文档库 最新最全的文档下载
当前位置:文档库 › 微波消解_原子吸收法测定食品中的钙含量

微波消解_原子吸收法测定食品中的钙含量

微波消解_原子吸收法测定食品中的钙含量
微波消解_原子吸收法测定食品中的钙含量

第7卷 第8期 食品安全质量检测学报 Vol. 7 No. 8

2016年8月

Journal of Food Safety and Quality Aug. , 2016

*通讯作者: 李卫群, 高级工程师, 主要研究方向为光谱分析。E-mail: lwq@https://www.wendangku.net/doc/3b819702.html,

*Corresponding author: LI Wei-Qun, Senior Engineer, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China. E-mail: lwq@https://www.wendangku.net/doc/3b819702.html,

微波消解-原子吸收法测定食品中的钙含量

李卫群*, 汪涓涓, 徐玲玲, 朱 慧

(杭州娃哈哈集团有限公司, 杭州 310018)

摘 要: 目的 建立微波消解-原子吸收法测定食品中钙含量的方法。方法 采用微波消解法对样品进行前处理, 在检测样品中加入氯化镧(8 g/L)屏蔽剂, 用火焰原子吸收法进行检测。比较经消解后样品中不同的硝酸浓度对钙含量测定结果的影响, 探究微波消解法测定食品中钙含量时结果偏低的原因。结果 经微波消解后, 样品中的硝酸含量大于0.5%时, 会导致钙含量的检测结果偏低。经湿法消解处理的样品, 其加标回收率在97.2%~106.0%之间, 经微波消解法处理的样品, 其加标回收率在96.8%~104.0%之间。将采用上述两种消解方法处理的样品的钙含量检测结果进行比较, 测定值间的相对误差为1.64%~3.08%, 在可接受范围内。结论 微波消解-原子吸收法可以用于食品中钙含量的检测。 关键词: 微波消解法; 原子吸收法; 钙含量

Determination of calcium content in food by microwave digestion-atomic absorption spectrometry

LI Wei-Qun *, WANG Juan-Juan, XU Ling-Ling, ZHU Hui

(Hangzhou Wahaha Group Co ., Ltd., Hangzhou 310018, China )

ABSTRACT: Objective To establish a method for determination of calcium content in foods by microwave digestion-atomic absorption spectrometry. Methods The samples were pretreated with microwave digestion and detected by flame atomic absorption spectrometry with lanthanum chloride (8 g/L) as screening agent. The effects of different concentrations of nitric acid in sample after digestion on the determination of calcium content were compared for exploring the causes of lower calcium content detected by atomic absorption spectrometry with microwave digestion. Results The detection results of calcium content were lower when the concentration of nitric acid residue in samples was larger than 0.5% after microwave digestion. The recoveries of samples treated by wet digestion were between 97.2%~106.0% and the samples treated by microwave digestion were between 96.8%~104.0%. The detection results of calcium content from above methods were compared and the relative errors (RE) were between 1.64%~3.08%, which were in the acceptable range. Conclusion Microwave digestion-atomic absorption spectrometry can be used for the detection of calcium content in foods.

KEY WORDS: microwave digestion method; atomic absorption spectrometry; calcium content

1 引 言

钙是人体的必需元素之一, 是构成骨骼与牙齿的重

要成份, 在调节细胞代谢、维持肌肉收缩和保证神经传导

等方面都有重要作用。缺钙将可能导致严重的疾病, 但是过量补钙则会影响铁和锌的吸收[1]。因此, 准确测定食品

3194 食品安全质量检测学报第7卷

中的钙含量显得尤为重要。目前测定钙含量的方法有滴定法[2-6]、分光光度法[7-10]、原子吸收分光光度法[11-13]和电感耦合等离子质谱法[14,15] 等。常用方法是原子吸收分光光度法, 国家标准《食品中钙的测定》[16]和食品安全国家标准《婴幼儿配方食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定》[17]中规定的方法都是该方法。两个标准中样品的前处理方法分别为湿法消解法和干灰化法, 然而, 实际操作过程中发现, 湿法消解不能处理大批量样品, 且混合酸的腐蚀性强, 在处理过程中易造成通风柜的腐蚀; 采用处理样品时, 干灰化法容易造成样品的损失, 使检测回收率偏低。

目前, 很多元素检测标准中样品的前处理都采用微波消解法, 相比于湿法消解和干灰化法, 微波消解法更适合在实验室推广。但在钙的检测过程中发现, 用微波消解法对样品进行消解和赶酸处理后直接稀释检测时, 检测结果明显比理论值偏低, 这可能是样品消解不完全所致。针对这一问题, 一方面在样品消解时加入双氧水, 另一方面利用陶瓷罐在220 ℃高温和870 psi高压下对样品进行消解至消解液澄清透明, 赶酸稀释后检测结果还是偏低。因此, 查找使用微波消解法检测钙含量时结果偏低的原因非常重要。

2材料与方法

2.1 材料、试剂与仪器

奶粉、乳饮料、果汁饮料和面包等均为市售。

硝酸(优级纯, 美国Sigma公司); 500 mg/L的钙标准溶液(GSB 07-1285-2000, 环境保护部标准样品研究所); 实验用水均为超纯水。

AAS800原子吸收分光光度仪(美国PerkinElmer公司); Multiwave 3000微波消解炉(奥地利Anton Paar公司)。

2.2 实验方法

2.2.1 标准溶液的配制

钙标准溶液的配制: 准确吸取500 mg/L的钙标准溶液5 mL于50 mL容量瓶中, 用1%(V:V)的盐酸溶液稀释定容, 得50.0 mg/L的钙标准贮备溶液, 再分别吸取此标准贮备溶液0.50、1.00、2.00、3.00和5.00 mL于50 mL容量瓶中, 加入80 g/L的氯化镧溶液5 mL, 用水稀释并定容, 摇匀备用。

2.2.2 样品处理

湿法消解: 分别称取0.5 g奶粉、5.0 g两种饮料和2.5 g面包于不同的消解瓶中, 分别加入混合消解液(硝酸: 高氯酸=4:1, V:V)10 mL, 置于电炉上加热消解至溶液澄清, 呈无色透明状, 继续加热至消解瓶内的溶液剩余1~2 mL, 溶液冷却后, 加入适量超纯水, 并转移至25 mL容量瓶中, 用超纯水定容、摇匀。吸取上述样品消解液适量于容量瓶中, 用8 g/L的氯化镧溶液稀释并定容。同时, 用超纯水代替样品消解液做空白试验。

微波消解: 称取适量样品(与湿法消解相同), 分别加

入8 mL硝酸, 置于微波消解炉中消解。消解完成后, 用赶

酸装置对样品进行赶酸至消化管中的溶液剩余2 mL左右,

冷却后转移至25 mL容量瓶中, 用超纯水定容、摇匀。吸

取上述样品消解液适量于容量瓶中, 用8 g/L的氯化镧溶

液稀释并定容。同时做空白试验。

3结果与分析

3.1 不同样品稀释倍数对钙含量测定结果的影响

经过湿法消解和微波消解后,不同稀释倍数样品的钙

含量测定结果见表1和表2。从表中可以看出, 湿法消解后,

不同的样品稀释倍数对测定结果几乎没有影响, 且都接近

理论值。但微波消解后样品中钙含量的测定结果与消解后

样品中的硝酸含量有明显的关系。稀释倍数越小, 即样品

中硝酸含量越高, 检测值越低, 越偏离理论值。

表1湿法消解后不同稀释倍数样品的钙含量测定结果(mg/kg) Table 1 The calcium content of samples with different dilution

ratios treated by wet digestion (mg/kg)

样品名称2→25a 1→25 1→50 理论值b 奶粉4026 4010 4021 ---

乳饮料403 408 412 415

果汁饮料202 209 206 210 面包514 508 520 ---

注: a表示取2 mL样品消解液到25 mL容量瓶中, 用8 g/L氯化镧

溶液稀释并定容。b根据原料中的含量和添加量计算得到。

表2微波消解后不同稀释倍数样品的钙含量测定结果(mg/kg) Table 2 The calcium content of samples with different dilution ratios treated by microwave digestion (mg/kg)

样品名称2→25 1→25 1→50

奶粉2215 3756 4012

乳饮料273 408 420

果汁饮料120 189 206 面包306 430 512

3.2 样品中的硝酸浓度对钙含量测定的影响

为证明样品中的硝酸对测定结果的影响, 取钙标准

溶液进行实验: 分别取50 mg/L的钙标准溶液2 mL于6个

100 mL容量瓶中, 加入80 g/L的氯化镧溶液10 mL, 再分

别加入0.0、0.2、0.5、1.0、2.0和4.0 mL硝酸, 加超纯水

定容、摇匀, 备用。同时, 用超纯水代替钙标准溶液做空白

试验。测定结果如表3所示。

第8期李卫群, 等: 微波消解-原子吸收法测定食品中的钙含量 3195

表3不同硝酸含量样品的钙含量测定结果

Table 3 The calcium content of samples with different nitric

acid content

加硝酸量

(mL)

0.0 0.2 0.5 1.0 2.0 4.0

检测值

(mg/L)

0.992 0.989 0.785 0.562 0.4620.457

由表3可知, 钙标准溶液中加入硝酸的量低于0.2 mL/100 mL时, 对检测结果的影响不明显, 当达到0.5 mL/100 mL及以上时, 钙含量的检测结果明显偏低。

3.3 实验改进

以上实验表明, 微波消解法中样品的钙含量检测结果偏低的原因是样品中硝酸含量偏高所致, 特别是对于钙含量低、稀释倍数小的样品。故对微波消解后的样品要进行彻底的赶酸处理, 即样品经过微波消解后, 应赶酸至 1 mL以下, 再加水5 mL左右, 继续赶酸至1 mL以下, 加水定容。其余操作跟原来相同。将采用微波消解法得到的奶粉、乳饮料、果汁饮料和面包等样品的检测结果与采用湿法消解处理的样品作比较, 两种方法检测结果的相对误差(relative error, RE)值均小于5%, 如表4所示。

3.4 加标回收实验

称取一定量样品, 加入50 mg/L钙标准溶液5 mL, 加酸消解, 按上述方法赶酸后定容。两种方法的加标回收率如表5和表6所示, 可见, 两种方法的回收率都在96.8%~106.0%之间, 表明该方法可行。

4结论

采用原子吸收法检测食品中的钙含量时, 上机溶液中的硝酸含量对检测结果有很大影响; 采用微波消解法处理样品时, 赶酸效果不及湿法消解效果好, 因此消解后样品中的硝酸含量偏高, 由此导致钙含量的检测结果偏低。控制好消解赶酸后样品中硝酸含量时, 利用微波消解-原子吸收光谱法可以准确地检测各类食品中的钙含量。

表4微波消解和湿法消解处理样品的钙含量检测结果比较

Table 4 Comparison of calcium content of samples treated by microwave digestion and wet digestion

样品名称湿法消解检测结果(mg/kg) 微波消解检测结果(mg/kg) RE(%)

奶粉4026 4152

3.08

乳饮料403 412

2.21

果汁饮料202 197

2.40

面包514 522

1.64

表5湿法消解处理样品中钙含量的加标回收率

Table 5 Recoveries of calcium content of samples treated by wet digestion

样品名称样品检测值(μg/g) 加标样品检测值(μg/g) 实际加标量(μg) 回收率(%) 奶粉4026 5295

250

102.0

乳饮料403 463

250

97.2

果汁饮料202 244

250

98.4

面包514 639

250

106.0

表6微波消解法处理样品中钙含量的加标回收率

Table 6 Recoveries of calcium content of samples treated by microwave digestion

样品名称样品检测值(μg/g) 加标样品检测值(μg/g) 实际加标量(μg) 回收率(%) 奶粉4152 5378

250

104.0

乳饮料412 474

250

102.0

果汁饮料197 241

250

99.6

面包522 642

250

96.8

3196 食品安全质量检测学报第7卷

参考文献

[1]洪邵毅, 薛敏波. 人体的钙营养[J]. 中国儿童保健杂志, 2001, 9(2):

105-108.

Hong SY, Xue MB. Calcium nutrition of the human body [J]. Chin J Child Health Care, 2001, 9(2): 105-108.

[2]张歆皓, 邓阿利, 王会东, 等. 儿童补钙剂中钙含量的测定研究[J].

赤峰学院学报(自然科学版), 2016, 32(4): 7-10.

Zhang XH, Deng AL, Wang HD, et al. Study of determination of the calcium content in children calcium supplement [J]. J Chifeng Univ (Nat Sci Ed), 2016, 32(4): 7-10.

[3]王喜明, 刘玉欣, 常凤启, 等. 滴定法测定保健食品中的钙[J]. 中国

卫生检验杂志, 2006, 16(6): 754-755.

Wang XM, Liu YX, Chang FQ, et al. Determination of calcium in health food by titration method [J]. Chin J Heal Lab Technol, 2006, 16(6): 754-755.

[4]曹海兰. 保健食品中钙测定方法的改进[J]. 中国卫生检验杂志, 2004,

14(1): 901.

Cao HL. Improvement of method for determination of calcium in health food [J]. Chin J Health Lab Technol, 2004, 14(1): 901.

[5]加建斌. 高锰酸钾滴定法测定补钙制品中的钙含量[J]. 安徽农业科

学, 2007, 35(23): 7076-7077.

Jia JB. Determination of calcium content in calcium supplementation products by potassium permanganate titrimetric method [J]. J Anhui Agric Sci, 2007,35(23):7076-7077.

[6]王瑞斌. 乳类中钙测定方法的探讨[J]. 商场现代化, 2005, 21(7):

239-240.

Wang RB. Study on the method of determination of calcium in milk [J].

Market Mod, 2005, 21(7): 239-240.

[7]谭琳琳, 张楠, 张贝, 等. 食品中钙的微波消化-偶氮氯膦分光光度

测定法[J]. 职业与健康, 2004, 20(3): 43.

Tan LL, Zhang N, Zhang B, et al. Determination of calcium in food by microwave digestion-azo-spectrophotometry [J]. Occup Health, 2004, 20(3): 43.

[8]李景梅, 王媛, 王巍, 等. 三溴偶氮胂分光光度法测定钙[J]. 冶金分

析, 2004, 24(5): 53-55.

Li JM, Wang Y, Wang W, et al. Determination of calcium by bromide arsenazo spectrophotometric method [J]. Metal Anal, 2004, 24(5): 53-55.

[9]李琼芳, 钟智竑, 张穗娟, 等. 二溴对甲基偶氮甲磺分光光度法测定

调味品中的钙[J]. 中国酿造, 2007, 174(9): 58-60.

Li QF, Zhong ZH, Zhang SJ, et al. Determination of calcium content in condiments using DBM-MSA spectrophotometry [J]. China Brew, 2007, 174(9): 58-60.

[10]胡浩斌, 郑旭东. 茶叶中钙的快速测定[J]. 理化检验-化学分册, 2003,

39(9): 544-545.

Hu HB, Zheng XD. Rapid determination of calcium in tea [J]. Phys Test Chem Anal-Part B: Chem Anal, 2003, 39(9): 544-545.

[11]邵俊. 干、湿法消解-火焰原子吸收法测定多种食品中钙元素的含量

[J]. 分析测试(化学工程师), 2015, (11): 22-25.

Shao J. Determination of the calcium content in foods by dry ssh and wet digestion-flame atomic absorption spectrophotometry [J]. Assoc Instrum Anal (Chem Eng), 2015, (11): 22-25.

[12]王健英, 项乐源, 李俊松, 等. 大鼠骨骼肌中锌、铁、钙含量的检测

方法研究[J]. 中国药业, 2010, 19(22): 23-24.

Wang JY, Xiang LY, Li JS, et al. Study of detection method of Zn, Fe and Ca contents in rat skeletal muscle [J]. China Pharm Res, 2010, 19(22): 23-24.

[13]金旭忠, 何良兴, 张瑜. 流动注射在线抑制-火焰原子吸收光谱法测

定食品中钙含量[J]. 中国卫生检验杂志, 2012, 22(8): 1781-1782.

Jin XZ, He LX, Zhang Y. Flame atomic absorption spectrometric determination of the calcium content in foods with flow injection on-line inhibition [J]. Chin J Health Lab Technol, 2012, 22(8): 1781-1782.

[14]叶润, 刘芳竹, 刘剑, 等. 微波消解-电感耦合等离子体发射光谱法

测定大米中铜、锰、铁、锌、钙、镁、钾、钠8种元素[J]. 食品科

学, 2014, 35(06): 117-119.

Ye R, Liu FZ, Liu J, et al. Determination of contents of Cu, Mn, Fe, Zn, Ca, Mg, K and Na in rice using microwave digestion and inductively coupled plasma-optical emission spectrometry [J]. Food Sci,2014, 35(06): 117-119.

[15]Zeng YW, Wang LX, Du J. Elemental content in brown rice by

inductively coupled plasma atomic emission spectroscopy reveals the evolution of asian cultivated rice [J]. J Integr Plant Biol, 2009, 51(5): 466-475.

[16]GB/T 5009.92-2003 食品中钙的测定[S].

GB/T 5009.92-2003 Determination of calcium in foods [S].

[17]GB 5413.21-2010 食品安全国家标准婴幼儿配方食品和乳品中钙、

铁、锌、钠、钾、镁、铜和锰的测定[S].

GB 5413.21-2010 National food safety standard Determination of calcium, iron, zinc, sodium, potassium, magnesium, copper and manganese in foods for infants and young children, milk and milk products [S].

(责任编辑: 刘 丹) 作者简介

李卫群, 高级工程师, 主要研究方向

为光谱学分析。

E-mail: lwq503@https://www.wendangku.net/doc/3b819702.html,

实验九 食品中钙含量的测定

实验九食品中钙含量的测定 钙是人体内非常重要的元素之一,钙参与整个生长.发育过程并与各种有机物结合在一起,体内钙总重的99%存在于骨组织及牙齿内,婴儿,学龄前儿童、孕妇和哺育期母亲都需要足够的钙,因此,测定食品中的钙具有非常重要的营养学意义。 一、实验目的:掌握络合滴定法测钙含量的原理,熟练其操作过程。 二、实验原理:钙与氨羧络合剂能定量地形成金属络合物,其稳定性较钙与指示剂所形成的络合物为强。在适当的pH值范围内,以氨羧络合剂EDTA滴定,在达到等当点时,EDTA 就自指示剂络合物中夺取钙离子,使溶液呈现游离指示剂的颜色(终点)。根据EDTA络合剂用量可计算钙的含量。 三、仪器与试剂与材料: 仪器: 碱式滴定管25mL,10mL;万分之一天平;电炉;凯式烧瓶等 试剂: 1)三乙醇胺(75%)和水(1:1) 2)2mol/L氢氧化钠:称取80g氢氧化钠用水溶于1000mL。 3)10%盐酸羟氨。 4)混合消化液:硝酸+高氯酸=(4+1) 5)钙指示剂: 称取0.2g钙指示剂,20g氯化钠于研钵中,充分研细,混合均匀. 6)镁溶液: 1gMgSO4.7H2O溶于200mL水中 7)1%甲基红指示剂。 8)20%氢氧化钠溶液。 9)EDTA溶液:准确称取4.50gEDTA二钠盐用水稀释至1000mL,储存于聚乙烯瓶中4℃保存。标定:准确称取0.2~0.25gCaCO3放入250mL烧杯中,用少量水润湿,盖上表面皿,从烧杯嘴处慢慢加入1:1HCl溶液5mL溶解冷却后,将溶液转入250mL容量瓶中,用水定容至刻度摇匀。移取上述溶液25.00mL于250mL三角瓶中,加水25mL和2mL镁溶液,再加5mL20%NaOH,和20mg钙指示剂,摇匀后用0.01mol/LEDTA溶液滴定至溶液由红色变蓝色即为终点。记录消耗的0.01mol/LEDTA溶液体积,同时做三份平行样。 计算:CEDTA (mol/L) = EDTA CO C CaCO V M W ? ? 25 250 1000 3 3 a 材料:奶粉等 四、实验步骤:

消解所用酸的种类和用量

消解所用酸的种类和用量 消解试样使用最广泛的酸是HN03、HCl、HF、HCl04、H202等都是良好的微波吸收体,它们在微波炉中的稳定性、沸点和蒸汽压以及与试样的反应。 (1)HNO3(比重1.42,70%水溶液,w/w) 在常压下的沸点为120℃。在0.5MPa下,温度可达176℃,它的氧化电位显著增大,氧化性增强。能对无机物及有机物进行氧化作用。金属和合金可用硝酸氧化为相应的硝酸盐,这些硝酸盐通常易溶于水。部分金属元素,如Au、Pt、Nb、Ta、Zr不被溶解。Al 和Cr不易被溶解。硝酸可溶解大部分的硫化物。 硝酸消化的主要有机样品有:饮料、植物、废水、聚合物等。 (2)HCl(1.19,37%),沸点110℃ HCl不属于氧化剂,通常不用来消解有机物。HCl在高压与较高温度下可与许多硅酸盐及一些难溶氧化物、硫酸盐、氟化物作用,生成可溶性盐。许多碳酸盐、氢氧化物、磷酸盐、硼酸盐和各种硫化物都能被盐酸溶解。 (3)HCl04(72%),沸点130℃ 是一种强氧化剂,能彻底分解有机物。但高氯酸直接与有机物接触会发生爆炸,因此,通常都与硝酸组合使用。或先加入HN03反应一段时间后再加入HC104。HC104大都在常压下的预处理时使用,较少用于密闭消解中,要慎重使用。 (4)HF(38.3%),沸点112℃ 在密闭容器中达180℃,会产生约0.8Mpa 的分压,能有效地使硅酸盐变成可挥发的SiF4,而留下其他要测量的元素。少量HF与其他酸相结合使用,可有效地防止样品中待测元素形成硅酸盐。 (5)H2O2(30%),沸点107℃ 过氧化氢的氧化能力随介质的酸度增加而增加。H202 分解产生的高能态活性氧对有机物质的破坏特别有利。使用时通常先加HN03预处理后再加入H2O2 。 (6)H2S04(1.84,98.3%),沸点338℃ 硫酸是许多有机组织、无机氧化物、合金、金属及矿石等的有效溶剂。它几乎可以破坏所有的有机物。但在密闭消解时要严格监控反应温度,因为浓H2S04在达到沸点温度时可能熔化聚四氟乙烯内罐,浓H2S04的沸点是338℃,而聚四氟乙烯的使用温度不能超过240 ℃。所以,一般不单独用H2S04,而是与HN03一起组合使用。 (7)HP04(1.71,85%),沸点158℃ 磷酸有较低的蒸气压,在0.8MPa时温度可达240 ℃。热HP04 适用于消解那些用HCl消解时会使某些特定痕量组分挥发损失的铁基合金,磷酸还可溶解铬矿、氧化铁矿、铝炉渣等。在微波消解时,常常采用两种或两种以上的酸组合(混合)使用,消解效果更好。常使用的混合酸有以下几种。 (1)水,HCl:HNO3=3:1 v/v 王水需现配现用。王水可用来溶解许多金属和合金,其中包括钢、高温合金钢、铝合金、锑、铬和铂族金属等。植物体与废水也常使用它来进行消化。王水可从硅酸盐基质中酸洗出 部分金属,但无法有效的加以完全溶解。除王水外,硝酸和盐酸还常以另外的比例混合在一起使用, 所谓的勒福特(Lefort)王水,也叫逆王水,是三份硝酸与一份盐酸的混合物。 可用来溶解氧化硫和黄铁矿。 (2) HN03:H2S04, 常用的比例为1:1(v/) 这种混酸的最高温度仅比单纯HN03时的最高温度高10℃左右。高温条件下,易于形成硫酸盐络合物,还具有脱水和氧化的性质。通常在完成最初的消化后,可加入H2O2 以完成

微波消解前处理测定食品中总汞方法论文

微波消解前处理测定食品中总汞方法的研究【摘要】目的应用微波消解前处理测定食品中总汞的含量。方法用微波消解系统对食品进行消解,样品用原子荧光仪测定其含量。结果本方法测定汞的检出限为0.012μg/kg,精密度在 2.4-9.5%回收率为93—109%。结论该方法简便、快速、灵敏度、精密度准确度较好,适合食品的快速消解以及微量金属污染的测定。 【关键词】微波消解食品总汞氢化物原子荧光法 中图分类号:r155文献标识码:a文章编号:1005-0515(2011)2-014-02 determination of microwave digestion pre-treatment method of total mercury o lihua liang zhijian liwenting (center for disease control and prevention, kunming, yunnan, kunming, yunnan 650228, china) 【abstract】objective determination total mercury in food by microwave digestion pre-treatment methods.methods mercury in food were determined by microwave digest-hydride generation atom fluorescence spectrometry.results the limit of detection mercury was 0.012μg/kg; the rsd was 2.4%-9.5%; the recovery rates of mercury were 93%-109%.conclusion the methods is simple,rapid,sensitive and of accurate results

原子吸收光谱参考答案

第四章、原子吸收光谱分析法 1 选择题 1-1 原子吸收光谱是 ( A) A. 基态原子吸收特征辐射后跃迁到激发态所产生的 B. 基态原子吸收了特征辐射跃迁到激发态后又回到基态时所产生的 C. 分子的电子吸收特征辐射后跃迁到激发态所产生的 D. 分子的振动、转动能级跃迁时对光的选择吸收产生的 1-2 原子发射光谱与原子吸收光谱产生的共同点在于.( D) A. 基态原子对共振线的吸收 B. 激发态原子产生的辐射 C. 辐射能使气态原子内层电子产生跃迁 D. 辐射能使气态原子外层电子产生跃迁1-3 在原子吸收分光光度计中,目前常用的光源是 ( C) A. 火焰 B. 氙灯 C. 空心阴极灯 D. 交流电弧 1-4 空心阴极灯内充的气体是 ( D ) A. 大量的空气 B. 少量的空气 C. 大量的氖或氩等惰性气体 D. 少量的氖或氩等惰性气体 1-5 空心阴极灯的主要操作参数是 ( C ) A. 内充气体的压力 B. 阴极温度 C. 灯电流 D. 灯电压 1-6 在原子吸收光谱中,用峰值吸收代替积分吸收的条件是( B ) A 发射线半宽度比吸收线的半宽度小 B 发射线半宽度比吸收线的半宽度小,且中心频率相同 C 发射线半宽度比吸收线的半宽度大,且中心频率相同 D 发射线频率和吸收线的频率相同 1-6. 原子吸收测定时,调节燃烧器高度的目的是 ( D ) (A) 控制燃烧速度 (B) 增加燃气和助燃气预混时间 (C) 提高试样雾化效率 (D) 选择合适的吸收区域

1-7 原子吸收光谱分析过程中,被测元素的相对原子质量愈小,温度愈高,则谱线的热变宽将是 ( A ) (A) 愈严重 (B) 愈不严重 (C) 基本不变 (D) 不变 1-8在原子吸收分析中, 采用标准加入法可以消除 ( A ) (A)基体效应的影响 (B)光谱背景的影响 (C)其它谱线的干扰 (D) 电离效应 1-9为了消除火焰原子化器中待测元素的发射光谱干扰应采用下列哪种措施( B ) (A) 直流放大 (B) 交流放大 (C) 扣除背景 (D) 减小灯电流 1-10与火焰原子吸收法相比, 无火焰原子吸收法的重要优点为 ( B ) (A)谱线干扰小 (B)试样用量少 (C)背景干扰小 (D)重现性好 2 填空题 2-1 使电子从基态跃迁到第一激发态所产生的吸收线,称为共振(吸收)线。 2-2 原子吸收光谱是由气态基态原子对该原子共振线的吸收而产生的。 2-3 原子吸收分析法其独有的分析特点是:灵敏度高、选择性好、抗干扰能力强、能测定的元素多。非火焰原子吸收光谱法的主要优点是:检出限低、取样量小、物理干扰小、可用于真空紫外区。 2-4 单道单光束火焰原子吸收分光光度计主要有四大部件组成,它们依次为光源(空心阴极灯) 、原子化器、单色器和检测器(光电倍增管) 。 2-5 原子吸收光谱法中应选用能发射锐线的光源,如空心阴极灯。空心阴极灯的阳极一般是钨棒,而阴极材料则是待测元素,管内通常充有低压惰性气体,其作用是导电、溅射阴极表面金属原子、从而激发金属原子发射出特征谱线。 2-6 原子吸收分析常用的火焰原子化器是由雾化器、混合室和燃烧器组成的。原子化器的主要作用是提供热能使试样蒸发原子化,将其中待测元素转变成基态气态原子,入射光束在这里被气态基态原子吸收。 2-7 试样在火焰原子化器中原子化的历程:喷雾、雾滴破碎、脱水、去溶剂、挥发成分子、原子化。 2-8 影响原子化效率的因素(火焰中)有:(1) 火焰类型与组成;(2) 控制合适的火焰

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

食品安全国家标准 食品中钙的测定

食品安全国家标准 食品中钙的测定 1范围 本标准规定了食品中钙含量测定的火焰原子吸收光谱法二滴定法二电感耦合等离子体发射光谱法和电感耦合等离子体质谱法三 本标准适用于食品中钙含量的测定三 第一法火焰原子吸收光谱法 2原理 试样经消解处理后,加入镧溶液作为释放剂,经原子吸收火焰原子化,在422.7n m处测定的吸光度值在一定浓度范围内与钙含量成正比,与标准系列比较定量三 3试剂和材料 除非另有规定,本方法所用试剂均为优级纯,水为G B/T6682规定的二级水三 3.1试剂 3.1.1硝酸(H N O3)三 3.1.2高氯酸(H C l O4)三 3.1.3盐酸(H C l)三 3.1.4氧化镧(L a2O3)三 3.2试剂配制 3.2.1硝酸溶液(5+95):量取50m L硝酸,加入950m L水,混匀三 3.2.2硝酸溶液(1+1):量取500m L硝酸,与500m L水混合均匀三 3.2.3盐酸溶液(1+1):量取500m L盐酸,与500m L水混合均匀三 3.2.4镧溶液(20g/L):称取23.45g氧化镧,先用少量水湿润后再加入75m L盐酸溶液(1+1)溶解,转入1000m L容量瓶中,加水定容至刻度,混匀三 3.3标准品 碳酸钙(C a C O3,C A S号471-34-1):纯度>99.99%,或经国家认证并授予标准物质证书的一定浓度的钙标准溶液三 3.4标准溶液的配制 3.4.1钙标准储备液(1000m g/L):准确称取2.4963g(精确至0.0001g)碳酸钙,加盐酸溶液(1+1)

溶解,移入1000m L容量瓶中,加水定容至刻度,混匀三 3.4.2钙标准中间液(100m g/L):准确吸取钙标准储备液(1000m g/L)10m L于100m L容量瓶中,加硝酸溶液(5+95)至刻度,混匀三 3.4.3钙标准系列溶液:分别吸取钙标准中间液(100m g/L)0m L,0.500m L,1.00m L,2.00m L, 4.00m L,6.00m L于100m L容量瓶中,另在各容量瓶中加入5m L镧溶液(20g/L),最后加硝酸溶液(5+95)定容至刻度,混匀三此钙标准系列溶液中钙的质量浓度分别为0m g/L二0.500m g/L二1.00m g/L二2.00m g/L二4.00m g/L和6.00m g/L三 注:可根据仪器的灵敏度及样品中钙的实际含量确定标准溶液系列中元素的具体浓度三 4仪器设备 注:所有玻璃器皿及聚四氟乙烯消解内罐均需硝酸溶液(1+5)浸泡过夜,用自来水反复冲洗,最后用水冲洗干净三4.1原子吸收光谱仪:配火焰原子化器,钙空心阴极灯三 4.2分析天平:感量为1m g和0.1m g三 4.3微波消解系统:配聚四氟乙烯消解内罐三 4.4可调式电热炉三 4.5可调式电热板三 4.6压力消解罐:配聚四氟乙烯消解内罐三 4.7恒温干燥箱三 4.8马弗炉三 5分析步骤 5.1试样制备 注:在采样和试样制备过程中,应避免试样污染三 5.1.1粮食二豆类样品 样品去除杂物后,粉碎,储于塑料瓶中三 5.1.2蔬菜二水果二鱼类二肉类等样品 样品用水洗净,晾干,取可食部分,制成匀浆,储于塑料瓶中三 5.1.3饮料二酒二醋二酱油二食用植物油二液态乳等液体样品 将样品摇匀三 5.2试样消解 5.2.1湿法消解 准确称取固体试样0.2g~3g(精确至0.001g)或准确移取液体试样0.500m L~5.00m L于带刻度消化管中,加入10m L硝酸二0.5m L高氯酸,在可调式电热炉上消解(参考条件:120?/0.5h~120?/1h二升至180?/2h~180?/4h二升至200?~220?)三若消化液呈棕褐色,再加硝酸,消解至冒白烟,消化液呈无色透明或略带黄色三取出消化管,冷却后用水定容至25m L,再根据实际测定需要稀释,并在稀释液中加入一定体积的镧溶液(20g/L),使其在最终稀释液中的浓度为1g/L,混匀备用,此为试样

MM FS CNG 食品中丙酸钠 丙酸钙的测定方法

MMFSCNG0088 食品 丙酸钠 丙酸钙 气相色谱法 MM_FS_CNG_0088 食品中丙酸钠、丙酸钙的测定方法 1.适用范围 本方法适用于酱油、醋、面包和糕点中丙酸盐的测定。本方法最低检出量为面包、糕点0.05g/kg,酱油、醋0.02g/kg。 2.原理概要 样品酸化后,丙酸盐转化为丙酸,经水蒸气蒸馏,收集后直接进气相色谱,用氢火焰离子化检测器检测,与标准系列比较定量。 3.主要仪器和试剂 3.1 试剂 3.1.1 磷酸溶液:取10mL磷酸(85%)加水至100mL。 3.1.2 甲酸溶液:取1mL甲酸(99%)加水至50mL。 3.1.3 硅油。 3.1.4 丙酸标准溶液:标准储备液(10mg/mL),准确称取250mg丙酸于25mL容量瓶中,加水至刻度。标准使用液,将储备液用水稀释成10~250μg/mL的标准系列。 3.2 仪器 3.2.1 气相色谱仪:具有氢火焰离子化检测器。 3.2.2 水蒸气蒸馏装置。 4.过程简述 4.1 提取 准确称取30g事先均匀化的样品,置于500mL蒸馏瓶中,加入100mL水,再用50mL 水冲洗容器,转移到蒸馏瓶中,加10mL磷酸溶液,2~3滴硅油,进行水蒸气蒸馏,将250mL容量瓶置于冰浴中作为吸收液装置,待蒸馏液约250mL时取出,在室温下放置30min,加水至刻度,吸取10mL该溶液于试管中,加入0.5mL甲酸溶液,混匀,供色谱测定用。 4.2 色谱条件 色谱柱:玻璃柱,内径3mm,长1m,内装80~100目 仪器条件:柱温180℃,进样口、检测器温度220℃。 气流条件:氮气 50mL/min; 氢气 50mL/min; 空气 500mL/min。 4.3 测定 取标准系列中各种浓度的标准使用液10mL,加0.5mL甲酸溶液,混匀。取5 μL 进气相色谱,测定不同浓度丙酸的峰高,根据浓度和峰高绘制标准曲线。同时进样品溶液,根据样品的峰高与标准曲线比较定量。 5.结果计算: 0001250×=m A X

微波消解知识

转一篇文章: 密闭微波样品消解原理及常识 刘伟阎军武刚 The Knowledge of Hermetic Microwave Digestion 4样品制备目标和原则 现在,在生物有机物样品及矿物岩石、矿石、矿渣和玻璃等痕量元素分析中,常常是从待分析物的溶样开始,绝大多数都要进行化学预处理,要把固体制成溶液,需要分解和破坏样品基体。一般使用原子吸收或发射光谱分析元素时,若样品为水溶液时,通常都可以达到极佳的分析结果。非水溶液也可以分析,但是样品溶液中,高浓度的有机化合物对某元素会引起严重的分析干扰问题。绝大部分的样品都无法直接进行固体分析,因此必须先转变成溶液型态。在分析前先经过消化处理,大多情况下都可产生较精确的分析结果。以下为样品消解前处理所应考虑的前提: 4.1确定样品消解是否必要 1).没有样品消解能否分析? 2).通过消解样品能否改善分析? 4.2理想样品制备的进行步骤 1).将固体和液体样品转化成液体溶液,以避免在测定中阻塞仪器液体传输及雾化系统。 2).破坏所有的有机物质使它不会干扰火焰燃烧或增加背景讯号。 3).把感兴趣的分析物以可检测的浓度保留在溶液中。 4).不加任何元素或化合物干扰离子。 5).调整样品的粘度和颗粒百分比到分析的最佳条件。 4.3采用微波消解手段的十大理由 1)与加热板消化比较时,消化可快4-100倍完成。 2)通常采用的2450MHz的微波,只能导致分子(粒子)运动,不引起分子结构变化,从而不会改变消解反应的方向。 3)微波直接向样品释放能量(热是副产物),避免了传统方式(热传导、热对流)中能量的损失,提高了能量的使用效率。 4)大多数传统试剂在微波消解中仍然可以使用,因此对大多数的反应操作者无须改变试剂的种类。且用于消化的酸类不会因为其活性成分的蒸发而降低或失去强度。 5)样品的消解可以进行的更精确、彻底。在许多消化程序中可避免过氯酸的使用,如HNO 3在微波消化期间,基于消化瓶内压力的缘故,会产生较高的温度而得到较好的消化结果,以取代过氯酸的使用。 6)密闭微波消解可通过提高温度/压力协助反应,使反应物在特定温度下发生快速分解,减少分解所需的时间,提高工作效率,对传统方法这是不可能的。 7)挥发元素如:As,Hg等可被保留在消化溶液中,防止挥发造成结果的偏差和对环境的污染。同时也使操作人员避免接触酸雾和有害的气体,如氢氟酸。 8)由于微波消解试剂用量少且密闭,可消除由于空气传播的微粒或渗出现象而导致的样品污染。因此有较低的空白值。 9)最先进的微波消解仪器能够通过磁控管的自动调节,定量的控制微波能量的传递,以此控制分解条件并实现对反应的自动控制。避免了人为操作产生的错误和误差。 10)通过温压控制可以保证消解的质量,保证反应一致的平行性和重复性。 5酸与样品分解 消解的目的是希望酸能分解样品基体同所感兴趣的金属离子形成可溶盐。硝酸及过氯酸等氧化性的酸类,是最常用来破坏有机物质与分解金属化合物的试剂。有机物质氧化成

微波消解_原子吸收法测定食品中的钙含量

第7卷 第8期 食品安全质量检测学报 Vol. 7 No. 8 2016年8月 Journal of Food Safety and Quality Aug. , 2016 *通讯作者: 李卫群, 高级工程师, 主要研究方向为光谱分析。E-mail: lwq@https://www.wendangku.net/doc/3b819702.html, *Corresponding author: LI Wei-Qun, Senior Engineer, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China. E-mail: lwq@https://www.wendangku.net/doc/3b819702.html, 微波消解-原子吸收法测定食品中的钙含量 李卫群*, 汪涓涓, 徐玲玲, 朱 慧 (杭州娃哈哈集团有限公司, 杭州 310018) 摘 要: 目的 建立微波消解-原子吸收法测定食品中钙含量的方法。方法 采用微波消解法对样品进行前处理, 在检测样品中加入氯化镧(8 g/L)屏蔽剂, 用火焰原子吸收法进行检测。比较经消解后样品中不同的硝酸浓度对钙含量测定结果的影响, 探究微波消解法测定食品中钙含量时结果偏低的原因。结果 经微波消解后, 样品中的硝酸含量大于0.5%时, 会导致钙含量的检测结果偏低。经湿法消解处理的样品, 其加标回收率在97.2%~106.0%之间, 经微波消解法处理的样品, 其加标回收率在96.8%~104.0%之间。将采用上述两种消解方法处理的样品的钙含量检测结果进行比较, 测定值间的相对误差为1.64%~3.08%, 在可接受范围内。结论 微波消解-原子吸收法可以用于食品中钙含量的检测。 关键词: 微波消解法; 原子吸收法; 钙含量 Determination of calcium content in food by microwave digestion-atomic absorption spectrometry LI Wei-Qun *, WANG Juan-Juan, XU Ling-Ling, ZHU Hui (Hangzhou Wahaha Group Co ., Ltd., Hangzhou 310018, China ) ABSTRACT: Objective To establish a method for determination of calcium content in foods by microwave digestion-atomic absorption spectrometry. Methods The samples were pretreated with microwave digestion and detected by flame atomic absorption spectrometry with lanthanum chloride (8 g/L) as screening agent. The effects of different concentrations of nitric acid in sample after digestion on the determination of calcium content were compared for exploring the causes of lower calcium content detected by atomic absorption spectrometry with microwave digestion. Results The detection results of calcium content were lower when the concentration of nitric acid residue in samples was larger than 0.5% after microwave digestion. The recoveries of samples treated by wet digestion were between 97.2%~106.0% and the samples treated by microwave digestion were between 96.8%~104.0%. The detection results of calcium content from above methods were compared and the relative errors (RE) were between 1.64%~3.08%, which were in the acceptable range. Conclusion Microwave digestion-atomic absorption spectrometry can be used for the detection of calcium content in foods. KEY WORDS: microwave digestion method; atomic absorption spectrometry; calcium content 1 引 言 钙是人体的必需元素之一, 是构成骨骼与牙齿的重 要成份, 在调节细胞代谢、维持肌肉收缩和保证神经传导 等方面都有重要作用。缺钙将可能导致严重的疾病, 但是过量补钙则会影响铁和锌的吸收[1]。因此, 准确测定食品

原子吸收光谱法思考题与练习题

1.原子吸收光谱和原子荧光光谱是如何产生的?比较两种分析方法的特点。 2.解释下列名词:⑴ 谱线轮廓;⑵ 积分吸收;⑶ 峰值吸收;⑷ 锐线光 源;⑸ 光谱通带。 3.表征谱线轮廓的物理量是哪些?引起谱线变宽的主要因素有哪些? 4.原子吸收光谱法定量分析的基本关系式是什么?原子吸收的测量为什么要用锐线光 源? 5.原子吸收光谱法最常用的锐线光源是什么?其结构、工作原理及最主要的工作条件是什 么? 6.空心阴极灯的阴极内壁应衬上什么材料?其作用是什么?灯内充有的低压惰性气体的 作用是什么? 7.试比较火焰原子化系统及石墨炉原子化器的构造、工作流程及特点,并分析石墨炉原子 化法的检测限比原子化法高的原因。 8.火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?试举例说明。 9.原子吸收分光光度计的光源为什么要进行调制?有几种调制的方式? 10.分析下列元素时,应选用何种类型的火焰?并说明其理由:⑴ 人发中的硒;⑵ 矿 石中的锆;⑶ 油漆中的铅。 11.原子吸收光谱法中的非光谱干扰有哪些?如何消除这些干扰? 12.原子吸收光谱法中的背景干扰是如何产生的?如何加以校正? 13.说明用氘灯法校正背景干扰的原理,该法尚存在什么问题? 14.在测定血清中钾时,先用水将试样稀释40倍,再加入钠盐至0.8mg/mL,试解释此操作 的理由,并说明标准溶液应如何配制? 15.产生原子荧光的跃迁有几种方式?试说明为什么原子荧光的检测限一般比原子吸收 低? 16.与测定下列物质,应选用哪一种原子光谱法,并说明理由: ⑴血清中的Zn和Cd(~Zn2mg/mL,Cd0.003ug/mL); ⑵鱼肉中的Hg(~xug/g数量级);

食品中钙的测定 编制说明

《食品安全国家标准食品中钙的测定》(征求意见稿) 编制说明 一、标准起草的基本情况 为贯彻落实《食品安全法》及其实施条例,依据国家卫生和计划生育委员会(原卫生部)办公厅和农业部办公厅《关于印发2010年食品安全国家标准清理整顿工作方案的通知》(卫办监督发[2010]106号)和《国家卫生计生委办公厅关于印发食品安全国家标准整合工作方案的通知》(国卫办食品函〔2014〕386号)要求,食品安全国家标准审评委员会秘书处委托由广东疾病预防控制中心负责开展《食品中钙的测定》检测方法整合修订工作,主要涉及GB 5413.21-2010、GB/T23375 -2009、GB/T14610-2008、GB/T5009.92-2003、GB/T 9695.13-2009、NY 82.19-1988等。广东省疾病预防控制中心承担该项国标修改工作后,成立了由广东省疾病预防控制中心由李少霞、蔡文华、胡曙光、苏祖俭、梁旭霞、罗建波、梁春穗、黄伟雄、张学武、深圳市疾控中心刘桂华、林凯、姜杰、清远市疾控中心何健飞、中山出入境检验检疫局李蓉、叶少媚、李云松、李浩洋、广东仙乐制药有限公司黄舒丽、纪锐琳等组成的工作小组,于2014年下半年开展了实验室方法研究实验,并对我省主要食品中钙的本底值进行测定,工作小组研究讨论了相关实验结果和检测数据,对《GB 5009.90-2003 食品中钙的测定》等方法作了一定的补充修改,初步形成修订该国家标准的征求意见稿及编制说明。供讨论。 二、标准的重要内容及主要修改情况 钙是生物必需的元素。对人体而言,无论肌肉、神经、体液和骨骼中,都有用Ca2+结合的蛋白质。钙是人类骨、齿的主要无机成分,也是神经传递、肌肉收缩、血液凝结、激素释放和乳汁分泌等所必需的元素。钙约占人体质量的1.4%,参与新陈代谢,每天必须补充钙;人体中钙含量不足或过剩都会影响生长发育和健康。钙在维持人体的正常生理机能、预防疾病方面具有非常重要的作用。食品是人体补充营养元素的主要途径。 目前我国发布的食品中钙的检测方法为GB5009.92-2003、GB 5413.21-2010、GB/T23375 -2009等,主要为火焰原子吸收光谱法,电感耦合等离子体原子发射光谱法,滴定法。本标准整合修订还参考了国内外相关法律、法规和标准,收集了国内外相关参考文献,通过综合分析比较,样品前处理方式保留干灰化法和湿消解法,增加高压密闭罐消解法和微波消解法,测定方法则保留了火焰原子吸收分光光度法、电感耦合等离子体原子发射光谱法和滴定法。其中火焰原子吸收光谱法灵敏度高、抗干扰强、仪器国产化、测试成本低,为实际工作最常采用,本文对其进行了方法学参数确认,具体实验结果如下: (1)不同酸浓度对火焰原子吸收测钙的吸光度是有一定的影响。当样液中硝酸的体积浓度达到1%时,钙吸光度已出现较明显的降低;盐酸及高氯酸的体积浓度达到2%时,钙吸光度值也出现明显降低的现象;故在测定钙时,消化结束后赶酸应尽可能彻底,或在满足灵敏度要求的前提下加大稀释倍数,以达到降低酸对钙测定值的影响。此外,硫酸加入容易导致钙以硫酸钙的形式形成沉淀而造成损失,因此,在样品处理的各个步骤都应避免采用硫酸。 (2)镧作释放剂可以消除磷酸、铝、硫酸盐、磷酸盐和硅酸盐等对测定钙的干扰。不同镧溶液浓度对测定的影响不同,试验表明,当样液中镧的浓度在0.2-2.0g/L范围时,钙的测定值有最强吸收,故可根据实际需要在此范围选择合适的镧溶液浓度。

消解用酸种类和用量

消解试样使用最广泛的酸是HN03、HCl、HF、HCl04、H202等都是良好的微波吸收体,它们在微波炉中的稳定性、沸点和蒸汽压以及与试样的反应。 (1)HNO3(比重1.42,70%水溶液,w/w) 在常压下的沸点为120℃。在0.5MPa下,温度可达176℃,它的氧化电位显著增大,氧化性增强。能对无机物及有机物进行氧化作用。金属和合金可用硝酸氧化为相应的硝酸盐,这些硝酸盐通常易溶于水。部分金属元素,如Au、Pt、Nb、Ta、Zr不被溶解。Al 和Cr不易被溶解。硝酸可溶解大部分的硫化物。 硝酸消化的主要有机样品有:饮料、植物、废水、聚合物等。 (2)HCl(1.19,37%),沸点110℃ HCl不属于氧化剂,通常不用来消解有机物。HCl在高压与较高温度下可与许多硅酸盐及一些难溶氧化物、硫酸盐、氟化物作用,生成可溶性盐。许多碳酸盐、氢氧化物、磷酸盐、硼酸盐和各种硫化物都能被盐酸溶解。 (3)HCl04(72%),沸点130℃ 是一种强氧化剂,能彻底分解有机物。但高氯酸直接与有机物接触会发生爆炸,因此,通常都与硝酸组合使用。或先加入HN03反应一段时间后再加入HC104。HC104大都在常压下的预处理时使用,较少用于密闭消解中,要慎重使用。 (4)HF(38.3%),沸点112℃ 在密闭容器中达180℃,会产生约0.8Mpa 的分压,能有效地使硅酸盐变成可挥发的SiF4,而留下其他要测量的元素。少量HF与其他酸相结合使用,可有效地防止样品中待测元素形成硅酸盐。 (5)H2O2(30%),沸点107℃ 过氧化氢的氧化能力随介质的酸度增加而增加。H202 分解产生的高能态活性氧对有机物质的破坏特别有利。使用时通常先加HN03预处理后再加入H2O2 。 (6)H2S04(1.84,98.3%),沸点338℃ 硫酸是许多有机组织、无机氧化物、合金、金属及矿石等的有效溶剂。它几乎可以破坏所有的有机物。但在密闭消解时要严格监控反应温度,因为浓H2S04在达到沸点温度时可能熔化聚四氟乙烯内罐,浓H2S04的沸点是338℃,而聚四氟乙烯的使用温度不能超过240 ℃。所以,一般不单独用H2S04,而是与HN03一起组合使用。 (7)HP04(1.71,85%),沸点158℃ 磷酸有较低的蒸气压,在0.8MPa时温度可达240 ℃。热HP04 适用于消解那些用HCl消解时会使某些特定痕量组分挥发损失的铁基合金,磷酸还可溶解铬矿、氧化铁矿、铝炉渣等。在微波消解时,常常采用两种或两种以上的酸组合(混合)使用,消解效果更好。常使用的混合酸有以下几种。 (1)水,HCl:HNO3=3:1 v/v 王水需现配现用。王水可用来溶解许多金属和合金,其中包括钢、高温合金钢、铝合金、锑、铬和铂族金属等。植物体与废水也常使用它来进行消化。王水可从硅酸盐基质中酸洗出 部分金属,但无法有效的加以完全溶解。除王水外,硝酸和盐酸还常以另外的比例混合在一起使用, 所谓的勒福特(Lefort)王水,也叫逆王水,是三份硝酸与一份盐酸的混合物。 可用来溶解氧化硫和黄铁矿。 (2)HN03:H2S04, 常用的比例为1:1(v/) 这种混酸的最高温度仅比单纯HN03时的最高温度高10℃左右。高温条件下,易于形成硫酸盐络合物,还具有脱水和氧化的性质。通常在完成最初的消化后,可加入H2O2 以完成消化。但是,只有当液量减少且冒S02气体后才能添加H202 。用它消解的样品有:聚合物、脂肪及有机物质。

微波消解原子荧光法测定食品中的砷

微波消解原子荧光法测定食品中的砷【摘要】目的建立微波消解原子荧光法测定食品中砷的方法。方法采用微波消解处理样品,原子荧光法测定,进行了消解条件、仪器条件、精密度、回收率等实验。结果方法的检出限为1.68ng/ml,在0.0028-0.05μg/ml范围内,相关系数r=0.9993,回收率在92.4-101.4之间,相对标准偏差4.03%。结论微波密闭消解样品,消化过程节约试剂,防止试样中待测元素的损失,干扰少,适用于食品中砷的测定。 【关键词】微波消解原子荧光法食品砷 砷的化合物在自然环境中广泛存在。人体长期摄入被砷污染的食物后,可以引起严重中毒,因此砷在食品卫生检测中被列为常规检测的有害元素。对砷的检测技术要求较高。在食品分析中常用的消解方法为湿法消解,该方法消解时间长,酸和其他溶液用量大,基体干扰严重[1]。本文用微波消化食品,方法简单,消化速度快,大大缩短了检验周期,取得满意的结果。 1试验部分 1.1原理样品经过预处理,在全封闭的消化罐中经微波消解后,加入硫脲使五价砷还原为三价砷,在酸性条件下,以硼氰化钾作还原剂,将样品中待测的砷还原成挥发性共价氢化物,借助载气将其带入原子化器中进行原子化。在砷特制空心阴极灯照射下,发射特征波长的荧光,其荧光强渡与砷含量成正比,与标准系列比较定量。 1.2主要仪器与试剂

AFS-820双光道原子荧光分光光度计(北京吉天仪器有限公司);MK型光纤压力自控密闭微波消解仪,附聚四氟乙烯样杯;DKP—型电子控温加热板(上海新仪微波化学科技有限公司)。砷标准溶液:国家标准物质研究中心(GBW08611),ρ(As)=1000μg/ml。用超纯水稀释成ρ(As)=1μg/ml标准使用液(临用现配);硝酸:优级纯(ρ20=1.42g/ml);30%过氧化氢,分析纯;硫脲—抗坏血酸(50g/L),称取硫脲和抗坏血酸各5g,溶于100ml水中。硼氰化钾溶液(10g/L):称取2.5g硼氰化钾并使其溶于250ml5g/L的氢氧化钾溶液中;载液:盐酸溶液(2%)。 1.3样品处理 称取约1.00g食品样品于溶样杯内,加硝酸6ml,放在180℃的电热板上,加热到硝酸黄烟帽尽(约15-20min),取下,放置室温;再加硝酸5ml,过氧化氢1.5ml,置入微波炉内,一档3min,二档5min,三档3min,加压消解;取出后加5ml水,置于180℃的电热板上加热,待水挥发尽干,再加入1.25ml硫酸,继续放在180℃的电热板上驱赶硝酸,至水挥发完。冷却后,用水将内容物定量转入25ml比色管中,其间加入2.5ml50g/L硫脲—抗坏血酸,补水至刻度,混匀备测。 1.4仪器条件[2] 灯电流:50mA,负高压:270V;载气流量:400ml/min,屏蔽气流量800ml/min;延时时间0s,读数时间:10s;原子化器高度8mm。 1.5标准曲线 分别吸取砷标准应用液0.50、1.00、2.00、4.00、8.00、10.00ml

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

实验4 火焰原子吸收光谱法测定铁(标准曲线法)教学教材

实验4火焰原子吸收光谱法测定铁(标准 曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。

5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),1.000mg·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=0.05)稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入0.0, 2.0,5.0,10.0,15.0,20.0mL铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min: 分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2

相关文档
相关文档 最新文档