文档库 最新最全的文档下载
当前位置:文档库 › 离散型随机变量的方差()

离散型随机变量的方差()

离散型随机变量的方差()
离散型随机变量的方差()

离散型随机变量的方差(一)

白河一中 邓启超

教学目标:

1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。

2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。

3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

二、教学重点:离散型随机变量的方差、标准差

三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入:

1..数学期望

则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望.

2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。

3. 期望的一个性质: b aE b a E +=+ξξ)(

4、常见特殊分布的变量的均值(期望)

(1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np

(2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则

E ξ= N

M

n

(二)、讲解新课:

1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位:

S ),X

A 型手表

B 型手表

np

EX =

问题:(1)分别计算X,Y 的均值,并进行比较;

(2)这两个随机变量的分布有什么不同,如何刻画这种不同

分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。

进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列

2 8 9 10

0.4 0.2 0.4

分析:

甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差:

类似的,随机变量X 的方差:

222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-=

=2)(EX X E i -

思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什

9

,921==EX EX ?

?

????-++-+-=---2

n 22212)x (x )x (x )x (x n 1s ...n

1)x (x n 1)x (x n 1)x (x s 2n

22212?

-++?-+?-=---...

(三)、例题分析

例1(课本P61例3)、掷一颗质地均匀的骰子,求向上一面的点数X 的均值、方差。

例2(探究2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列如下:

2 8 9 10

0.4 0.2 0.4

分析:

甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 通过均值和方差的分别比较,得出结论:乙的射击成绩稳定性较好 变式1:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛? 变式2:如果其他对手的射击成绩都在7环左右,应派哪一名选手参赛?

例3其中,a,b,c 成等差数列,若3

=EX ,则=DX (四)、基础训练

1

求EX ,DX 。 解: 2:甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列如下:

9

,921==EX EX 21.042.034.022.011.00=?+?+?+?+?=EX 2

.11.0)24(2.0)23(4.0)22(2.0)21(1.0)20(22222=?-+?-+?-+?-+?-=DX

2 8 9 10 0.4 0.2 0.4

用击中环数的期望与方差分析比较两名射手的射击水平。 表明甲、乙射击的平均水平没有差别,在多次射击中平均得分差别不会很大,但甲通常发挥比较稳定,多数得分在9环,而乙得分比较分散,近似平均分布在8-10

环。

问题1:如果你是教练,你会派谁参加比赛呢?

问题2:如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛? 问题3:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛? 3

解:根据月工资的分布列,利用计算器可算得

EX 1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 ,

DX 1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3 + (1600 -1400 )2×0.2+(1800-1400) 2×0. 1= 40 000 ;

EX 2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,

DX 2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l = 160000 .

因为EX 1 =EX 2, DX 1

乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位

(五)、课堂小结

9,921==EX :EX 解8.0,4.021==DX DX

随机变量X 的方差:

222221)(......)......()()(ζζζζζE X E X E X E X D n i -+-+-+-=

=2)(ζE X E i -

其中,=ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 则(x i -E ζ)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 D ζ 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。

(六)、作业设计

1.已知某一随机变量ξ的概

率分布列如下,且E ξ=6.3,

(1)计算a ,b 的值;(2)求E ξ,D ξ。

2.编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是ξ.

(1)求随机变量ξ的概率分布;

(2)求随机变量ξ的数学期望和方差.

∑=-=n

i i

i p E x 12)(ζ

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

离散型随机变量的方差教案教学内容

精品文档 精品文档 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 则(x i -EX)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 DX 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。 (三)、基础训练 求DX 和 解:00.110.220.430.240.12EX =?+?+?+?+?= 104332221111+++++++++=X 2101 4102310321041=?+?+?+?=] )()()[(122212x x x x x x n s n i -++-++-=ΛΛ1 ])24()23()23()22()22()22()21()21()21()21[(10 1 22222222222=-+-+-+-+-+-+-+-+-+-=s 2 2222)24(101)23(102)22(103)21(104-?+-?+-?+-?=s ∑=-=n i i i p EX x 1 2)(DX

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

一个复合随机变量的方差

一个复合随机变量的方差 王福昌 (防灾科技学院 河北三河 065201) 【摘要】:对于比较复杂的复合随机变量的方差,一般没有简单公式去求解。这里结合具体例子进行了详细剖析。 【关键词】复合随机变量;方差 随机变量的数字特征在对积极变量的研究中占有重要的地位[1]。在教学过程中,我们发现学生在对简单的随机变量求方差时还能应付,对于稍微复杂的随机变量,不知如何下手。本文通过求一个复合随机变量的方差,指出遇到这种情形时应注意的一些问题. 如果一个随机变量X,它服从的分布与一个参数Y 有关,而Y 也是一个随机变量,它服从一个确定的分布,这时我们称随机变量X 为一个服从复合分布的复合随机变量。在应用问题中,常常遇到服从复合分布的随机变量[2]。下面给出一个例子。 设随机变量X ,以概率0.2服从均值为5的泊松分布,以概率0.8服从均值为1的泊松分布,求X 的方差。 解:由泊松分布性质可得,服从参数λ泊松分布的期望与方差相等,且都等于其参数λ。 设)5(~1πX ,)1(~2πX ,由题设和条件概率公式、全概率公式 ,设全集 } {}{21X X X X S =?==,对于 ,,21=k ()()()} {8.0}{2.0}{}{}{}{} ,{} ,{}{}{}{}{}{2122112121k X P k X P X X k X P X X P X X k X P X X P k X X X P k X X X P X X X X k X P S k X P k X P =+=====+=====+===?=?==?===条件概率可加性 所以 8 .118.052.0} {8.0}{2.0} {)(0 20 10 =?+?==?+=?===∑∑∑∞ =∞=∞ =k k k k X kP k X kP k X kP X E 由方差定义 )()()(22X E X E X D -=,所 以 ) ()()(122 11X E X E X D -=,) ()()(222 22X E X E X D -=,所 以 30 55)()()(21212 1=+=+=X E X D X E , 211)()()(22222 2=+=+=X E X D X E , 6 .728.0302.0) (8.0)(2.0} {8.0}{2.0} {)(2 2210 220 12022 =?+?=?+?==?+=?===∑∑∑∞ =∞=∞ =X E X E k X P k k X P k k X P k X E k k k 所以 36.48.16.7)()()(222=-=-=X E X E X D . 通过这个例子可以看出概率解题方法的灵活多样性。一个有效的策略是吃透概念,从定义和基本公式出发,利用一直的基本性质和技巧往往可使复杂方差的计算变得简捷. 看起来复杂的问题,往往可通过最根本的基本定义和方法解决。 【参考文献】 [1] 邓健,生志荣. 一个随机变量的分布列及数学期望的计算[J].数学学习与研究,2010,(1):93,95. [2]张尚志. 复合随机变量高阶矩的一个积分表达式[J].江西大学学报(自然科学版),1980,4(1):135-137.

离散型随机变量的方差

2.3.2离散型随机变量的方差 整体设计 教材分析 本课仍是一节概念新授课,方差与均值都是概率论和数理统计的重要概念,是反映随机变量取值分布的特征数.离散型随机变量的均值与方差涉及的试题背景有:产品检验问题、射击、投篮问题、选题、选课、做题、考试问题、试验、游戏、竞赛、研究性问题、旅游、交通问题、摸球问题、取卡片、数字和入座问题、信息、投资、路线等问题.从近几年高考试题看,离散型随机变量的均值与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识,主要考查能力. 课时分配 1课时 教学目标 知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差. 过程与方法 了解方差公式“D(aX+b)=a2D(X)”,以及“若X~B(n,p),则D(X)=np(1-p)”,并会应用上述公式计算有关随机变量的方差. 情感、态度与价值观 承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值. 重点难点 教学重点:离散型随机变量的方差、标准差. 教学难点:比较两个随机变量的均值与方差的大小,从而解决实际问题. 教学过程 复习旧知 1 则称Eξ=x1p1+x2p2+…+x i p i+…+x n p n为ξ的数学期望. 2.数学期望的一个性质:E(aξ+b)=aEξ+b. 3.若ξ~B(n,p),则Eξ=np. 教师指出:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.探究新知 已知甲、乙两名射手在同一条件下射击,所得环数ξ1、ξ2的分布列如下:

离散型随机变量的方差

2.3.2 离散型随机变量的方差 1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.(重点) 3.掌握方差的性质以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.(难点 ) [基础·初探] 教材整理1 离散型随机变量的方差的概念 阅读教材P 64~P 66上面第四自然段,完成下列问题. 1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为 则(x i -E (X ))描述了i D (X )=∑i =1n (x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X ) 的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差. (2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小. 2.随机变量的方差与样本方差的关系 随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方

差越来越接近于总体的方差. 1.下列说法正确的有________(填序号). ①离散型随机变量ξ的期望E (ξ)反映了ξ取值的概率的平均值; ②离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平; ③离散型随机变量ξ的期望E (ξ)反映了ξ取值的波动水平; ④离散型随机变量ξ的方差D (ξ)反映了ξ取值的波动水平. 【解析】 ①错误.因为离散型随机变量ξ的期望E (ξ)反映了ξ取值的平均水平. ②错误.因为离散型随机变量ξ的方差D (ξ)反映了随机变量偏离于期望的平均程度. ③错误.因为离散型随机变量的方差D (ξ)反映了ξ取值的波动水平,而随机变量的期望E (ξ)反映了ξ取值的平均水平. ④正确.由方差的意义可知. 【答案】 ④ 2.已知随机变量ξ,D (ξ)=1 9,则ξ的标准差为________. 【解析】 ξ的标准差D (ξ)=19=13. 【答案】 1 3 3.已知随机变量ξ的分布列如下表: 则ξ的均值为【解析】 均值E (ξ)=x 1p 1+x 2p 2+x 3p 3=(-1)×12+0×13+1×16=-1 3; 方差D (ξ)=(x 1-E (ξ))2 ·p 1+(x 2-E (ξ))2 ·p 2+(x 3-E (ξ))2 ·p 3=5 9. 【答案】 -13 59 教材整理2 离散型随机变量的方差的性质

随机变量的方差

第五周随机变量函数的分布及随机变量的数字特征 5.3随机变量的方差 方差:随机变量偏离期望的程度(随机变量分布的分散程度) ()()()( )2Var X E X E X =-,()()()()2Var X E X E X =-()() ()222E X XE X E X =-+()()()()222E X E XE X E X =-+()()()()222E X E X E X E X =-+()()2 2E X E X =-()()()22Var X E X E X =-,()()()2Var aX b Var aX a Var X +==() X σ=, 标准差,X σ也记作()()() Var X Y Var X Var Y +≠+方差通常缩写为()Var X (varience)或()D X (deviation)。*************************************************************例5.3.1项目1:投资10万元 可能回收10万元保本;40%可能回收15万元,盈利5万元 10 5~3255X ?? ? ? ??? ,平均收益为()13205255E X =?+?=万元,项目2:投资10万元 60%可能回收0万元,亏损10万元;40%可能回收30万元,盈利20万元 21020~325 5X -?? ? ? ???,平均收益为()2321020255E X =-?+?=万元

()22132051055 E X =?+?=,()()()221116Var X E X E X =-=;()()222232102022055 E X =-?+?=,()()()22222216Var X E X E X =-=。两项投资的期望相等,均为2万元,但它们的方差一个是6,一个是216,差异非常大。期望刻画平均收益,而方差则刻画收益的波动,反映了投资的风险程度。*************************************************************

随机变量的方差

§2.3 随机变量的方差 随机变量X 的数学期望)(X E 是该随机变量X (或其分布)的一种位置特征数,是随机变量X 取值的一个“中心”.但它并没有告诉我们X 的取值相对于这个“中心”的偏离程度,或者说波动程度等方面的信息。无论在理论上还是实用中,这方面的信息都是非常重要和有意义。比如,考虑测量误差X ,如果该测量没有系统误差则意味着X 的均值0)(=X E ,这往往是个基本要求,而我们会更关注测量误差围绕其均值0)(=X E 波动的程度。再比如,考虑某项风险投资的收益X ,除了关注平均收益)(X E 外,还会关注收益的波动情况。等等。 由于数学期望)(X E 是其取值的一个中心位置,自然地,度量X 取值的波动程度的一个合理的方法是考察X 取值与)(X E 的距离。一种方式就是考虑X 取值与)(X E 的距离|)(|X E X -的均值|)([|X E X E -。但是,由于绝对值在数学上处理很不方便,人们就考虑另一种方式:先 把距离|)(|X E X -平方,再取其均值2)()(X E X E -。把它作为X 取值散 布程度的度量,这个量就叫做方差。 定义 设X 的期望为μ,且)(2X E 存在,则称2)(μ-X E 为X (或其分布)的方差,记为)(X Var 或)(X D 。即 2)()(μ-=X E X Var 称方差的平方根)(X Var 为X 的标准差,记为)(X σ。 方差和标准差都是用以刻画随机变量取值的散布程度的特征数,差别主要体现在量纲上。方差或标准差越小,随机变量取值越集中,反之越分散。从方差的定义可以看出随机变量方差X 是X 的函数

2))(X E X -(的期望,那么在有了X 的分布列)(i x p 或概率密度)(x p 后,利用上一节介绍的随机变量函数的期望的计算方法,可得 ∑∞ =-=12)())()(i i i x p X E x X Var ( 或 ?+∞ ∞--=dx x p X E x X Var )())(()(2 方差的计算更多地用以下公式: 22)]([)()(X E X E X Var -= 这个公式的推导留给同学们完成。 这个公式变形为 22)]([)()(X E X Var X E += 在已知期望和方差的情况下,利用上式可方便地求出)(2X E ,易见对任意随机变量X ,总有22)]([)(X E X E ≥。上面等式可推广至更一般的情况:对于任一常数c ,有 22])([)())((c X E X Var c X E -+=- 可见,对于任一常数c ,有 )())((2X Var c X E ≥- 并且等号成立当且仅当)(X E c =。换言之,随机变量X 的期望)(X E 是函数2)()(t X E t f -=的最小值点,且最小值就是X 的方差。 例 随机变量X 的密度函数为 ?????<<=else x x x p ,020,2-1)(

随机变量的数学期望与方差

限时作业62 随机变量的数学期望与方差 一、选择题 1.下列说法中,正确的是( ) A.离散型随机变量的均值E(X)反映了X取值的概率平均值 B.离散型随机变量的方差D(X)反映了X取值的平均水平 C.离散型随机变量的均值E(X)反映了X取值的平均水平 D.离散型随机变量的方差D(X)反映了X取值的概率平均值 解析:离散型随机变量X的均值反映了离散型随机变量×取值的平均水平,随机变量的方差反映了随机变量取值偏离于均值的平均程度. 答案:C 则D(X)等于( ) A.0 B.0.8 C.2 D.1 解析:根据方差的计算公式,易求V(X)=0.8. 答案:B 3.若随机变量X服从两点分布,且成功的概率p=0.5,则E(X)和D(X)分别为( ) A.0.5和0.25 B.0.5和0.75 C.1和0.25 D.1和0.75 解析:∵X服从两点分布, ∴X的概率分布为 D(X)=0.52×0.5+(1-0.5)2×0.5=0.25. 答案:A 4.离散型随机变量X的分布列为P(X=k)=p k q1-k(k=0,1,p+q=1),则EX与DX依次为( ) A.0和1 B.p和p2 C.p和1-p D.p和p(1-p) 解析:根据题意,EX=0×q+1×p=p,DX=(0-p)2q+(1-p)2p=p(1-p)或可以判断随机变量X 满足两点分布,所以EX与DX依次为p和p(1-p),选D. 答案:D 5.已知X~B(n,p),EX=8,DX=1.6,则n与p的值分别是( ) A.100,0.08 B.20,0.4 C.10,0.2 D.10,0.8 解析:由于X~B(n,p),EX=8,DX=1.6,即np=8,np(1-p)=1.6, 可解得p=0.8,n=10,应选D. 答案:D 二、填空题 6.①连续不断地射击,首次击中目标所需要的射击次数为X;②南京长江大桥一天经过的车辆数为X;③某型号彩电的寿命为X;④连续抛掷两枚骰子,所得点数之和为X;⑤某种水管的外径与内径之差X. 其中是离散型随机变量的是____________.(请将正确的序号填在横线上) 解析:②④中X的取值有限,故均为离散型随机变量;①中X的取值依次为1,2,3,…,虽然无限,但可按从小到大顺序列举,故为离散型随机变量;而③⑤中X的取值不能按次序一一列举,故均不是离散型随机变量.

离散型随机变量的方差

离散型随机变量的方差 1.方差、标准差的定义及方差的性质 (1)方差及标准差的定义: 设离散型随机变量X 的分布列为 X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n ①方差D (X )=∑n i =1__(x i -E (X ))2 p i . ②标准差为D (X ). (2)方差的性质:D (aX +b )=a 2 D (X ). 随机变量与样本方差的关系 (1)随机变量的方差是常数,而样本的方差是随着样本的不同而变化的,因此样本的方差是随机变量. (2)对于简单随机抽样,随着样本容量的增加,样本的方差越来越接近于总体的方差.因此,我们常用样本的方差来估计总体的方差. 2.两个常见分布的方差 (1)若X 服从两点分布,则D (X )=p (1-p ). (2)若X ~B (n ,p ),则D (X )=np (1-p ). 判断正误(正确的打“√”,错误的打“×”) (1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( ) (3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案:(1)× (2)√ (3)√ 已知X 的分布列为 X 1 2 3 4 P 1 4 13 16 14 则D (X )的值为A.2912 B.121144 C.179144 D.1712

答案:C 已知X 的分布列为 X 0 1 2 P 13 13 13 设Y =2X +3,则D (Y )=________. 答案:83 已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________. 解析:由E (X )=30,D (X )=20,可得? ????np =30, np (1-p )=20, 解得p =1 3. 答案:13 探究点1 求离散型随机变量的方差 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、均值和方差. 【解】 由题意得,ξ的所有可能取值为0,1,2,3,4, P (ξ=0)=1020=12,P (ξ=1)=120 , P (ξ=2)=220=110 ,P (ξ=3)=320 , P (ξ=4)=420=15. 故ξ的分布列为 ξ 0 1 2 3 4 P 12 120 110 320 15 所以E (ξ)=0×2+1×20+2×10+3×20+4×5=1.5,D (ξ)=(0-1.5)2 ×12+(1- 1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2 ×15=2.75. [变条件]在本例条件下,若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.

二维随机变量的期望与方差

二维随机变量的期望与方差 【定义11.1】设二维随机变量(X 、Y )的Joint p.d.f.为f(x,y),则: ????????????∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-∞ ∞-∞∞--=-=-=-=====dxdy y x f EY y dy y f EY y DY dydx y x f EX x dx x f EX x DX dxdy y x yf dy y yf EY dydx y x xf dx x xf EX Y X Y X ),()()()(),()()()(),()(),()(2222 假定有关的广义积分是绝对收敛的。 别外:二维随机变量的函数Z=g(X,Y)的数学期望为: ??∞∞-∞∞-?=dxdy y x f y x g EZ ),(),( 有关性质: ① E (X+Y )=EX+EY ; 因为: EY EX dxdy y x yf dxdy y x xf dxdy y x f y x Y X E +=+=+=+??????∞∞-∞ ∞-∞∞-∞∞-∞∞-∞∞-),(),(),()()( ② 设X 、Y 同类型,且相互独立,则:E(XY)=EXEY ;

对连续情形:因X 、Y 相互独立, 故 )()(),(y f x f y x f Y X =, [][]EY EX dy y yf dx x xf dxdy y f x xyf dxdy y x xyf XY E Y X Y X ?=? ===??????∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-)()()()(),()( ③ 设X 、Y 相互独立,则:D (X+Y )=DX+DY ; 由于X 、Y 相互独立,X-EX 与Y-EY 也相互独立, 0][][]}][{[=--=--EY Y E EX X E EY Y EX X E 因而: DY DX EY Y EX X E EY Y E EX X E EY Y EX X E Y X E Y X E Y X D +=--+-+-=-+-=+-+=+)])([(2)()(} )](){[(} )]({[)(2222

论文 随机变量的期望和方差的计算方法

序 言 数学方差和期望比较集中的反映随机变量的某个侧面的平均特性,因此对随机变量的期望和方差的计算具有很深的实际意义. 本论文着重总结了随机变量期望和方差的几种常用计算方法,并通过具体例子阐述在不同情况下应该采用的计算方法,以达到使计算最简便化的目的. 一、 离散型随机变量期望的计算方法 方法一 定义法 [1] 即若已知离散型随机变量ξ的分布列为 则ξ的期望为1111(2)()()p p A B p A B ξ==+ 例1 某项考试按科目A 和科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试,已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的 的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ. 解 设“科目A 第一次考试合格”为事件1A ,“科目A 补考合格”为事件2A ,“科目 B 第一次考试合格”为事件1B ,“科目B 补考合格”为事件2B ,已知得ξ=2,3,4注意到各 事件之间的独立性与互斥性,可得 1111(2)()() 21113233114399 p p A B p A B ξ==+=?+?= +=

对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布、超几何分布等),则此随机变量的期望可直接利用这种典型分布的期望公式求得. 方法二 公式法 设随机变量ξ服从二项分布(,,)B b n p ,其分布列为: {}(1) (0,1,2)k k n k n P k C p p k n ξ-===-=???, 则我们有: 01 1 11 11 1 !()(1) !()!! (1)!()! (1) (1)(1) n k n k k n k n k k n k k n k n k n i i n i n i i n E k p p k n k n p p k n k np p p np p p np i k C C ξ-=-=----=----== ? --= --=-=-==-∑ ∑ ∑ ∑ 由此便推出服从二项分布的随机变量的数学期望的计算公式为()E np ξ=. 例2 一个实验学科的考察方案:考生从6道选题中一次性随机抽取3题,按题目要求独立完成全部实验操作.规定:至少正确完成其中2题者方可通过,已知6道备选题中考生甲有4 不影响. 分别求出甲、乙两考生正确完成题数的数学期望. 解 设考生甲正确完成的题数为ξ,则ξ服从超几何分布,其中6,4,3N M n ===, ∴3426 nM E N ξ?= == 设考生乙正确完成的题数为η,则 2 ~[3,]3B η,2323E np η==? = 方法三 性质法 即利用期望的性质求期望,所用到的性质主要有:

随机变量的数学期望与方差

第9讲 随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 教学过程: 第三章 随机变量的数字特征 §3.1 数学期望 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。 1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗?

可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数的数学期望。 解 设试开次数为X ,则 n k X p 1)(==,n , ,2 ,1 =k 于是 ∑=? =n k n k X E 11)(2)1(1n n n +?=21+=n 2. 连续随机变量的数学期望 为了引入连续随机变量数学期望的定义,我们设X 是连续随机变量,其密度函数为)(x f ,把区间) , (∞+-∞分成若干个长度非常小的小区间,考虑随机变量X 落在任意小区间] , (dx x x +内的概率,则有

相关文档
相关文档 最新文档