文档库 最新最全的文档下载
当前位置:文档库 › 谐振式传感器

谐振式传感器

谐振式传感器

谐振式传感器 前言 谐振式传感器(Resonator Sensor),是指利用谐振原理将被测量变化转换成谐振频率变化的传感器。基于谐振技术的谐振式传感器,自身为周期信号输出(准数字信号),只用简单的数字电路即可转换为微处理器容易接受的数字信号。谐振式传感器的重复性、分辨率和稳定性等非常优良,又便于和微处理器直接结合组成数字控制系统,是当今人们研究的重点。 一、谐振式传感器的优点与应用 谐振式传感器具有体积小、重量轻、结构紧凑、分辨率高、精度高以及便于数据传输、处理和存储等优点。主要用于测量压力,也用于测量转矩、密度、加速度和温度等。 二、谐振式传感器的种类 谐振式传感器大体分为两类:一类是基于机械谐振结构谐振式传感器;另一类是MOS环振式谐振传感器。由于谐振式传感器有许多优点,也适于多种参数测量,如压力、力、转角、流量、温度、湿度、液位、粘度、密度和气体成分等,所以这类传感器已迅速发展成为一个新的传感器家族。按谐振元件的不同,谐振式传感器又可分为振弦式、振筒式、振梁式、振膜式和压电谐振式等。 1、振弦式传感器 以拉紧的金属弦作为敏感元件的谐振式传感器。当弦的长度确定之后,其固有振动频率的变化量即可表征弦所受拉力的大小,通过相应的测量电路,就可得到与拉力成一定关系的电信号。振弦的固有振动频率f与拉力T的关系为,式中l为振弦的长度,ρ为单位弦长的质量。振弦的材料与质量直接影响传感器的精度、灵敏度和稳定性。钨丝的性能稳定、硬度、熔点和抗拉强度都很高,是常用的振弦材料。此外,还可用提琴弦、高强度钢丝、钛丝等作为振弦材料。振弦式传感器由振弦、磁铁、夹紧装置和受力机构组成。振弦一端固定、一端连接在受力机构上。利用不同的受力机构可做成测压力、扭矩或加速度等的各种振弦式传感器。 2、振筒式传感器 以振动的金属薄圆筒为敏感元件的谐振式传感器。振筒的固有振动频率决定于筒的形状、大小、材料的弹性模量、筒的应力和周围介质的性质。被测参量的变化使得筒的某一物理特性被改变,从而改变了筒的固有振动频率,通过测量筒的振动频率即可达到测量被测参量的目的。振筒式传感器已经发展到较高水平,主要用于测量气体压力和密度等。 3、振梁式传感器 以弹性梁为敏感元件的谐振式传感器。振梁的固有振动频率随它两端所受的力而变化,通过相应的测量电路就可获得与被测力成一定关系的频率信号。振梁

振弦式传感器的工作原理及其特点

振弦式传感器的工作原理及其特点 1. 概述 振弦式传感器是目前国内外普遍重视和广泛应用的一种非电量电测的传感器。由于振弦传感器直接输出振弦的自振频率信号,因此,具有抗干扰能力强、受电参数影响小、零点飘移小、受温度影响小、性能稳定可靠、耐震动、寿命长等特点。与工程、科研中普遍应用的电阻应变计相比,有着突出的优越性: (1)振弦传感器有着独特的机械结构形式并以振弦频率的变化量来表征受力的大小,因此具有长期零点稳定的性能,这是电阻应变计所无法比拟的。在长期、静态测试传感器的选择中,振弦传感器已成为取代电阻应变计、而广泛应用于工程、科研的长期原观的测试手段。(2)随着电子、微机技术的发展,从实现测试微机化、智能化的先进测试要求来看,由于振弦传感器能直接以频率信号输出,因此,较电阻应变计模拟量输出能更为简单方便地进行数据采集、传输、处理和存储,实现高精度的自动测试。 为此,振弦传感器得到了迅速的发展和应用。在国外,德国的MAlHAK、法国的TELEMAL、美国的SINCO和FOXBORO、英国的SCHLUBERGER及挪威等多家公司,都有振弦传感器的系列产品。国内从60年代起,先后研制开发了适合各种测试目的的多种振弦传感器的系列产品,如振弦式压力计、土压力计、空隙水压力计、应变计、测力(应力)计、钢筋计、扭力计、位移计、反力计、吊重负荷计、倾斜计等等。它们广泛应用于港口工程、土木建筑、道路桥梁、矿山冶金、机械船舶、水库大坝、地基基础等测试,已成为工程、科研中一种不可缺少的测试手段,显示出了其广阔应用和发展的前景。 2. 工作原理 振弦式传感器由受力弹性形变外壳(或膜片)、钢弦、紧固夹头、激振和接收线圈等组成。钢弦自振频率与张紧力的大小有关,在振弦几何尺寸确定之后,振弦振动频率的变化量,即可表征受力的大小。 现以双线圈连续等幅振动的激振方式,来表述振弦式传感器的工作原理。如图l所示,工作时开启电源,线圈带电激励钢弦振动,钢弦振动后在磁场中切割磁力线,所产生的感应电势由接收线圈送入放大器放大输出,同时将输出信号的一部分反馈到激励线圈,保持钢弦的振动,这样不断地反馈循环,加上电路的稳幅措施,使钢弦达到电路所保持的等幅、连续的振动,然后输出的与钢弦张力有关的频率信号。 振弦这种等幅连续振动的工作状态,符合柔软无阻尼微振动的条件,振弦的振动频率可由下式确定; 式中,f 0 ——初始频率; L——钢弦的有效长度i p一-钢弦材料密度; σ o ——钢弦上的初始应力。 由于钢弦的质量m、长度L、截面积S、弹性模量E可视为常数,因此,钢弦的应力与输出频率f 0 建立了相应的关系。当外力F未施加时,则钢弦按初始应力作稳幅振动,输出初频f 0 ;当施加外力(即被测力——应力或压力)时,则形变壳体(或膜片)发生相应的拉伸或压缩,使钢弦的应力增加或减少,这时初频也随之增加或减少。因此,只要测得振弦频率值f,即可得到相应被测的力——应力或压力值等。

各种传感器介绍

1、一种高灵敏度电阻式应变式传感器 从图2—17中可以看出来,当施加拉力时传感器的最大应变就在弓形弹性元件的中部,且弹性元件的上下表面的应变值符号是相反的。钢轴受力的应变值与弓形弹性元件中部的应

变值相比小了很多。实际应用在弓形弹性元件的中部钻有小孔,则在孔的边缘有应力集中,所以应变片应该分上下贴在弓形弹性元件的中间小孔的边上,四片组成一个全桥,既可以感受到最大的应变值,又可以实现温度自补偿,从而达到提高灵敏度的目的。

上图:传感器标定装置 2、电阻应变片 电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化的现象。 3、加速度传感器 类型一:压电式加速度传感器

某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个表面产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态。这种现象称为压电效应。当作用力方向改变时,电荷极性也随着改变。压电加速度传感器基于材料的压电特性,当压电传感器中压电晶体承受被测机械应力作用时,在它的两个极面出现极性相反但电量相等的电荷。可以把压电传感器看成一个静电发生器,如图4.35(a)所示。也可以把它视为两级板上聚集异性电荷,中间为绝缘体的电容器,如图4.35(b) 类型二:力平衡式加速度传感器

力平衡加速度计的敏感元件是附加在可动质量上的可变电容器。可动质量通过两个对称的簧片与仪器支架相连,可动质量与簧片构成一个典型的弹簧—振子系统。可动质量上有一个双面开口环状电极(动片),动片的上下各有一个与其平行的、相同形状的固定极板(定片),这三个极板构成了传感器的敏感元件—可变电容。可动质量的下面连着一个施加平衡力的线圈,线圈正好落在一个环形磁隙中,磁隙的磁场由新型强磁材料钕铁硼永磁铁产生。当被测物体运动时,电容器的动片和定片之间产生相对位移,该相对位移经电路变成电压信号,放大后由反馈电路以电流形式送给可动质量上的线圈,通电线圈与永磁场的相互作用产生一个与被测加速度施加给可动质量的大小相等、方向相反的安培力,这就是“力平衡”原理。加速度计的输出电压与反馈电流成比例,自然就与被测加速度成比例。 4、振弦式传感器 谐振式传感器是基于正反馈原理,有激励器、检测器、机械谐振器和放大器构成的机

相关文档