文档库 最新最全的文档下载
当前位置:文档库 › lvds接口定义及原理知识

lvds接口定义及原理知识

lvds接口定义及原理知识
lvds接口定义及原理知识

lvds接口定义及原理知识

LVDS接口定义

作者:bechade 更新时间:2007-9-22 7:31:10 文章录入:chfygl

--------------------------------------------------------------------------------

20PIN单6定义:

1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空

每组信号线之间电阻为(数字表120欧左右)

20PIN双6定义:

1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+

19:CLK1- 20:CLK1+

每组信号线之间电阻为(数字表120欧左右)

20PIN单8定义:

1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+

每组信号线之间电阻为(数字表120欧左右)

30PIN单6定义:

1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空

每组信号线之间电阻为(数字表120欧左右)

30PIN单8定义:

1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空24:空25:空26:空27:空28空29空30空

每组信号线之间电阻为(数字表120欧左右)

30PIN双6定义:

1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:

地17:RS0- 18:RS0+ 19:地20:RS1- 21:RS1+ 22:地23:RS2- 24:RS2+ 25:地26:CLK2- 27:CLK2+

每组信号线之间电阻为(数字表120欧左右)

30PIN双8定义:

1:电源2:电源3:电源4:空5:空6:空7:地8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地15:CLK- 16:CLK+ 17:地18:R3- 19:R3+ 20:RB0-21:RB0+ 22:RB1- 23:RB1+ 24:地25:RB2- 26:RB2+ 27:CLK2- 28:CLK2+ 29:RB3- 30:RB3+

每组信号线之间电阻为(数字表120欧左右)

一般14PIN、20PIN、30PIN为LVDS接口。

什么是LVDS?现在的液晶显示屏普遍采用LVDS接口,那么什么是LVDS呢?LVDS(Low Voltage Differential Signaling)即低压差分信号传输,是一种满足当今高性能数据传输应用的新型技术。由于其可使系统供电电压低至2V,因此它还能满足未来应用的需要。此技术基于ANSI/TIA/EIA-644 LVDS 接口标准。LVDS 技术拥有330mV 的低压差分信号(250mV MIN and 450mV MAX) 和快

速过渡时间。这可以让产品达到

自100 Mbps 至超过1 Gbps 的高数据速率。此外,这种低压摆幅可以降低功耗消散,同时具备差分传输的优点。LVDS 技术用于简单的线路驱动器和接收器物理层器件以及比较复杂的接口通信芯片组。通道链路芯片组多路复用和解多路复用慢速TTL 信号线路以提供窄式高速低功耗LVDS 接口。这些芯片组可以大幅节省系统的电缆和连接器成本,并且可以减少连接器所占面积所需的物理空间。LVDS 解决方案为设计人员解决高速I/O 接口问题提供了新选择。LVDS 为当今和未来的高带宽数据传输应用提供毫瓦每千兆位的方案。更先进的总线LVDS (BLVDS)是在LVDS 基础上面发展起来的,总线LVDS (BLVDS) 是基于LVDS 技术的总线接口电路的一个新系列,专门用于实现多点电缆或背板应用。它不同于标准的LVDS,提供增强的驱动电流,以处理多点应用中所需的双重传输。BLVDS 具备大约250mV 的低压差分信号以及快速的过渡时间。这可以让产品达到自100 Mbps 至超过1Gbps 的高数据传输速率。此外,低电压摆幅可以降低功耗和噪声至最小化。差分数据传输配置提供有源总线的+/-1V 共模范围和热插拔器件。BLVDS 产品有两种类型,可以为所有总线配置提供最优化的接口器件。两个系列分别是:线路驱动器和接收器和串行器/解串器芯片组。总线LVDS 可以解决高速总线设计中面临的许多挑战。BLVDS 无需特殊的终端上拉轨。它无需有源终端器件,利用常见的供电轨(3.3V 或5V),采用简单的终端配置,使接口器

件的功耗最小化,产生很少的噪声,支持业务卡热插拔和以100 Mbps 的速率驱动重载多点总线。总线LVDS 产品为设计人员解决高速多点总线接口问题提供了一个新选择。附件:摘要:介绍了LVDS(低电压差分信号)技术的原理和应用,并讨论了在单板和系统设计中应用LVDS时的布线技巧。关键词:LVDS PCB设计1 LVDS介绍LVDS(Low Voltage Differential Signaling)是一种低摆幅的差分信号技术,它使得信号能在差分PCB线对或平衡电缆上以几百Mbps的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗。几十年来,5V供电的使用简化了不同技术和厂商逻辑电路之间的接口。然而,随着集成电路的发展和对更高数据速率的要求,低压供电成为急需。降低供电电压不仅减少了高密度集成电路的功率消耗,而且减少了芯片内部的散热,有助于提高集成度。减少供电电压和逻辑电压摆幅的一个极好例子是低压差分信号(LVDS)。LVDS物理接口使用1.2V 偏置提供400mV摆幅的信号(使用差分信号的原因是噪声以共

模的方式在一对差分线上耦合出现,并在接收器中相减从而可消除噪声)

。LVDS驱动和接收器不依赖于特定的供电电压,因此它很容易迁移到低压供电的系统中去,而性能不变。作为比较,ECL和PECL技术依赖于供电电压,ECL要求负的供电电压,PECL参考正的供电电压总线

上电压值(Vcc)而定。而GLVDS是一种发展中的标准尚未确定的新技术,使用500mV的供电电压可提供250mV 的信号摆幅。不同低压逻辑信号的差分电压摆幅示于图1。LVDS在两个标准中定义。IEEE P1596.3(1996年3月通过),主要面向SCI(Scalable Coherent Interface),定义了LVDS的电特性,还定义了SCI协议中包交换时的编码;ANSI/EIA/EIA-644(1995年11月通过),主要定义了LVDS的电特性,并建议了655Mbps的最大速率和1.823Gbps的无失真媒质上的理论极限速率。在两个标准中都指定了与物理媒质无关的特性,这意味着只要媒质在指定的噪声边缘和歪斜容忍范围内发送信号到接收器,接口都能正常工作。LVDS具有许多优点:①终端适配容易;②功耗低;③具有fail-safe特性确保可靠性;④低成本;⑤高速传送。这些特性使得LVDS在计算机、通信设备、消费电子等方面得到了广泛应用。图

2给出了典型的LVDS接口,这是一种单工方式,必要时也可使用半双工、多点配置方式,但一般在噪声较小、距离较短的情况下才适用。每个点到点连接的差分对由一个驱动器、互连器和接收器组成。驱动器和接收器主要完成TTL信号和LVDS信号之间的转换。互连器包含电缆、PCB上差分导线对以及匹配电阻。LVDS驱动器由一个驱动差分线对的电流源组成通常电流为3.5mA),LVDS接收器具有很高的输入阻抗,因此驱动器输出的电流大部分都流过100Ω的匹配电阻,并在接收器的输入端产生大约350mA 的电压。当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑〃1〃和逻辑〃0〃状态。低摆幅驱动信号实现了高速操作并减小了功率消耗,差分信号提供了

适当噪声边缘和功率消耗大幅减少的低压摆幅。功率的大幅降低允许在单个集成电路上集成多个接口驱动器和接收器。这提高了PCB板的效能,减少了成本。不管使用的LVDS传输媒质是PCB线对还是电缆,都必须采取措施防止信号在媒质终端发生反射,同时减少电磁干扰。LVDS要求使用一个与媒质相匹配的终端电阻(100±20Ω),该电阻终止了环流信号,应该将它尽可能靠近接收器输入端放置。LVDS驱动器能以超过155.5Mbps的速度驱动双绞线对,距离超过10m。对速度的实际限制是:①送到驱动器的TTL数据的速度;②媒质的带宽性能。通常在驱动器侧使用复用器、在

接收器侧使用解复用器来实现多个TTL信道和一个LVDS信道的复用转换,以提高信号速率,降低功耗。并减少传输媒质

和接口数,降低设备复杂性。LVDS接收器可以承受至少±1V的驱动器与接收器之间的地的电压变化。由于LVDS驱动器典型的偏置电压为+1.2V,地的电压变化、驱动器偏置电压以及轻度耦合到的噪声之和,在接收器的输入端相对于接收器的地是共模电压。这个共模范围是:+0.2V~+2.2V。建议接收器的输入电压范围为:0V~+ 2.4V。 2 LVDS系统的设计LVDS系统的设计要求设计者应具备超高速单板设计的经验并了解差分信号的理论。设计高速差分板并不很困难,

下面将简要介绍一下各注意点。 2.1 PCB板(A)至少使用4层PCB板(从顶层到底层):LVDS信号层、地层、电源层、TTL信号层;(B)使TTL信号和LVDS信号相互隔离,否则TTL可能会耦合到LVDS线上,最好将TTL和LVDS信号放在由电源/地层隔离的不同层上;(C)使LVDS驱动器和接收器尽可能地靠近连接器的LVDS 端;(D)使用分布式的多个电容来旁路LVDS设备,表面贴电容靠近电源/地层管脚放置;(E)电源层和地层应使用粗线,不

(F)保持PCB地线层返回路径宽而短;(G)要使用50Ω布线规则;

应该使用利用地层返回铜线(gu9ound return wire)的电缆连接两个系统的地层;(H)使用多过孔(至少两个)连接到电源层(线)和地层(线),表面贴电容可以直接焊接到过孔焊盘以减少线头。 2.2 板上导线(A)微波传输线(microstrip)和带状线(stripline)都有较好性能;(B)微波传输线的优点:一般有更高的差分阻抗、不需要额外的过孔;(C)带状线在信号间提供了更好的屏蔽。2.3 差分线(A)使用与传输媒质的差分阻抗和终端电阻相匹配的受控阻抗线,并且使差分线对离开集成芯片后立刻尽可能地相互靠近(距离小于10mm),这样能减少反射并能确保耦合到的噪声为共模噪声;(B)使差分线对的长度相互匹配以减少信号扭曲,防止引起信号间的相位差而导致电磁辐射;(C)不要仅仅依赖自动布线功能,而应仔细修改以实现差分阻抗匹配并实现差分线的隔离;(D)尽量减少过孔和其它会引起线路不连续性的因素;(E)避免将导致阻值不连续性的90°走线,使用圆弧或45°折线来代替;

(F)在差分线对内,两条线之间的距离应尽可能短,以保持接收器的共模抑制能力。在印制板上,两条差分线之间的距离应尽可能保持一致,以避免差分阻抗的不连续性。2.4 终端(A)使用终端电阻实现对差分传输线的最大匹配,阻值一

般在90~130Ω之间,系统也需要此终端电阻来产生正常工作的差分电压;(B)最好使用精度1~2%的表面贴电阻跨接在差分线上,必要时也可使用两个阻值

各为50Ω的电阻,并在中间通过一个电容接地,以滤去共模噪声。

2.5 未使用的管脚所有未使用的LVDS接收器输入管脚悬空,所有未使用的LVDS和TTL输出管脚悬空,将未使用的TTL发送/驱动器输入和控制/使能管脚接电源或地。 2.6 媒质(电缆和连接器)选择(A)使用受控阻抗媒质,差分阻抗约为100Ω,不会引入较大的阻抗不连续性;(B)仅就减少噪声和提高信号质量而言,平衡电缆(如双绞线对)通常比非平衡电缆好;(C)电缆长度小于0.5m时,大部分电缆都能有效工作,距离在0.5m~10m 之间时,CAT 3(Categiory 3)双绞线对电缆效果好、便宜并且容易买到,距离大于10m并且要求高速率时,建议使用CAT 5双绞线对。 2.7 在噪声环境中提高可靠性设计LVDS 接收器在内部提供了可靠性线路,用以保护在接收器输入悬空、接收器输入短路以及接收器输入匹

配等情况下输出可靠。但是,当驱动器三态或者接收器上的电缆没有连接到驱动器上时,它并没有提供在噪声环境中的可靠性保证。在此情况下,电缆就变成了浮动的天线,如果电缆感应到的噪声超过LVDS 内部可靠性线路的容限时,接收器就会开关或振荡。如果此种情况发生,建议使用平衡或屏蔽电缆。另外,也可以外加电阻来提高噪声容限,如图3所示。图中R1、R3是可选的外接电阻,用来提高噪声容限,R2≈100Ω。当然,如果使用内嵌在芯片中的LVDS收发器,由于一般都有控制收发器是否工作的机制,因而这种悬置不会影响系统。 3 应用实例LVDS技术目前在高速系统中应用的非常广泛,本文给出一个简单的例子来看一下具体的连线方式。加拿大PMC公司的DSLAM(数字用户线接入模块)方案中,利用LVDS技术实现点对点的单板互联,系统结构可扩展性非常好,实现了线卡上的高集成度,并且完全能够满足业务分散、控制集中带来的大量业务数据和控制流通信的要求。图4描述了该系统线卡与线卡之间、线卡与背板之间的连线情形,使用的都是单工方式,所以需要两对线来实现双向通信。图中示出了三种不同连接方式,从上到下分别为:存在对应连接芯片;跨机架时实现终端匹配;同层机框时实现终端匹配。在接收端串接一个变压器可以减小干扰并避免LVDS驱动器和接收器地电位差较大的影响

11回答者:Jane_tr - 四级

液晶显示屏V-by-One与LVDS接口信号驱动原理

V-by-One接口信号驱动原理(3840*2160) 一、时钟与像素点关系 一场:60Hz-16.667ms,2250行(2160行有效) ——刷新像素点:3840*2160个/Vertical 一行:135KHz-7.407us,(=60Hz*2250),4400=550*8点(3840点=480*8点有效)——刷新像素点:3840个/ Horizontal Clock:74.25MHz-13.468ns,(=135KHz*550) ——刷新像素点:8个/Clock 以上,可参考《附录A:屏规格书信号时序特性》。 二、V-by-One信号传输规则 每个Clock(DCLK),V-by-O接口有8对差分对(lane0~lane7)同时传输,每对差分对负责一个Pixel;共8个Pixels一起传输数据。 以上,可参考《附录B:屏规格书每场画面时序》与《附录C:屏规格书单区与双区的驱动方式(每一行)》。 每对差分对同时串行传输4Bytes字节(共32bits,V-by-One传输协议有40bits);(每bit周期0.3367ns=13.468ns/40,2,97G带宽) 或按照公式计算:4(byte)×8×(10/8)×(594MHz/8lines)=2,97G 以上,可参考《附录D:屏规格书数据传输格式》与《附录E:V-by-O协议文件截图》。 信号最小单位为bit,1bit的数据长度合成眼图(1UI=0.3367ns=336.7ps),可通过眼图测试得具体信号特性; 以上,可参考《附录F:V-by-O接口输入端眼图》。

附录C:屏规格书单区与双区的驱动方式(每一行)

LVDS屏线及屏接口定义

LVDS屏线及屏接口定义 现在碰到液晶屏大多是LVDS屏线,经常碰到什么单6,双6 单8双8.如何区分呢? 方法数带“+-”的这种信号 线一共有几对,有10对的减2对就是双8,有8对的减2对就是双6。有5对的 减掉1对是单8,有4对的减掉1对是单6,数+/-线一共有多少对。说通俗点就 4对——单6 5对——单8 8对——双6 10对——双8 方法2 拧开螺丝看看主板里面的电路,一般每对数据线之间都有一个100欧姆的电阻 ,看到4个的话就是单6位的屏,看到8个的话就是双六位,5个的话一般是单8位,有10个一般就是双8位,当然有资料的话就不用这么麻烦,也有TMDS 也用这种20PIN的连接头的,比如LG的LP141X1,不过基本上很少lvds的接口的定义20PIN单6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空每组信号线之间电阻为(数字表120欧左右) 20PIN双6定义 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+;19:CLK1- 20:CLK1+每组信号线之间电阻为(数字表120欧左右) X20PIN单8定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表120欧左右)' 30PIN单8定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:

lvds接口定义及原理知识

lvds接口定义及原理知识 LVDS接口定义 作者:bechade 更新时间:2007-9-22 7:31:10 文章录入:chfygl -------------------------------------------------------------------------------- 20PIN单6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表120欧左右) 20PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表120欧左右) 20PIN单8定义:

1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:

LVDS接口定义

LVDS接口又称RS-644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。LVDS即低电压差分信号,这种技术的核心是采用极低的电压摆幅高速差动传输数据,可以实现点对点或一点对多点的连接,具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆。LVDS在对信号完整性、低抖动及共模特性要求较高的系统中得到了越来越广泛的应用。目前,流行的LVDS技术规范有两个标准:一个是TIA/EIA(电讯工业联盟/电子工业联盟)的ANSI/TIA/EIA-644标准,另一个是IEEE 1596.3标准。 如上图,就是一块单六位LVDS 30针接口的液晶屏,其中1脚GND就是地,2脚、3脚VCC就是电压,4、6、7脚为存储IC(一般为24C之类的芯片)的读写信号脚,就是我们常换DELL机器的屏所说的码片,这里面存储了屏的一些信息,如型号、生产日期等,DELL 之类的少类的机器就往屏上这个IC里写入了自家的识别信号。8脚R0-、9脚R0+为第一组LVDS信号,依次类推,每往下一组信号中间都空一脚,共三组R-及R+信号,一直到接口的17脚CLKIN-、18脚CLKIN+,这两脚很重要,断开一根线,屏就无法显示,R-+的信号,少了一根两根还可以点亮屏,当然会显示不正常!这四对信号用数字表量阻值表现为100欧--120欧(不同屏)。

像我以前装液晶显示器的时候,这个单六位LVDS,只要对应单六位,再对应屏的分辨率(分辨率很重要)写个程序,屏线只用十根线,几乎就可以点亮这类的屏!这类屏我们常称为单六,当然液晶显示器的屏还有单八,单八的就多了对R3-和R3+,别小看这多出的一对信号,液晶屏的色彩就会多很多~单八位的己经过时了,以前15寸的液晶显示器的屏很多都是单八位的。当然,还有双八的~现在的市面上的液晶显示器都是双八位的接口啦~ 这里,我可以大胆的说:笔记本上用的都是单六,和双六的~现在液晶显示器上用的都是双八位了,早期的还有TTL、TMDS、TCON接口的,这类接口的我们修本的完全不必了解。扯远了。。。当然,你别和我说:我狗年马日拆的一台液晶显示器里怎么就是单六的……这个就是中国的山寨文化了,你们都懂的……. 真正用于笔记本上的屏全部都是单六的,高档机有双六的,双六接口的就是我们所说的高分屏了。 以前如果超过了1280X800的分辨率的屏就一定是双六或双八的,当然现在出的LED的屏也是这样的,只不过单六的分辨率到了1366X768,略高一点点而己!LED的屏,屏信号也是LVDS的,说的LED只不过是背光源是LED发光的而己~ 双六接口的高分辨率的屏,多了四对信号: RS0-、RS0+,RS1-、RS1+,RS2-、RS2+,CLK2-、CLK2+。(有的屏的PDF档里为RB0-、RB0+之类的,其实都一样): 如果我们接双六屏线的时候,这四对信号不能接到R0-至CLK1+上面去,否则……你们懂的~ 早期的20针的笔记本屏的定义如下,懒得找图了,直接在百度找个定义说明,略加修改,你们自己研究下吧: 20PIN单6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空17空18空19 空20空; 每组信号线之间电阻为(数字表100~120欧左右) 20PIN双6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+6;

LVDS接口与MIPI接口

LVDS接口与MIPI接口 MIPI?(Mobile Industry Processor Interface) 是2003年由ARM, Nokia, ST ,TI等公司成立的一个联盟,目的是把手机内部的接口如摄像头、显示屏接口、射频/基带接口等标准化,从而减少手机设计的复杂程度和增加设计灵活性。 MIPI联盟下面有不同的WorkGroup,分别定义了一系列的手机内部接口标准,比如摄像头接口CSI、显示接口DSI、射频接口DigRF、麦克风 /喇叭接口SLIMbus等。统一接口标准的好处是手机厂商根据需要可以从市面上灵活选择不同的芯片和模组,更改设计和功能时更加快捷方便。下图是按照 MIPI的规划下一代智能手机的内部架构。 MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。以DSI为例,其协议层结构如下:

CSI/DSI的物理层(Phy Layer)由专门的WorkGroup负责制定,其目前的标准是D-PHY。D-PHY 采用1对源同步的差分时钟和1~4对差分数据线来进行数据传输。数据传输采用DDR方式,即在时钟的上下边沿都有数据传输。 D- PHY的物理层支持HS(High Speed)和LP(Low Power)两种工作模式。HS模式下采用低压差分信号,功耗较大,但是可以传输很高的数据速率(数据速率为80M~1Gbps); LP模式下采用单端信号,数据速率很低(<10Mbps),但是相应的功耗也很低。两种模式的结合保证了MIPI总线在需要传输大量数据(如图像)时可以高速传输,而在不需要大数据量传输时又能够减少功耗。下图是用示波器捕获的MIPI信号,可以清楚地看到HS和LP信号。

常见LVDS接口液晶屏定义

常见LVDS 接口液晶屏定义 20PIN 单 6 定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11 :R2- 12:R2+ 13:地14 :CLK- 15 :CLK+ 16空 17 空 18 空 19 空 20 空 每组信号线之间电阻为(数字表 120 欧左右) 20PIN 双 6 定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:R1- 8 :R1+ 9:R2- 10 :R2+ 11 : CLK- 12:CLK+ 13: RO1- 14 :RO1+ 15: RO2- 16 :RO2+ 17: RO3- 18 : RO3+ 19: CLK1- 20 : CLK1+ 每组信号线之间电阻为(数字表 120 欧左右) 20PIN 单 8 定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11 :R2- 12:R2+ 13:地14 :CLK- 15 :CLK+ 16 : R3- 17 :R3+ 每组信号线之间电阻为(数字表 120 欧左右) 30PIN 单 6 定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11 :R1- 12: R1+ 13:地14 :R2- 15 :R2+ 16:地17 :CLK- 18 :CLK+ 19:地20:空- 21 :空22:空23:空24:空25 :空 26 :空 27 :空 28 空 29 空 30 空 每组信号线之间电阻为(数字表 120 欧左右) 30PIN 单 8 定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11 :R1- 12: R1+ 13:地14 :R2- 15 :R2+ 16:地 17 : CLK- 18 :CLK+ 19:地 20 :R3- 21 :R3+ 22:地 23:空 24:空

教你区分LVDS屏线及屏接口定义(精)

教你区分 LVDS 屏线及屏接口定义 现在碰到液晶屏大多是 LVDS 屏线 , 经常碰到什么单 6, 双 6 单 8双 8. 如何区分呢 ? 我以前也不知道 , 后在网上收集学习后才弄明白 方法 1 数带“ +-”的这种信号线一共有几对,有 10对的减 2对就是双 8, 有 8对的减 2对就是双 6。有 5对的减掉 1对是单 8, 有 4对的减掉 1对是单 6,数 +/-线一共有多少对。说通俗点就是 4对————单 6 5对————单 8 8对————双 6 10对————双 8 方法 2 拧开螺丝看看主板里面的电路,一般每对数据线之间都有一个 100欧姆的电阻,看到 4个的话就是单 6位的屏,看到 8个的话就是双六位, 5个的话一般是单 8位, 有10个一般就是双 8位,当然有资料的话就不用这么麻烦, 也有 TMDS 也用这种 20PIN 的连接头的,比如 LG 的 LP141X1,不过基本上很少 lvds 的接口的定义 20PIN 单 6定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空

每组信号线之间电阻为(数字表 120欧左右 ,20PIN 双 6定义 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15: RO2- 16:RO2+ 17:RO3- 18:RO3+; 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表 120欧左右 20PIN 单 8定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 6定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空 - 21:空 22:空 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 8定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右

常见LVDS屏接口定义

2 常见屏的接口 LVDS接口: 比较常见的接口,有14针插接口,20P针插、30针插和片插等多为LVDS接口LVDS常用的驱动板: 2023(支持17寸以下含17寸的所有LVDS屏VGA烧录模式) 2025(支持19寸以下含19寸以下的所有LVDS屏VGA烧录模式) NTA91B(支持22寸或1680*1050以下的所有LVDS屏VGA烧录模式) 2621免程序驱动板(直接跳线就可支持14-19等LVDS屏免烧录) TTL接口:(与LVDS的屏线区别TTL的屏线相对较多) TTL屏要求驱动板输入单或双6位/8位的三基色的TTL电平,所以连接线用得比较多,一般有31扣41扣30软排线+40软排线60扣70扣80扣等,特点线比较多 驱动板: RTMC7B(新款TTL驱动板支持所有TTL接口协议还可支持TMDS TCON接口屏代替2013 2533 2033等驱动板) 鼎科2033V免程序驱动板 RSDS接口: 单50软排线、双40软排线(50+30)软排线一般为RSDS接口。 驱动板: MA4B:支持双40 30+50 单50软排线RSDS专用驱动板 TCON接口:Timing Controller(不常用) 现在很多的型号的液晶屏接受的是LVDS信号,而Driver IC收到的是RSDS信号,这中间就是由TCON实现的转换,不少屏是RSDS接口的,是PANEL厂家为了减少PANEL成本,省掉了TCON芯片,因为目前的很多驱动板IC都可以直接处理RSDS 信号了。 TMDS接口(不常用) 是一种类似于LVDS的接口。该接口在液晶发展中属于昙花一现。典型的有三星公司出的 LT181E2-131、LT170E2-131、日立的TX38D21V、LG的LP141X1等。 最新到货!!超小体积四灯小口高压板特价销售,联想方正系列超小体积电源高压一体板疯狂特价销 ? 上面我们知道了屏的型号和接口了,但是我们还不知道这个是多少位的屏和多少 的供电,为了让大家轻松搞会这一步,我们拿一个单6位LVDS的屏来解析一下,

LVDS接口与MIPI接口

LVDS接口与MIPI接口 MIPI (Mobile Industry Processor Interface) 是2003年由ARM, Nokia, ST ,TI等公司成立的一个联盟,目的是把手机内部的接口如摄像头、显示屏接 口、射频/基带接口等标准化,从而减少手机设计的复杂程度和增加设计灵活性。MIPI联盟下面有不同的WorkGroup,分别定义了一系列的手机内部接口标准,比如摄像头接口CSI、显示接口DSI、射频接口DigRF、麦克风 /喇叭接口SLIMbus 等。统一接口标准的好处是手机厂商根据需要可以从市面上灵活选择不同的芯片和模组,更改设计和功能时更加快捷方便。下图是按照 MIPI的规划下一代智能手机的内部架构。 MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。以DSI为例,其协议层结构如下:

CSI/DSI的物理层(Phy Layer)由专门的WorkGroup负责制定,其目前的标准是D-PHY。D-PHY采用1对源同步的差分时钟和1,4对差分数据线来进行数据传输。数据传输采用DDR方式,即在时钟的上下边沿都有数据传输。 D- PHY的物理层支持HS(High Speed)和LP(Low Power)两种工作模式。HS模式下采用低压差分信号,功耗较大,但是可以传输很高的数据速率(数据速率为80M,1Gbps); LP模式下采用单端信号,数据速率很低(<10Mbps),但是相应的功耗也很低。两种模式的结合保

LVDS接口定义及标准

LVD LVD 低電對多線,廣泛盟)199公佈範,現,纜。高傳LVD 成,很高mV 在有的M 理很輸入1) S 接口定義DS 接口又稱電壓差分信多點的連接,也可以是平泛的應用。)的ANSI/T 95年11月佈了IEEE ,對於生產工,其供電電。標準推薦傳輸速率可DS 接口的原一個簡單,如圖1所高,驅動器電V 。通過驅有些最新生MAX9121/9在LVDS 很簡單,因為入端產生的來傳送信號表1是LV 表2 是接義及標準 稱RS-644信號,這種技接,具有低功平衡電纜。目前,流行TIA/EIA -6,以美國國1596.3標準工藝、傳輸電壓可以從+薦的最高數據可達1.923G 原理及電特單的LVDS 傳所示。驅動器電流大部分驅動器的開關生產的LVDS 9122等。 系統中,採為一對差分效果是相互號,從而可VDS 驅動器 接收器的主要4總線接口技術的核心是功耗、低誤。LVDS 在對行的LVDS 技644標準,國家半導體準。這兩個輸介質和供電+5V 到+3.3據傳輸速率Gbps 。 特性 傳輸系統由器的電流源分直接流過關,改變直S 接收器中採用差分方分線對上的電互抵消的,可以大大提高器的主要電 要電特性參,是20世紀是採用極低誤碼率、低串對信號完整技術規範有另一個是 體公司為主推個標準注重於電電壓等則3V ,甚至更率是655Mbp 一個驅動器源(通常為3100?的終直接流過電阻中,100?左方式傳送數據電流方向是因而對信號高數據傳輸電特性參數 參數。 紀90年代低的電壓擺幅串擾和低輻整性、低抖動有兩個標準IEEE 159推出了ANS 於對LVDS 則沒有明確更低;其傳輸ps ,而理論器和一個接3.5mA )來終端電阻,從阻的電流的左右的電阻直據,有著比是相反的,當號的影響很 輸速率和降低才出現的一幅高速差動輻射等特點動及共模特:一個是T 96.3標準。SI/TIA/EIA S 接口的電。LVDS 可輸介質可以論上,在一收器通過一來驅動差分線從而在接收的有無,從而直接集成在比單端傳輸方當共模方式很小。這樣,低功耗。 一種數據傳動傳輸數據,其傳輸介特性要求較高TIA/EIA (電 -644標準電特性、互連可採用CMO 以是PCB 連個無衰耗的一段差分阻線對,由於收器輸入端產而產生「1」在片內輸入端方式更強的式的噪聲耦合就可以採用 傳輸和接口技,可以實現介質可以是銅高的系統中電訊工業聯準。1996連與線路端OS 、GaAs 連線,也可的傳輸線上阻抗為100於接收器的直產生的信號」和「0」的端上了,如的共模噪聲抑合到線對上用很低的電技術。LVDS 現點對點或一銅質的PCB 中得到了越來盟/電子工業年3月,IE 端接等方面的s 或其他技術以是特製的上,LVDS 的?的導體連接直流輸入阻號幅度大約的邏輯狀態如MAXIM 公抑制能力。上時,在接收電壓擺幅(見S 即一點B 連來越業聯EE 的規術實的電的最接而阻抗350態。公司道收器見表

led屏接口定义20PIN-30PIN

20pin单6定义: 3.3v 3.3v 1:电源2:电源3:地4:地5:r0- 6:r0+ 7:地8:r1- 9:r1+ 10:地11:r2- 12:r2 + 13:地14:clk- 15:clk+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 20pin双6定义: 1:电源2:电源3:地4:地5:r0- 6:r0+ 7:r1- 8:r1+ 9:r2- 10:r2+ 11:clk- 12:clk+ 13:ro1- 14:ro1+ 15:ro2- 16:ro2+ 17:ro3- 18:ro3+ 19:clk1- 20:clk1+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(8组相同阻值) 20pin单8定义: 1:电源2:电源3:地4:地5:r0- 6:r0+ 7:地8:r1- 9:r1+ 10:地11:r2- 12:r2 + 13:地14:clk- 15:clk+ 16:r3- 17:r3+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值) 30pin单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:r0- 9:r0+ 10:地11:r1- 12:r1+ 1 3:地14:r2- 15:r2+ 16:地 17:clk- 18:clk+ 19:地20:空- 21:空22:空23:空24:空 25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 30pin单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:r0- 9:r0+ 10:地11:r1- 12:r1+ 1 3:地14:r2- 15:r2+ 16:地 17:clk- 18:clk+ 19:地20:r3- 21:r3+ 22:地23:空24:空 25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值) 30pin双6定义: 1:电源2:电源3:地4:地5:r0- 6:r0+ 7:地8:r1- 9:r1+ 10:地11:r2- 12:r2 + 13:地14:clk- 15:clk+ 16:地 17:rs0- 18:rs0+ 19:地20:rs1- 21:rs1+ 22:地23:rs2- 24:rs2+ 25:地26:clk2- 27:clk2+ 30pin双8定义: 1:电源2:电源3:电源4:空5:空6:空7:地8:r0- 9:r0+ 10:r1- 11:r1+ 12:r2- 13:r2+ 14:地15:clk- 16:clk+ 17:地18:r3- 19:r3+ 20:rb0- 21:rb0+ 22:rb1- 23:rb1+ 24:地 25:rb2- 26:rb2+ 27:clk2- 28:clk2+ 29:rb3- 30:rb3+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(10组相同阻值) 一般14pin、20pin、30pin为lvds接口, 25、31、40、41、60、70、75、80、100pin接口为ttl接口,其中41pin以下为单6位,60p in以上为双六位屏 50、80(50+30)pin接口的为rsds接口。单排白色线。 14+20in接口为***s接口,少得很! 根据上面的看看你的屏是什么接口,一般14.1的笔记本液晶屏都是单6的

常见LVDS屏接口定义讲解

深圳市名海东实业有限公司 常见LVDS 屏接口定义讲解 很多初学者对于如何区分屏的接口类型很是头疼,是LVDS 屏,TTL 屏还是RSDS 屏?总是很难搞清出。如何快速识别出液晶屏的接口类型则需要一些经验的,下面从屏的屏线接口的样式来对接口类型做出分类的介绍,帮助大家快速识别屏的接口类型。以下方法是个人认识,不足之处请大家谅解。 (1)TTL 屏接口样式: D6T (单6位TTL ):31扣针,41扣针。对应屏的尺寸主要为笔记本液晶屏(8寸,10寸,11寸,12寸),还有部分台式机屏15寸为41扣针接口。 S6T (双6位TTL ):30+45针软排线,60扣针,70扣针,80扣针。主要为台式机的14寸,15寸液晶屏。 D8T (单8位TTL ):很少见 S8T (双8位TTL ):有,很少见 80扣针(14寸,15寸) (2)LVDS 屏接口样式: D6L (单6位LVDS ):14插针,20插针,14片插,30片插(屏显基板100欧姆电阻的数量为4个)主要为笔记本液晶屏(12寸,13寸,14寸,15寸) D8L (单8位LVDS ):20插针(5个100欧姆)(15寸) S6L (双6位LVDS ):20插针,30插针,30片插(8个100欧姆)(14寸,15寸,17寸) S8L (双8位LVDS ):30插针,30片插(10个100欧姆电阻)(17寸,18寸,19寸,20寸,21寸) (3)RSDS 屏接口样式: 50排线,双40排线,30+50排线。主要为台式机(15寸,17寸)液晶屏。 上面我们知道了屏的型号和接口了,但是我们还不知道这个是多少位的屏和多少的供电,为了让大家轻松搞会这一步,我们拿一个单6位LVDS 的屏来解析一下,此款屏的型号为:LP141X3(20针插接口)屏接口定义在液晶屏的规格书里面都有这一个页面

LVDS针脚定义

LVDS针脚定义: 20PIN单6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表120欧左右) 20PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表120欧左右) 20PIN单8定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:地17:RS0- 18:RS0+ 19:地20:RS1- 21:RS1+ 22:地23:RS2- 24:RS2+ 25:地26:CLK2- 27:CLK2+ 每组信号线之间电阻为(数字表120欧左右) 30PIN双8定义: 1:电源2:电源3:电源4:空5:空6:空7:地8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地15:CLK- 16:CLK+ 17:地18:R3- 19:R3+ 20:RB0-21:RB0+ 22:RB1- 23:RB1+ 24:地25:RB2- 26:RB2+ 27:CLK2- 28:CLK2+ 29:RB3- 30:RB3+ 每组信号线之间电阻为(数字表120欧左右) 一般14PIN、20PIN、30PIN为LVDS接口。

LVDS屏接口定义解析

常见LVDS 屏接口定义讲解 很多初学者对于如何区分屏的接口类型很是头疼,是LVDS 屏,TTL 屏还是RSDS 屏?总是很难搞清出。如何快速识别出液晶屏的接口类型则需要一些经验的,下面从屏的屏线接口的样式来对接口类型做出分类的介绍,帮助大家快速识别屏的接口类型。以下方法是个人认识,不足之处请大家谅解。 (1)TTL 屏接口样式: D6T (单6位TTL ):31扣针,41扣针。对应屏的尺寸主要为笔记本液晶屏(8寸,10寸,11寸,12寸),还有部分台式机屏15寸为41扣针接口。 S6T (双6位TTL ):30+45针软排线,60扣针,70扣针,80扣针。主要为台式机的14寸, 15寸液晶屏。 D8T (单8位TTL ):很少见 S8T (双8位TTL ):有,很少见80扣针(14寸,15寸) (2)LVDS 屏接口样式: D6L (单6位LVDS ):14插针,20插针,14片插,30片插(屏显基板100欧姆电阻的数量为4个)主要为笔记本液晶屏(12寸,13寸,14寸,15寸) D8L (单8位LVDS ):20插针(5个100欧姆)(15寸) S6L (双6位LVDS ):20插针,30插针,30片插(8个100欧姆)(14寸,15寸,17寸) S8L (双8位LVDS ):30插针,30片插(10个100欧姆电阻)(17寸,18寸,19寸,20寸,21寸) (3)RSDS 屏接口样式: 50排线,双40排线,30+50排线。主要为台式机(15寸,17寸)液晶屏。 上面我们知道了屏的型号和接口了,但是我们还不知道这个是多少位的屏和多少的供电,为了让大家轻松搞会这一步,我们拿一个单6位LVDS 的屏来解析一下,此款屏的型号为:LP141X3(20针插接口)屏接口定义在液晶屏的规格书里面都有这一个页面

LVDS屏接口定义解析

常见LVDS屏接口定义讲解 很多初学者对于如何区分屏的接口类型很是头疼,是LVDS屏,TTL屏还是RSDS 屏?总是很难搞清出。如何快速识别出液晶屏的接口类型则需要一些经验的,下面从屏的屏线接口的样式来对接口类型做出分类的介绍,帮助大家快速识别屏的接口类型。以下方法是个人认识,不足之处请大家谅解。 (1)TTL屏接口样式: D6T(单6位TTL):31扣针,41扣针。对应屏的尺寸主要为笔记本液晶屏(8寸,10寸,11寸,12寸),还有部分台式机屏15寸为41扣针接口。 S6T(双6位TTL):30+45针软排线,60扣针,70扣针,80扣针。主要为台式机的14寸,15寸液晶屏。 D8T(单8位TTL):很少见 S8T(双8位TTL):有,很少见80扣针(14寸,15寸) (2)LVDS屏接口样式: D6L(单6位LVDS):14插针,20插针,14片插,30片插(屏显基板100欧姆电阻的数量为4个)主要为笔记本液晶屏(12寸,13寸,14寸,15寸) D8L(单8位LVDS):20插针(5个100欧姆)(15寸) S6L(双6位LVDS):20插针,30插针,30片插(8个100欧姆)(14寸,15寸,17寸) S8L(双8位LVDS):30插针,30片插(10个100欧姆电阻)(17寸,18寸,1 9寸,20寸,21寸) (3)RSDS屏接口样式: 50排线,双40排线,30+50排线。主要为台式机(15寸,17寸)液晶屏。 上面我们知道了屏的型号和接口了,但是我们还不知道这个是多少位的屏和多少的供电,为了让大家轻松搞会这一步,我们拿一个单6位LVDS的屏来解析一下,此款屏的型号为:LP141X3(20针插接口)屏接口定义在液晶屏的规格书里面都有这一个页面

常见LVDS接口液晶屏定义

常见LVDS接口液晶屏定义 20PIN单6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空 每组信号线之间电阻为(数字表120欧左右) 20PIN双6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表120欧左右) 20PIN单8定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表120欧左右) 30PIN单8定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:

LVDS接口与MIPI接口分析

LVDS接口与MIPI接口分析 MIPI (Mobile Industry Processor Interface) 是2003年由ARM, Nokia, ST ,TI等公司成立的一个联盟,目的是把手机内部的接口如摄像头、显示屏接口、射频/基带接口等标准化,从而减少手机设计的复杂程度和增加设计灵活性。 MIPI联盟下面有不同的WorkGroup,分别定义了一系列的手机内部接口标准,比如摄像头接口CSI、显示接口DSI、射频接口DigRF、麦克风/喇叭接口SLIMbus等。统一接口标准的好处是手机厂商根据需要可以从市面上灵活选择不同的芯片和模组,更改设计和功能时更加快捷方便。下图是按照 MIPI的规划下一代智能手机的内部架构。

MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。以DSI为例,其协议层结构如下: CSI/DSI的物理层(Phy Layer)由专门的WorkGroup负责制定,其目前的标准是D-PHY。D-PHY 采用1对源同步的差分时钟和1~4对差分数据线来进行数据传输。数据传输采用DDR方式,即在时钟的上下边沿都有数据传输。

D- PHY的物理层支持HS(High Speed)和LP(Low Power)两种工作模式。HS模式下采用低压差分信号,功耗较大,但是可以传输很高的数据速率(数据速率为80M~1Gbps); LP模式下采用单端信号,数据速率很低(<10Mbps),但是相应的功耗也很低。两种模式的结合保证了MIPI 总线在需要传输大量数据(如图像)时可以高速传输,而在不需要大数据量传输时又能够减少功耗。下图是用示波器捕获的MIPI信号,可以清楚地看到HS和LP信号。

LVDS常规接口定义

常规LVDS接口液晶屏定义 20PIN单6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空 每组信号线之间电阻为(数字表120欧左右) 20PIN双6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表120欧左右) 20PIN单8定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表120欧左右) 30PIN单8定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表120欧左右) 30PIN双6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:地 17:RS0- 18:RS0+ 19:地 20:RS1- 21:RS1+ 22:地 23:RS2- 24:RS2+ 25:地 26:CLK2- 27:CLK2+ 每组信号线之间电阻为(数字表120欧左右) 30PIN双8定义: 1:电源2:电源3:电源 4:空 5:空 6:空 7:地 8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地 15:CLK- 16:CLK+ 17:地 18:R3- 19:R3+ 20:RB0-21:RB0+ 22:RB1- 23:RB1+ 24:地 25:RB2- 26:RB2+ 27:CLK2- 28:CLK2+ 29:RB3- 30:RB3+ 每组信号线之间电阻为(数字表120欧左右) 一般14PIN、20PIN、30PIN为LVDS接口。

相关文档