ) (A ) a 7 + a 6 = a 13 (B ) a 7 ? a 6 = a 42 (C ) (a 7 )6 = a 42 (D ) a 7 ÷ a 6 = 7 6 5. 下列图形中,∠1 与∠2 不是同位角的是( ) ( A ) ( B ) ( C ) ( D ) 1

7.方程组? 6. 下列多项式中,不能运用平方差公式因式分解的是( ) (A ) -m 2 + 4 (B ) -x 2 - y 2 ( C ) x 2 y 2 -1 (D ) (m - a )2 - (m + a ) 2 ?2x - y = 3 ? 4x + 3y = 1 的解是( ) (A ) ??x = 1 (B ) ??x = -1 (C ) ??x = 2 (D ) ?x = -2 ? y = -7 ? y = -1 ? y = -1 ? y = 1 8. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不 同袋数的货物,每袋货物都是一样重的。驴子抱怨负担太重, 骡子说:“你抱怨干嘛,如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!” 那么驴子原来所驮货物的袋数是( ) (A )5 (B )6 (C )7 (D )8 二、填一填(每小题 4 分,共 28 分) 9. 当 x = 时,分式 3x - 9 的值为零. x - 2 10. 如图,请添一个使 EB//AC 的条件 。 11.分解因式:16a 2 - 9b 2 = . 12.计算: (- 1)0 ? 3-2 = . 3 13. 如图,直线 AB ,CD 被 EF 所截,且 AB ∥ CD , 如 果 ∠ 1=125° , 那 么 ∠ 2= . 14. 若 非 零 实 数 a , b 满 足 2 a 2 - ab + 1 b 2 = 0 , 则 b 4 a =

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

年七年级数学竞赛

七年级“希望杯”竞赛试卷 (考试时间90分钟,满分100分) 一、选择题(每小题只有一个正确选项,每小题3分,共10题,总共30分) 1.是任意有理数,则 的值( ). A .大于零 B . 不大于零 C .小于零 D .不小于零 2.某超市为了促销,先将彩电按原价提高了40%,然后在广告中写上“××节大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电的原价为( ) A. 2150元 B.2200元 C.2250元 D. 2300元 3.设, >,则 的值是( ) A . B. C. D. 4.把14个棱长为1的正方体,在地面上堆叠成如图(1)所示的立 方体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ). A .21 B.24 C.33 D.37 5.某动物园有老虎和狮子,老虎的数量是狮子的2倍。如果每只老虎每天吃肉 4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉 ( ) A. 千克 B. 千克 C. 千克 D. 千克 6.假设有2016名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1…… 的规律报数,那么第2010名学生所报的数是 ( ) A.1 B.2 C.3 D.4 7.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A 、-1 B 、0 C 、1 D 、不存在 8. 适合的整数的值的个数有 ………………( ) A .5 B .4 C .3 D .2 9. 碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米=10-9米,则0.5纳米用科学记数法表示为( ) A 、0.5×10-9米 B 、5×10-8米 C 、5×10-9米 D 、5×10-10米 10、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 3个 B 4个 C 5个 D 无数个 二、填空题(每题4分,共24分) 11.计算: = 。 12.平时我们常说的“刹那间……”,在梵文书《僧袛律》里有这样一段文字:“一刹那者为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜(24小时)有三十须臾。”那 么,一刹那...是秒。 13. 当x=﹣2时,的值为9,则当x=2时,的值是。 14.对于任意有理数 我们规定 ,如果 ,那 么的取值范围是 。 15.为正整数,已知二元一次方程组 有整数解,即 均为 (1 A B C D E

初中数学竞赛辅导资料之因式分解附答案

初中数学竞赛辅导资料之因式分解 甲内容提要和例题 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法 1.添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x4+x2+1②a3+b3+c3-3abc ①分析:x4+1若添上2x2可配成完全平方公式 解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x) ②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2 解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2 =(a+b)3+c3-3ab(a+b+c) =(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-ac-bc) 例2因式分解:①x3-11x+20②a5+a+1 ①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里 16是完全平方数) ②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4) =x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5) ③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式 解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1 =a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1) 2.运用因式定理和待定系数法 定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a ⑵若两个多项式相等,则它们同类项的系数相等。 例3因式分解:①x3-5x2+9x-6②2x3-13x2+3

七年级数学竞赛试题精选(七)

七年级数学竞赛试题精选(七) 一、拆分法及应用 例1、 计算: 991 63135115131+ +++。(第三届华杯赛) 练习:(1)208 1 130170128141+ +++。 (2) ) 2(1641531421311+?+??????+?+?+?+?n n 。(60年上海) (3)2003减去它的 21,再减去(第一次)余下的3 1 ,再减去(第二次)余下的41,、、、、、、,依次类推,一直到减去(第2001次)余下的2003 1,问最后余下的是多少?(第六届华杯赛) (4)计算20022002200320003200032002?-?。(第四届迎春杯) 二、错位相减法 例2、比较1234248162 n n n S = ++++??????+(n 为任意自然数)与2的大小。 练习:(1) 1231001121311001 2222----+++??????+ 。 (2)2 1 512412562561451212102411++??????+++。 三、观察归纳法 例 3 计算:?? ? ??-???????? ??-??? ??-???? ??+???????? ??+???? ??+???? ? ?+9115113111011611411211 (第六届华杯赛) 例4 计算:355 133******** 1-- - - - 练习:90 1177211556113421113019201712156131++++++++。(第四届华杯赛) 五、放缩法 例5、已知1991 1 198311982119811198011 +???++++= S ,求 S 的整数部分。

七年级数学下册 竞赛辅导资料(4)经验归纳法

初中数学竞赛辅导资料(14)经验归纳法 甲内容提要 1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。 通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归 纳法,也叫做经验归纳法。例如 ①由 ( - 1)2= 1 ,(- 1 )3=- 1 ,(- 1 )4= 1 ,……, 归纳出- 1 的奇次幂是- 1,而- 1 的偶次幂是 1 。 ②由两位数从10 到 99共 90 个( 9 × 10 ), 三位数从 100 到 999 共900个(9×102), 四位数有9×103=9000个(9×103), ………… 归纳出n 位数共有9×10n-1 (个) ③由1+3=22, 1+3+5=32, 1+3+5+7=42…… 推断出从1开始的n个連续奇数的和等于n2等。 可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。 2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明 朗化,必须进行足夠次数的试验。 由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或 否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归 纳法证明) 乙例题 例1 平面内n条直线,每两条直线都相交,问最多有几个交点? 解:两条直线只有一个交点, 1 2 第3条直线和前两条直线都相交,增加了2个交点,得1+2 3 第4条直线和前3条直线都相交,增加了3个交点,得1+2+3 第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4 ……… 第n条直线和前n-1条直线都相交,增加了n-1个交点 由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个), 这里n≥2,其和可表示为[1+(n+1)]× 21 + n , 即 2)1 (- n n 个交点。

八年级数学竞赛因式分解

第1讲:因式分解 一.因式分解的定义: 二.因式分解的方法: 1.提取公因式法:提取所有项的公共的因式,将多项式化成两个多项式的乘积的形式 例1:分解因式4121315242+-+---+-n n n n n n y x y x y x 例2:试说明139792781--能被45整除 例3:已知01234=++++x x x x ,求1200820092010+++++x x x x 2.运用公式法:运用公式法进行因式分解的关键是利用各公式的特点,建立运用公式的模型,以下公式都应该熟记. 例4:分解因式xyz z y x 68333--- 例5:分解因式:abc c b a 3333-++ 例6:分解因式:12131415++++++x x x x x 3.分组分解法:关键是如何分组,原则是:①各组能分解或部分组能分解,②组间能继续分解,从而达到分解的目的.常用的分组思路有,按系数分组,按符号分组,安某一字母一次或二次分组,联想公式分组,按项的次数分组等,对多项式分组的方法往往不唯一,但最终的结果是一致的。 例7:分解因式2105ax ay by bx -+- 例8:分解因式2222428x xy y z ++- 4.十字相乘法:对二次三项式分解的重要方法,即:()()22112c x a c x a c bx ax ++=++,其中a a a =21,c c c =21, b c a c a =+1221。十字相乘法通常借助画“十”字来分解系数。 例9:分解因式(1)2524x x +-;(2)226x xy y +-;(3)222 ()8()12x x x x +-++ 例10:分解因式(1)22y 8x y 6x 5-+;(2)22 5681812x xy y x y +++++ 例11:已知:,,a b c 为三角形的三条边,且222433720a ac c ab bc b ++--+= 求证:2b a c =+ 5.求根公式法:一般适合于对二次三项式的因式分解,如要对c bx ax ++2进行因式分解,可令02=++c bx ax ,若0≥?,则方程有两个实数根,可用一元二次方程的求根公式求出,设为21,x x ,则有()()212x x x x a c bx ax --=++ 例12:分解因式: 222(1)616 (2)44x x x xy y +-+- 例13:分解因式:422x +x +2ax+1-a 6.拆项、添项法:因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即

七年级数学不等式应用题专项练习

一元一次不等式应用题专项练习 1.某校两名教师带若干名学生去旅游,联系了两家标价相同的旅游公司,经洽谈后,甲公司优惠条件是1名教师全额收费,其余折收费;乙公司的优惠条件是全部师生8折收费.试问:当学生人数超过多少人时,甲旅游公司比乙旅游 公司更优惠 2.有人问一位老师:“您所教的班级有多少名学生”老师说一半学生在学数学,四分之一的学生在学音乐,七分之一 的学生在学外语,还剩不足6位学生在玩足球.”求这个班有多少位学生 3.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人 数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少 4.某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售.两个月后自行车的销售款已超过这批 自行车的进货款,问这时至少已售出多少辆自行车 5.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m; (2)求出该校的获奖人数及所买课外读物的本数. 6.某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出: 运输工具行驶速度(km/h)运输单价(元/t.km)装卸费用 汽车5023000 火车804620 (1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示); (2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算

2019-2020年七年级数学下册竞赛试题北师大版

2019-2020年七年级数学下册竞赛试题北师大版 一、选择题: 1、已知数轴上三点A、B、C分别表示有理数、1、-1,那么表示() (A)A、B两点的距离(B)A、C两点的距离 (C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和 2、王老伯在集市上先买回5只羊,平均每只元,稍后又买回3只羊,平均每只元,后来他以每只的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是() (A)(B)(C)(D)与、的大小无关 3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是() (A)273 (B)819 (C)1199 (D)1911 4、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐 5 人,租金24元,则该班至少要花租金() (A)188元(B)192元(C)232元(D)240元 5、已知三角形的周长是,其中一边是另一边2倍,则三角形的最小边的范围是()(A)与之间(B)与之间(C)与之间(D)与之间 6、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比为 :1,另一个瓶子中酒 精与水的容积之比是 :1,把两瓶溶液混在一起,混合液中酒精与水的容积之比是( )(A)(B) (C)(D) 二、填空题: 7、已知,,,且>>,则=; 8、设多项式,已知当=0时,;当时,, 则当时,=; 9、将正偶数按下表排列成5列: 第1列第2列第3列第4列第5列 第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 第四行 32 30 28 26 ………………  根据表中的规律,偶数2004应排在第行,第列; 10、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已 知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是 __________米; 11、有人问李老师:“你班里有多少学生?”,李老师说:“我班现在有一半学生在参加数 学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。则李老师班里学生的人数是; 12、如图,B、C、D依次是线段AE上三点,已知AE=8.9cm,BD=3cm,则图中以A、B、C、 D、E这五个点为端点的所有线段长度之和等于。 13、某个体服装经销商先以每3件160元的价钱购进一批童装,又以每4件210元的价钱购进比上一次多一倍的童装. 他想把这两批童装全部转手,并从中获利20%,那么,他需要以每3件______元出手。

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

七年级数学竞赛常见题型及解析

七年级数学竞赛常见题型 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用―数形结合思想‖解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例1计算: 2007 20061 ......431321211?++?+?+? 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种―抵消‖思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成 2 1 11211-=?,可利用通项 ()1 1 111+-=+?n n n n ,把每一项都做如此变形,问题会迎刃而解. 解 原式= )2007 1 20061( (413131212) 11 1-++-+-+-)()()( =20071 20061......41313121211-++-+-+- =20071 1- =20072006 例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道―在数轴上,右边的数总比左边的数大‖,大数减小数是正数,小数减大数是负数,可得到a -b<0、c -b>0. 解 由数轴知,a<0,a -b<0,c -b>0 所以,b c b a a -+-+= -a -(a -b)+(c -b)= -a -a+b+c -b= - 2a+c

初中七年级数学竞赛培优讲义全套专题16 不等式

专题16 不等式(组) 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值. (江苏省竞赛试题) 解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.

七年级下学期数学竞赛试题

七年级下学期数学竞赛试题 一、选择题(每小题4分,共40分) 1、如果m 是大于1的偶数,那么m 一定小于它的………………………….. ( ) A 、相反数 B 、倒数 C 、绝对值 D 、平方 2、当x=-2时, 的值为9,则当x=2时,的值是( ) A 、-23 B 、-17 C 、23 D 、17 3、2 ,3 ,5 ,6 这四个数中最小的数是……………………………….. ( ) A. 2 B. 3 C. 5 D. 6 4、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表 面部分染成红色.那么红色部分的面积为 …………………………….. ( ). A 、21 B 、24 C 、33 D 、37 5、有理数 的大小关系如图2所示,则下列式子中一定成立的是…… ( ) A 、c b a ++>0 B 、c b a <+ C 、c a c a +=- D 、a c c b ->- 6、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打 ( )。 A 、9折 B 、8.5折 C 、8折 D 、7.5折 37ax bx +-3 7ax bx +-55 44 33 22 55 44 33 22 图1 图2

7、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数, 那么第2005名学生所报的数是……………………………………………………………… ( ) A 、1 B 、2 C 、3 D 、4 8、 方程 |x|=ax+1有一负根而无正根, 则a 的取值范围…………………… ( ) A. a>-1 B. a>1 C. a ≥-1 D. a ≥1 9、 的最小值是…………………………………………………… ( ) A. 5 B.4 C.3 D. 2 10、某动物园有老虎和狮子,老虎的数量是狮子的2倍。每只老虎每天吃肉4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉…… …… ( ) A 、 625千克 B 、 725千克 C 、825千克 D 、9 25千克 二、填空题(每小题5分,共40分) 11、定义a*b=ab+a+b,若3*x=27,则x 的值是_____。 12、三个有理数a、b、c之积是负数,其和是正数,当x = c c b b a a + + 时,则 。 13、当整数m =_________ 时,代数式 1 36 -m 的值是整数。 14、A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是______ 。 15、甲从A 地到B 地,去时步行,返回时坐车,共用x 小时,若他往返都座车,则全程只需x 3 小时,,若他往返都步行,则需____________小时。 16、李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中只有一个当了记者。一次有人问起他们的职业,李志明说:“我是记者。”张斌说:“我不是记者。”王大为说:“李志明说了假话。” 如果他们三人的话中只有一句是真的, 那么_______是记者。 17、._______200720061431321211=?+?+?+? 18、若正整数x ,y 满足2004x =15y ,则x +y 的最小值是_______________。 1 22-+-++x x x ______29219=+-x x

数学竞赛题精讲复杂的因式分解问题

数学竞赛题精讲复杂的因 式分解问题 Prepared on 21 November 2021

轮换对称式的因式分解问题 林达 多元高次轮换对称式的因式分解问题往往是因式分解中的难点,很多初中学生感到棘手。但笔者却认为,这类问题往往是有迹可循的。我们今天就通过几个例子讲一讲把“求根”和“待定系数”相结合进行因式分解的方法。 例1分解因式: 【分析与解答】首先观察发现,当时,原式的值为0。即,如果将原式看作a的函数,将b看作常数,则是函数的一个根。故是原式的因式,同理及也是原式的因式。 故是原式的因式,观察发现原式是的三次式,也是三次式,故两式必然只差一个常数。 用待定系数法,设 代入,得到,故原式的因式分解结果是 例2分解因式: 【分析与解答】和例1类似,首先观察发现,当时,原式的值为0。故是原式的因式,同理及也是原式的因式。 故是原式的因式,观察发现原式是的五次式,是三次式。两者都是的轮换对称式,故原式一定可以表示成如下结果: 代入,得到 代入,得到 解得故原式的因式分解结果是 例3化简: 【分析与解答】这里虽然是化简而非因式分解,但我们发现分别展开以上四个式子太过复杂,耗时且易错,所以我们仿照例1和例2的方法首先用观察法“求根”以发现因式。 观察发现,当时,原式为 故,是原式的一个因式,同理也是原式的因式。 故是原式的因式。观察发现原式是的三次式,也是三次式,两式必然只差一个常数。 用待定系数法,设 代入,得到,故原式的化简结果是 配方法及其应用 林达 复杂的因式分解不仅可以是轮换对称式的因式分解,很多难以直接提出因式的高次多项式也难以分解。对于这类多项式,配方法往往能出奇效。相对于更一般的待定系数法,配方法的计算要简单很多。 配方法,顾名思义,就是将多项式或其中的某些项配成平方式或更高次方式(一般配成平方式,有时也可能直接配成三次方式,但更高次的配方很少出现)。下面我们看几道例题。 例1 分解因式:

相关文档
相关文档 最新文档