文档库 最新最全的文档下载
当前位置:文档库 › 线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例
线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例

1 基因间“距离”的表示

在ABO 血型的人们中,对各种群体的基因的频率进行了研究。如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。

表1.1基因的相对频率

爱斯基摩人f 1i 班图人f 2i 英国人f 3i 朝鲜人f 4i A 1 0.2914 0.1034 0.2090 0.2208 A 2 0.0000 0.0866 0.0696 0.0000 B 0.0316 0.1200 0.0612 0.2069 O

0.6770 0.6900 0.6602 0.5723 合计

1.000 1.000 1.000 1.000

问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。

解 有人提出一种利用向量代数的方法。首先,我们用单位向量来表示每一个群体。为此目的,我们取每一种频率的平方根,记ki ki f x =

.由于对这四种群

体的每一种有14

1

=∑=i ki f ,所以我们得到∑==4

1

2

1i ki

x .这意味着下列四个向量的每个都是单位向量.记

.44434241,34333231,24232221,141312114321????

?

?

??????=????????????=?????????

???=????????????=x x x x a x x x x a x x x x a x x x x a

在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,那么由于| a 1|=| a 2|=1,再由内只公

式,得21cos a a ?=θ

.8307.03464.02943.03216.0,8228.01778.00000.05398.021????

?

????????????????

???=a a 故 9187.0cos 21=?=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2.

表1.2基因间的“距离”

爱斯基摩人

班图人 英国人 朝鲜人 爱斯基摩人 0° 23.2° 16.4° 16.8° 班图人 23.2° 0° 9.8° 20.4° 英国人 16.4° 9.8° 0° 19.6° 朝鲜人

16.8°

20.4°

19.6°

由表 1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大.

2 Euler 的四面体问题

问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的.

解 建立如图 2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为

.,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→

OC OB OA ,,组成右

手系时,以它们为棱的平行六面体的体积V 6的1

6

.而

)

(.3

3

3

222

1116c b a c b a c b a OC OB OA V =??= 于是得 .63

3

3222

111

c b a c b a c b a V = 将上式平方,得

.

3623

23233

2323232313132323222

2222121213131312

1212121

21

21

3

33

22211133

3

222

111

22

c b a c c b b a a c c b b a a c c b b a a c b a c c b b a a c c b b a a c c b b a a c

b a

c b a c b a c b a c b a c b a c b a V ++++++++++++++++++=?=

根据向量的数量积的坐标表示,有

.

,,,

,2323233232322

22222313131212121212121c b a OC OC c c b b a a OC OB c b a OB OB c c b b a a OC OA c c b b a a OB OA c b a OA OA ++=?++=?++=?++=?++=?++=? 于是

.362OC

OC OC OB OC OA OC OB OB

OB OB

OA OC

OA OB OA OA

OA V ?????????= (2.1)

由余弦定理,可行

.2

cos 2

22n q p q p OB OA -+=??=?θ

同理

.2

,22

22222l r q OC OB m r p OC OA -+=?-+=?

将以上各式代入(2.1)式,得

.2

2

2

222

362

2

222

22

2

22

22

222

222

222

2

r l r p m r p l r p p n q p m r p n q p p

V -+-+-+-+-+-+=

(2.2)

这就是Euler 的四面体体积公式.

例 一块形状为四面体的花岗岩巨石,量得六条棱长分别为

l =10m, m =15m, n =12m, p =14m, q =13m, r =11m.

.952

2

22,

462

2

22,

5.1102

2

22=-+=-+=-+l r p m r p n q p

代入(2.1)式,得

.75.1369829121

95

46

951695

.11046

5.110196

236==V 于是

.)195(82639.38050223m V ≈≈

即花岗岩巨石的体积约为195m 3.

古埃及的金字塔形状为四面体,因而可通过测量其六条棱长去计算金字塔的体积.

3 动物数量的按年龄段预测问题

问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁.动物从第二年龄组起开始繁殖后代,经过长期统计,第二组和第三组的繁殖率分别为4和3.第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为12 和1

4 .假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?

问题分析与建模 因年龄分组为5岁一段,故将时间周期也取为5年.15年后就经过了3个时间周期.设)(k i x 表示第k 个时间周期的第i 组年龄阶段动物的数

量(k =1,2,3;i =1,2,3).

因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活下来动物的数量,所以有

).3,2,1(4

1,21)1(2)

(3)1(1)(2===

--k x x x x k k k k

又因为某一时间周期,第一年龄组动物的数量是由于一时间周期各年龄组出生的动物的数量,所以有

).3,2,1(34)1(3

)1(2)(1=+=--k x x x k k k

于是我们得到递推关系式:

???

?

??

???

==+=----.41,

21,34)1(2)(3)

1(121

3)1(2)(1k k k k k k k x x x x x x x 用矩阵表示

).3,2,1(04

1

0021340)1(3)1(2)1(1)(3)(2)(1=?????????????????

?

???????

?

=??????????---k x x x x x x k k k k k k

).3,2,1()

1()(==-k Lx x k k

其中

.100010001000,04

1

00021340)0(??????????=???????

?????

???

?

=x L 则有

),3,2,1()(3)(2

)(1)

(=????

??????=k x x x x k k k k

,250500700010001000100004

1

00021340)

0()1(??????????=?????????????????

?

???????

?==Lx x

,125350027502505007000041

00021340)

1()2(??????????=?????????????????

?

????????

==Lx x .8751375143751253500275004

100021340)

2()3(??????????=?????????????????

?

???????

?==Lx x 结果分析 15年后,农场饲养的动物总数将达到16625头,其中0~5岁的有14375头,占86.47%,6~10岁的有1375头,占8.27%,11~15岁的有875头,占 5.226%.15年间,动物总增长16625-3000=13625头,总增长率为13625/3000=454.16%.

注 要知道很多年以后的情况,可通过研究式)0()1()(x L Lx x k k k ==-中当趋于无穷大时的极限状况得到.

关于年龄分布的人口预测模型 我们将人口按相同的年限(比如5年)分成若干年龄组,同时假设各年龄段的田、女人口分布相同,这样就可以通过只考虑女性人口来简化模型.人口发展随时间变化,一个时间周期的幅度使之对应于基本年龄组间距(如先例的5年),令)(k i x 是在时间周期k 时第i 个年龄组的(女性)人口,i =1,2,…,n .用1表示最低年龄组,用n 表示最高年龄组,这意味着不考虑更大年龄组人口的变化.

假如排除死亡的情形,那么在一个周期内第i 个年龄组的成员将全部转移到i +1个年龄组.但是,实际上必须考虑到死亡率,因此这一转移过程可由一存活系数所衰减. 于是,这一转移过程可由下述议程简单地描述:

),1,,2,1()

1()

(1-==-+n i x b x k i

i k i

其中i b 是在第i 个年龄组在一个周期的存活率,因子i b 可由统计资料确定.

惟一不能由上述议程确定的年龄组是,)

(1k x 其中的成员是在后面的周期内出生的,他们是后面的周期内成员的后代,因此这个年龄组的成员取决于后面的周期内各组的出生率及其人数.

于是有方程

,)

1(122)1(11)(1---+++=k n n k k k x a x a x a x (3.1)

这里),,2,1(n i a i =是第i 个年龄组的出生率,它是由每时间周期内,第i 个年龄组的每一个成员的女性后代的人数来表示的,通常可由统计资料来确定.

于是我们得到了单性别分组的人口模型,用矩阵表示便是

,00

000000000)1()1(3

)1(2)1(11

21

1321

)()(3)(2)(1?????

??

?

???

????????????????????

?=????????????????------k n k k k n n n k n k k k x x x x b b b a a a a a x x x x 或者简写成

.)1()(-=k k Lx x (3.2)

矩阵

???????

????

?????--00

000000000121

13

2

1n n n b b b a a a a a L

称为Leslie 矩阵.

由(3.2)式递推可得

)0()1()(x L Lx x k k k ==-

这就是Leslie 模型.

4 企业投入产生分析模型

问题 某地区有三个重要产业,一个煤矿、一个发电厂和一条地方铁路.开采一元钱的煤,煤矿要支付0.25元的电费及0.25元的运输费.生产一元钱的电

力,发电厂要支付0.65元的煤费,0.05元的电费及0.05元的运输费.创收一元钱的运输费,铁路要支付0.55元的煤费及0.10元的电费.在某一周内,煤矿接到外地金额为50000元的定货,发电厂接到外地金额为25000元的定货,外界对地方铁路没有需求.问三个企业在这一周内总产值多少才能满足自身及外界的需求?

数学模型 设x 1为煤矿本周内的总产值,x 2为电厂本周的总产值,x 3为铁路本周内的总产值,则

???

??=?++-=++-=++?-,

0)005.025.0(,25000)10.005.025.0(,50000)55.065.00(3213

32123211x x x x x x x x x x x x (4.1) 即

.02500050000005.025.010.005.025.055.065.00

321321????

??????=????????????????????-??????????x x x x x x 即

.025********,005.025.010.005.025.055.065.00,321????

?

?????=??????????=??????????=Y A x x x X 矩阵A 称为直接消耗矩阵,X 称为产出向量,Y 称为需求向量,则方程组(4.1)为

,Y AX X =-

Y X A E =-)(, (4.2)

其中矩阵E 为单位矩阵,(E-A )称为列昂杰夫矩阵,列昂杰夫矩阵为非奇异矩阵.

投入产出分析表 设,0

00

00,)(321

1????

?

?????=--=-x x x A C E A E B D=(1,1,1)C.矩阵B 称为完全消耗矩阵,它与矩阵A 一起在各个部门之间的投入产生中起平衡作用.矩阵C 可以称为投入产出矩阵,它的元素表示煤矿、电厂、铁路之间的投

入产出关系.向量D 称为总投入向量,它的元素是矩阵C 的对应列元素之和,分别表示煤矿、电厂、铁路得到的总投入.

由矩阵C ,向量Y ,X 和D ,可得投入产出分析表4.1.

表4.1 投入产出分析表 单位:元

煤矿 电厂 铁路 外界需求

总产出 煤矿 11c 12c 13c 1y 1x 电厂 21c

22c

23c

2y

2x

铁路 31c

32c

33c 3y

3x

总投入

1d 2d

3d

计算求解 按(4.2)式解方程组可得产出向量X ,于是可计算矩阵C 和向量D ,计算结果如表4.2.

表4.2 投入产出计算结果 单位:元

煤矿 电厂 铁路 外界需求 总产出 煤矿 0 36505.96 15581.51 50000 102087.48 电厂 25521.87 2808.15 2833.00 25000 56163.02 铁路 25521.87 2808.15 0 0 28330.02

总投入

51043.74

42122.27

18414.52

5 交通流量的计算模型

问题 图5.1给出了某城市部分单行街道的交通流量(每小时过车数).

假设:(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于全部流出此节点的流量.试建立数学模型确定该交通网络未知部分的具体流量.

建模与计算 由网络流量假设,所给问题满足如下线方程组:

234457612157891091083630050020080080010004002006001000

x x x x x x x x x x x x x x x x x x x x -+=??+=??-=?

+=??+=?

?

+=??=?

-=??=?++=?? 系数矩阵为

1110

00000000110000

000000110

001100000000100010000000000011000000000010000000001100000000010

1

00

1

01

00A -????????

-??????

=?

?????

??-????

?????? 增广矩阵阶梯形最简形式为

1000100000

800010010000000010000000200000110000050000000101008000000001100100000000000104000000000001600000000000000

000

00000

0B ????-????

??????

=?

?????

????????????

其对应的齐次方程组为

152534568

789100

000

0000x x x x x x x x x x x x x +=??-=??=?

+=??

+=??+=?

=??=?

取(x 5,x 8)为自由取值未知量,分别赋两组值为(1,0),(0,1),得齐次方程组基础解系中两个解向量

()11,1,0,1,1,0,0,0,0,0,'η=--

()20,0,0,0,0,1,1,1,0,0'η=--

其对应的非齐次方程组为

152534568

789108000

200500

8001000400600x x x x x x x x x x x x x +=??-=??=?

+=??

+=??+=?

=??=?

赋值给自由未知量(x 5,x 8)为(0,0)得非齐次方程组的特解

()800,0,200,500,0,800,1000,0,400,600'x *=

于是方程组的通解,*

2211x k k x ++=ηη其中k 1,k 2为任意常数,x 的每一个分量即为交通网络未知部分的具体流量,它有无穷多解.

6 小行星的轨道模型

问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1.

表6.1 坐标数据

x 1 x 2 x 3 x 4 x 5 X 坐标 5.764 6.286 6.759 7.168 7.408 y 1 y 2 y 3 y 4 y 5 Y 坐标 0.648 1.202 1.823 2.526 3.360

由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为

012225423221=+++++y a x a y a xy a x a .

问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据:

(x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5).

由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定

系数,将五个点的坐标分别代入上面的方程,得

22112113141512

2

1222232425222

132333343532214

2443444542215

25535455522212221222122212221

a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y ?++++=-?++++=-??++++=-??++++=-??++++=-?

这是一个包含五个未知数的线性方程组,写成矩阵

????????????????-----=?????????

???????????????????????111112222222222222225432155

25

5

525

44244424

3323332322222222

11211

121a a a a a y x y y x x y x y y x x y x y y x x y x y y x x y x y y x x 求解这一线性方程组,所得的是一个二次曲线方程.为了知道小行星轨道的一些参数,还必须将二次曲线方程化为椭圆的标准方程形式:

122

22=+b

Y a X 由于太阳的位置是小行星轨道的一个焦点,这时可以根据椭圆的长半轴a 和短半轴b 计算出小行星的近日点和远日点距离,以及椭圆周长L .

根据二次曲线理论,可得椭圆经过旋转和平移两种变换后的方程如下:

[]

2

2

120D X Y C λλ++=

所以,椭圆长半轴:C D a 1λ=

;椭圆短半轴: C

D

b 2λ=;椭圆半焦矩:22b a

c -=. 计算求解 首先由五个点的坐标数据形成线性方程组的系数矩阵

???

??

?

?

????

??

???=7200.69600.142896.112656.509504

.550520.53360.143807.62127.363802.516460.35180.133233.36433.246841

.454040.25720.124448.11115

.155138.39292.1528.114199.04701

.72237.33A

使用计算机可求得

12345(,,,,)(0.6143,0.3440,0.6942, 1.6351,0.2165)a a a a a =---

从而

????

?

?--=??????=6942.03440.03440.06143.03221

a a a a C C C ,3081.0=的特征值120.3080, 1.0005λλ==

1

232

354

5

0.61430.3440 1.63510.34400.69420.21651 1.63510.21651a a a D a a a a a ---????

????==--????

????--????

.8203.1-=D

于是,椭圆长半轴a=19.1834,短半轴b=5.9045,半焦距c=18.2521.小行星近日点距和

远日点距为039313,37.4355h a c H a c =-==+=

最后,椭圆的周长的准确计算要用到椭圆积分,可以考虑用数值积分解决问题,其近似值为84.7887.

7 人口迁移的动态分析

问题 对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,那么一年以后住在城镇人口所占比例是多少?两年以后呢?十年以后呢?最终呢?

解 设开始时,令乡村人口为,0y 城镇人口为,0z 一年以后有

乡村人口

,1001

1000975100y z y =+ 城镇人口 ,100

99

100025100z z y =+

或写成矩阵形式

??

?

???????

??????=??????00111009910002510011000975

z y z y . 两年以后,有

.1009910002510011000975

1009910002510011000975002

1122??

?

???????

??????=????????????????=??????z y z y z y . 十年以后,有

.1009910002510011000975

0010

1010??

?

???????

??????=??????z y z y 事实上,它给出了一个差分方程:k k Au u =+1.我们现在来解这个差分方程.首先

,1009910002510011000975

????

??????=A

k 年之后的分布(将A 对角化):

.757

57275

10

0200193115210000??????????

?

?????-????????????? ??????????-=?

?????=??????z y z y A z y k k k k 这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态

.7572)(00?

?????????+=???

???∞∞z y z y 总人口仍是00z y +,与开始时一样,但在此极限中人口的75在城镇,而7

2

在乡村.无论初始分

布是什么样,这总是成立的.值得注意这个稳定状态正是A 的属于特征值1的特征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数决不能为负.前一性质反映在下面事实中:矩阵每一列加起来为1;每个人都被计算在内,而没有人被重复或丢失.后一性质则反映在下面事实中:矩阵没有负元素;同样地0y 和0z 也是非负的,从而1y 和21,y z 和

2z 等等也是这样.

8 常染色体遗传模型

为了揭示生命的奥秘,遗传学的研究已引起了人们的广泛兴趣.动植物在产生下一代的过程中,总是将自己的特征遗传给下一代,从而完成一种“生命的延续”.

在常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对.人类眼睛颜色即是通过常染色体控制的,其特征遗传由两个基因A 和a 控

制.基因对是AA 和Aa 的人,眼睛是棕色,基因对是aa 的人,眼睛为蓝色.由于AA 和Aa 都表

示了同一外部特征,或认为基因A 支配a ,也可认为基因a 对于基因A 来说是隐性的(或称A 为显性基因,a 为隐性基因).

下面我们选取一个常染色体遗传——植物后代问题进行讨论.

某植物园中植物的基因型为AA ,Aa ,aa .人们计划用AA 型植物与每种基因型植物相结合的方案培育植物后代.经过若干年后,这种植物后代的三种基因型分布将出现什么情形?

我们假设),2,2,0(,, =n c b a n n n 分别代表第n 代植物中,基因型为AA ,Aa 和aa 的植物占植物总数的百分率,令),,()

('=n n n n c b a x

为第n 代植物的基因分布, ),,(000)0('

=c b a x 表示植物基因型的初始分布,显然,我们有

.1000=++c b a (8.1)

先考虑第n 代中的AA 型,第1-n 代AA 型与AA 型相结合,后代全部是AA 型;第

1-n 代的Aa 型与和与AA 相结合,后代是AA 型的可能性为

2

1

;1-n 代的aa 型与AA 型相结合,后代不可能是AA 型。因此,我们有

.02

1

1111---?++

?=n n n n c b a a (8.2) 同理,我们有

,2

1

11--+=

n n n c b b (8.3) .0=n c (8.4)

将(8.2),(8.3),(8.4)式相加,得

.111---++=++n n n n n n c b a c b a (8.5)

将(8.5)式递推,并利用(8.1)式,易得

.1=++n n n c b a

我们利用矩阵表示(8.2),(8.3)及(8.4)式,即

,2,1,)1()(==-n Mx x n n (8.6)

其中

.00

01210

021

1???????

????????

?=M 这样,(8.6)式递推得到

.)0()1(2)1()(x M x M Mx x n n n n ====-- (8.7)

(8.7)式即为第n 代基因分布与初始分布的关系.下面,我们计算n M .

对矩阵M 做相似变换,我们可找到非奇异矩阵P 和对角阵D ,使

,1-=PDP M

其中

.100210111,00

01210

001

1??

????????--==???

?

?????

?=-P P D

这样,经(8.7)得到

.)()0()1()0()(1x P PD x PDP x n n n -==-

?????

?????????????

?

?--???????????????

????

????????--=0001002101110000210001100210111c b a n

.021*********

010000

??

?

???

?

?

????????+--++=--c b c b c b a n n n n 最终有

?????

??

?

=+=--=--.0,2121,2

1211010010n n n n n n n

c c b b c b a

显然,当+∞→n 时,由上述三式,得到

.0,0,1→→→n n n c b a

即在足够长的时间后,培育出的植物基本上呈现AA 型.

通过本问题的讨论,可以对许多植物(动物)遗传分布有一个具体的了解,同时这个结果也验证了生物学中的一个重要结论:显性基因多次遗传后占主导因素,这也是之所以称它为显性的原因.

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

数学建模参赛真实经验(强烈推荐)

数学建模参赛真实经验(强烈推荐) 本文档节选自: Matlab在数学建模中的应用,卓金武等编著,北航出版社,2011年4月出版 以下内容根据作者的讲座整理出来,多年数学建模实践经历证明这些经验对数学建模参赛队员非常有帮助,希望大家结合自己的实践慢慢体会总结,并祝愿大家在数学建模和Matlab世界能够找到自己的快乐和价值所在。 一、如何准备数学建模竞赛 一般,可以把参加数学建模竞赛的过程分成三个阶段:第一阶段,是个人的入门和积累阶段,这个阶段关键看个人的主观能动性;第二阶段,就是通常各学校都进行的集训阶段,通过模拟实战来提高参赛队员的水平;第三阶段是实际比赛阶段。这里讲的如何准备数学建模竞赛是针对第一阶段来讲的。 回顾作者自己的参赛过程,认为这个阶段是真正的学习阶段,就像是修炼内功一样,如果在这个阶段打下深厚的基础,对后面的两个阶段非常有利,也是个人是否能在建模竞赛中占优势的关键阶段。下面就分几个方面谈一下如何准备数学建模竞赛。 首先是要有一定的数学基础,尤其是良好的数学思维能力。并不是数学分数高就说明有很高的数学思维能力,但扎实的数学知识是数学思维的根基。对大学生来说,有高等数学、概率和线性代数就够了,当然其它数学知识知道的越多越好了,如图论、排队论、泛函等。我大一下学期开始接触数学建模,大学的数学课程只学习过高等数学。说这一点,主要想说明只要数学基础还可以,平时的数学考试都能在80分以上就可以参加数学建模竞赛了,数学方面的知识可以在以后的学习中逐渐去提高,不必刻意去补充单纯的数学理论。 真正准备数学建模竞赛应该从看数学建模书籍开始,要知道什么是数学建模,有哪些常见的数学模型和建模方法,知道一些常见的数学建模案例,这些方面都要通过看建模方面的书籍而获得。现在数学建模的书籍也比较多,图书馆和互联网上都有丰富的数学建模资料。作者认为姜启源、谢金星、叶齐孝、朱道元等老师的建模书籍都非常的棒,可以先看二三本。刚开始看数学建模书籍时,一定会有很多地方看不懂,但要知道基本思路,时间长了就知道什么问题用什么建模方法求解了。这里面需要提的一点是,运筹学与数学建模息息相关,最好再看一二本运筹学著作,仍然可以采取诸葛亮的看书策略,只观其大略就可以了,等知道需要具体用哪块知识后,再集中精力将其消化,然后应用之。 大家都知道,参加数学建模竞赛一定要有些编程功底,当然现在有Matlab这种强大的工程软件,对编程的的要求就降低了,至少入门容易多了,因为很容易用1条Matlab命令解决以前要用20行C语言才能实现的功能。因为Matlab的强大功能,Matlab在数学建模中已经有了非常广泛的应用,在很多学校,数学建模队员必须学习Matlab。当然Matlab的入门也非常容易,只要有本Matlab参考书,照猫画虎可以很快实现一些基本的数学建模功能,如数据处理、绘图、计算等。我的一个队友,当年用一天时间把一本二百多页的Matlab 教程操作完了,然后在经常运用中,慢慢地就变成了一名Matlab高手了。 对于有些编程基础的同学,最好再看一些算法方面的书籍,了解常见的数据结构和基本

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例 1 基因间“距离”的表示 在ABO 血型的人们中,对各种群体的基因的频率进行了研究。如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。 表1.1基因的相对频率 爱斯基摩人f 1i 班图人f 2i 英国人f 3i 朝鲜人f 4i A 1 0.2914 0.1034 0.2090 0.2208 A 2 0.0000 0.0866 0.0696 0.0000 B 0.0316 0.1200 0.0612 0.2069 O 0.6770 0.6900 0.6602 0.5723 合计 1.000 1.000 1.000 1.000 问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。 解 有人提出一种利用向量代数的方法。首先,我们用单位向量来表示每一个群体。为此目的,我们取每一种频率的平方根,记ki ki f x = .由于对这四种群 体的每一种有14 1 =∑=i ki f ,所以我们得到∑==4 1 2 1i ki x .这意味着下列四个向量的每个都是单位向量.记 .44434241,34333231,24232221,141312114321???? ? ? ??????=????????????=????????? ???=????????????=x x x x a x x x x a x x x x a x x x x a

在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,那么由于| a 1|=| a 2|=1,再由内只公 式,得21cos a a ?=θ 而 .8307.03464.02943.03216.0,8228.01778.00000.05398.021???? ? ???????????????? ???=a a 故 9187.0cos 21=?=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2. 表1.2基因间的“距离” 爱斯基摩人 班图人 英国人 朝鲜人 爱斯基摩人 0° 23.2° 16.4° 16.8° 班图人 23.2° 0° 9.8° 20.4° 英国人 16.4° 9.8° 0° 19.6° 朝鲜人 16.8° 20.4° 19.6° 0° 由表 1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大. 2 Euler 的四面体问题 问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的. 解 建立如图 2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为 .,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→ → → OC OB OA ,,组成右

线性代数在实际生活中的应用

线性代数在生活中的实际应用 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。;;初等的数学 知识学习线性代数数学建模函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则一一克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮 70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷 149克,钾30克,问三种化肥各需多少千克?

浅谈矩阵在数学建模中的应用

浅谈矩阵在数学建模中的应用 【摘要】矩阵作为一种认识复杂事物的简捷工具已经被广泛应用在各个学科领域中,在数学建模中也有许多应用。本文就数学建模中使用矩阵的情况做一些举例、小结,最后给出一个典型的数学模型。 【关键词】数学建模;模型;矩阵 矩阵是最基本的数学概念之一,也是人们把握复杂的实际事物本质的一种简捷的思维工具。在数学建模中,矩阵的使用相当广泛,如数学规划、层次分析、马氏链模型、投入产出、数据拟合等都主要应用矩阵分析解决问题,就数学建模中涉及的矩阵就有量纲矩阵、L矩阵、成对比较矩阵、正互反矩阵、一致阵、邻接矩阵、素阵、状态转移矩阵、随机矩阵,还有网络计划分析法中的可达矩阵、模糊评价分析法中的评判矩阵、投入产出法中的消耗系数矩阵、产品流量矩阵,另外在数学建模中还使用了许多普通矩阵。 1.线性方程组与矩阵 自然科学和工程实践很多问题的解决都归纳为线性方程组的求解和矩阵运算。有些问题本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题、投入产出分析问题和各种晶体管电路分析问题;另一方面有些数值计算方法也导致线性方程组求解,如数据拟合问题、非线性方程组和偏微分方程数值解问题等等。 例1:曲线拟合问题:已知一组(二维)数据,即平面上n个点(x1,y1)(i=1,2,…,n),寻求一个函数(曲线)y=f(x),使f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。曲线拟合问题最常用的解法——线性最小二乘法的基本思路: 数学规划是解决这类问题的有效方法。 而线性规划是数学规划中产生较早的一个分支,如今在国防科技、经济学、现代工农业、环境工程、生物学等众多学科和领域都有十分广泛的应用,典型问题有生产计划、任务分配、投料或产品的混合、运输、库存等问题。 3.微分方程模型中的矩阵 微分方程是研究函数变化过程中变化规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用,如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。矩阵较多地用在微分方程,尤其是方程组有关的理论结果的表示上。

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

线性代数应用题

线性代数应用题集锦 郑波 重庆文理学院数学与统计学院 2011年10月

目录 案例一. 交通网络流量分析问题 (1) 案例二. 配方问题 (4) 案例三. 投入产出问题 (6) 案例四. 平板的稳态温度分布问题 (8) 案例五. CT图像的代数重建问题 (10) 案例六. 平衡结构的梁受力计算 (12) 案例七. 化学方程式配平问题 (15) 案例八. 互付工资问题 (17) 案例九. 平衡价格问题 (19) 案例十. 电路设计问题 (21) 案例十一. 平面图形的几何变换 (23) 案例十二. 太空探测器轨道数据问题 (25) 案例十三. 应用矩阵编制Hill密码 (26) 案例十四. 显示器色彩制式转换问题 (28) 案例十五. 人员流动问题 (30) 案例十六. 金融公司支付基金的流动 (32) 案例十七. 选举问题 (34) 案例十八. 简单的种群增长问题 (35) 案例十九. 一阶常系数线性齐次微分方程组的求解 (37) 案例二十. 最值问题 (39) 附录数学实验报告模板 (40)

这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

线性代数在生活中的实际应用

線性代數在生活中の實際應用 大學數學是自然科學の基本語言,是應用模式探索現實世界物質運動機理の主要手段。學習數學の意義不僅僅是學習一種專業の工具而已。 ;;;初等の數學知識 學習線性代數數學建模 函數模型の建立及應用,作為變化率の額倒數在幾何學、物理學、經濟學中の應用,拋體運動の數學建模及其應用,最優化方法及其在工程、經濟、農業等領域中の應用,邏輯斯諦模型及其在人口預測、新產品の推廣與經濟增長預測方面の應用,網絡流模型及其應用,人口遷移模型及其應用,常用概率模型及其應用,等等。 線性代數中行列式 實質上是又一些豎直排列形成の數表按一定の法則計算得到の一個數。早在1683年與1693年,日本數學家關孝和與德國數學家萊布尼茨就分別獨立の提出了行列式の概念。之後很長一段時間,行列式主要應用與對現行方程組の而研究。大約一個半世紀後,行列式逐步發展成為線性代數の一個獨立の理論分支。1750年瑞士數學家克萊姆也在他の論文中提出了利用行列式求解線性方程組の著名法則——克萊姆法則。隨後1812年,法國數學家柯西發現了行列式在解析幾何中の應用,這一發現機器了人們對行列式の應用進行探索の濃厚興趣。如今,由於計算機和計算軟件の發展,在常見の高階行列式計算中,行列式の數值意義雖然不大,但是行列式公式依然可以給出構成行列式の數表の重要信息。在線性代數の某些應用中,行列式の只是依然非常重要。 矩陣實質上就是一張長方形の數表,無論是在日常生活中還是科學研究中,矩陣是一種非常常見の數學現象。學校課表、成績單、工廠裏の生產進度表、車站時刻表、價目表、故事中の證劵價目表、科研領域中の數據分析表,它是表述或處理大量の生活、生產與科研問題の有力の工具。矩陣の重要作用主要是它能把頭緒紛繁の十五按一定の規則清晰地展現出來,使我們不至於背一些表面看起來雜亂無章の關系弄得暈頭轉向。塌還可以恰當の給出事物之間內在の聯系,並通過矩陣の運算或變換來揭示事物之間の內在聯系。它也是我們求解數學問題時候“數形結合”の途徑。矩陣の運算是非常重要の內容。 例:計算?????? ??----------?n n n n n n n n n n n n n n n 11111 1 11 112 解: ?????? ??-------- - -n n n n n n n n n n n n n 111111 1 1 1 1 ??? ?????????? ? ?---------=11 1 1111 1112 n n n n ???? ? ? ?---------= 11 1 1111 1112 2 n n n n ?? ? ?? ? ? ??---------=)1()1() 1(12n n n n n n n n n n n n n

数学建模在材料科学中的应用举例

数学建模在材料科学中的应用举例 现代科学技术发展的一个重要特征是各门科学技术与数学的结合越来越紧密。数学的应用使科学技术日益精确化、定量化,科学的数学化已成为当代科学发展的一个重要趋势。 数学模型是数学科学连接其他非数学学科的中介和桥梁,它从定量的角度对实际问题进行数学描述,是对实际问题进行理论分析和科学研究的有力工具。数学建模是一种具有创新性的科学方法,它将现实问题简化,抽象为一个数学问题或数学模型,然后采用适当的数学方法求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题的目的。计算机技术的发展为数学模型的建立和求解提供了新的舞台,极大地推动了数学向其他技术科学的渗透。 材料科学作为21世纪的重要基础科学之一,同样离不开数学。通过建立适当的数学模型对实际问题进行研究,已成为材料科学研究和应用的重要手段之一。从材料的合成、加工、性能表征到材料的应用都可以建立相应的数学模型。有关材料科学的许多研究论文都涉及到了数学模型的建立和求解,甚至产生了一门新的边缘学科——计算材料学(Computational Materials Science),正是这些数学手段才使材料研究脱离了原来的试错法(Trial or Error)研究,真正成为一门科学。 以下给出一些与材料科学有关的具体建模实例。 例1:金属中空位形成能建模研究 1)建模准备 金属中空位研究的重要性,研究空位缺陷的形成能。 高能粒子对材料性能的影响,尤其是反应堆的金属材料在高能粒子的辐射作用下,性质如何变化,如何保证其安全运行? 固体受辐射后产生三种效应:电离、蜕变和离位(产生空位和填隙粒子),其中离位是金属中最主要的辐照效应。

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

线性代数在实际生活中的应用

线性代数在生活中的实际应用 大学数学就是自然科学的基本语言,就是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅就是学习一种专业的工具而已。 ;;;初等的数学知识 学习线性代数数学建模 函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式 实质上就是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝与与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在她的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机与计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但就是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只就是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、 化肥每千克含氮64克,磷10克,钾0、6克;丙种化肥每千克含氮70克,磷5克,钾1、4克.若把此三种化肥混合,要求总重量23千克且含磷149克,钾30克,问三种化肥各需多少千克? 解: 题意得方程组 依千克、、各需设甲、乙、丙三种化肥32,1x x x ??? ??=++=++=++. 304.16.02,1495108,23321 321321x x x x x x x x x ,527- =D 此方程组的系数行列式81275 81 321-=-=-=D D D ,,又 由克莱姆法则,此方程组有唯一解:3=x 1;52=x ;.153=x 即甲乙丙三种化肥各需 3千克 5千克 15千克、 矩阵实质上就就是一张长方形的数表,无论就是在日常生活中还就是科学研究中,矩阵就是一种非常常见的数学现象。学校课表、成绩单、工厂里的生产进度 表、车站时刻表、价目表、故事中的证劵价目表、科研领域中的数据分析表,它就是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要就是它能把头绪纷繁的十五按一定的规则清晰地展现出来,使我们不至于背一些表面瞧起来杂乱无章的关系弄得晕头转向。塌还可以恰当的给出事物之间内在的联系,并通过矩阵的运算或变换来揭示事物之间的内在联系。它也就是我们求解数学问题时候“数形结合”的途径。矩阵的运算就是非常重要的内容。

数学建模思想在线性代数教学中的应用

数学建模思想在线性代数教学中的应用 作者:刘逸轩 来源:《教育周报·教育论坛》2020年第19期 摘要:线性代数是现代高等院校理工科与经管类学科的专业基础课程,也是一门有着极强逻辑性与实际应用价值的重要学科。它对学生的抽象思维与逻辑思维能力提出了一定的要求。数学建模思想是数学思想当中的一种,它能帮助学生更加迅速地梳理线性代数知识点,同时完成对相关概念的高效吸收。如何将数学建模思想融入到线性代数的教学工作当中,逐渐成为现代高校线性代数教学工作的核心教研课题。 关键词:数学建模思想;线性代数;教学探究 引言 现代高校的线性代数教学内容大多以矩阵运算及向量组线性相关性的研究为主,教师在实际的教学过程中,往往更加重视学生对数学概念的理论认知,却忽视了学生自身的个性化理解。这在很大程度上降低了线性代数课程对学生未来发展的实际帮助,也让高校线性代数课程的实际价值变得较为片面。数学建模思想本身作为一种思维能力,能够最大程度上引导学生完成知识于现实生活中的应用。想要发挥数学建模思想的全部作用,首先就要求教师能够清晰地认识到数学建模思想在线性代数课程中的具体价值。 1.将数学建模思想应用到线性代数教学中的重要价值 1.1有效提升学生的学习动力 线性代数的教学任务本身就包含了对学生个人技能的有效培养,这也是高校线性代数基本素养的主要内容之一。而传统的线性代数课程更加注重学生的理论认知,教师经常会采取灌输式教学法搭配题海战术的方式培养学生的线性代数计算能力。这种教学方式不仅无法吸引学生的注意力,还很容易让学生产生厌烦和抵触心理。数学建模思想的应用,能够使原本枯燥的数学形象变得更加生动立体,从而使学生的学习动力得到显著的提升。 1.2充分增强课程的应用价值 线性代数是一门十分注重实践性与应用型的课程,将数学建模思想应用到线性代数的教学工作当中,能够最大程度地启发学生利用数学思想来解决未来生活及工作中常见的数学问题。另外,数学建模思想在教学过程中的使用,也能帮助学生另辟蹊径地处理复杂的数学概念。这不仅可以有效提升学生的学习效率,也能使教师的教学工作事半功倍。

差分方程模型

差分方程模型 数学建模讲座 一、关于差分方程模型简单的例子 1. 血流中地高辛的衰减 地高辛用于心脏病。考虑地高辛在血流中的衰减问题以开出能使地高辛保持在可接受(安全而有效)的水平上的剂量处方。假定开了每日0.1毫克的剂量处方,且知道在每个剂量周期(每日)末还剩留一半地高辛,则可建立模型如下: 设某病人第n 天后血流中地高辛剩余量为n a , 则 1.05.01+=+n n a a (一阶非齐次线性差分方程) n n n n a a a a 5.01?=?=?+ 2. 养老金问题 对现有存款付给利息且允许每月有固定数额的提款, 直到提尽为止。月利息为1℅,月提款额为1000元,则可建模型如下: 设第n 月的存款额为n a ,则 100001.11?=+n n a a (一阶非齐次线性差分方程)

3. 兔子问题(Fibonacci 数) 设第一月初有雌雄各一的一对小兔,假定两月后长成成兔,同时(即第三个月)开始,每月初产雌雄各一的一对小兔, 新增小兔也按此规律繁殖,设第n 月末共有n F 对兔子,则建模如下: ==+=??12 12 1F F F F F n n n (二阶线性差分方程初值问题) 342 3214 3 21221 1 F F F F F F F F F F ≠+=+ 注意上月新生的小兔不产兔 (因第n 月末的兔子包括两部分, 一部分上月留下的为1?n F , 另一部分为当月新生的,而新生的小兔数=前月末的兔数) 4.车出租问题 A , B 两地均为旅游城市,游客可在一个城市租车而在另一个城市还车。 A , B 两汽车公司需考虑置放足够的车辆满足用车需要,以便估算成本。分析历史记录数据得出: n x : 第n 天营业结束时A 公司的车辆数 n y :第n 天营业结束时B 公司的车辆数 则 +=+=++n n n n n n y x y y x x 7.04.03.06.01 1 (一阶线性差分方程组) (问题模型可进一步推广)

数学建模之差分方程

差分方程模型 ①建立差分方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立差分方程模型。 一阶常系数线性差分方程的一般形式为 1(),(0)t t y ay f t a +-=≠(1) ②求解一阶常系数齐次线性差分方程 10,(0)t t y ay a +-=≠(2) 常用的两种解法 1)迭代法 假设0y 已知,则有 2112210(),n n n n n n y ay a ay a y a y a y ----====== 一般有 0(0,1,2,).t t y a y t == 10t t y ay +-=(3) 2)特征方程法 假设 (0)t Y λλ=≠ 为方程(3)的解,代入(3)得方程的特征方程 10(0),t t a λλλ+-= ≠ 解得特征根:.a λ= 则t t y a =是方程(3)的解,所以齐次方程的通解为 (t t y ca c =为任意常数) 例题: 设某房屋总价为a 元,先付一半可入住,另一半由银行以年利r 贷款, n 年付清,问平均每月付多少元?共付利息多少元? 解:设每月应付x 元,月利率为12 r ,则第一个月应付利息为 1.12224 r a ra y =?=

第二月应付利息为 2111,2121212a r r rx y x y y ????=-+?=+- ? ????? 以此类推得到 11,1212t t r rx y y +??=+- ??? 此方程为一阶常系数非线性差分方程。其相应的特征方程为 (1)012 r λ-+= 特征根为112 r + 则得到通解为 1(12t t r y c c ??=+ ??? 为任意常数). 解得特解为 t y x *= 所以原方程通解为 112t t r y c x ??=++ ??? 当112224r a ra y =?=时,解得24112 ra x c r -=+。 所以解得满足初始条件的特解为 1124112112 11. 2121212t t t t ra x r y x r a r r r x x ---??=++ ???+????=??++-+ ? ????? 于是得到n 年的利息之和为 11212121212121221112n n n I y y a r r a n r =++???+? ???=?-??+- ??? 元,

数学建模小实例

1、司乘人员配备问题 某昼夜服务得公交路线每天各时间区段内需司机与乘务人员如下: 设司机与乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机与乘务人员? 解: 设为第班应报到得人员,建立线性模型如下: LINGO程序如下: MODEL: min=x1+x2+x3+x4+x5+x6;

x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到得解为: x1=60,x2=10,x3=50,x4=0,x5=30 ,x6=0; 配备得司机与乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状得地面,但当时市场上只有长方形瓷砖,每块大小等于方形得两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问就是这人得功夫不到家还就是这个问题根本无解呢?

3、棋子颜色问题 在任意拿出黑白两种颜色得棋子共n个,随机排成一个圆圈。然后在两颗颜色相同得棋子中间放一颗黑色棋子,在两颗颜色不同得棋子中间放一颗白色棋子,放完后撤掉原来所放得棋子,再重复以上得过程,这样放下一圈后就拿走前次得一圈棋子,问这样重复进行下去各棋子得颜色会怎样变化呢? 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色得棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这就是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色得棋子中间放一颗白色棋子。设棋子数为,为初始状态。

相关文档