文档库 最新最全的文档下载
当前位置:文档库 › 多波束天线通道幅相一致性校正及实现(精)

多波束天线通道幅相一致性校正及实现(精)

多波束天线通道幅相一致性校正及实现(精)
多波束天线通道幅相一致性校正及实现(精)

多波束天线通道幅相一致性校正及实现

朱丽龚文斌杨根庆

(中科院上海微系统与信息技术研究所,上海 200050)

摘要:本文针对多波束天线接收机的通道幅相一致性校正,提出了一种基于自适应算法的校正方法并在FPGA 中实现了该方法。在满足系统要求的前提下,该方法不但实现起来相对容易,而且算法的精度和动态范围也有一定的保证。仿真和试验结果表明,该方法是可行的。关键词:多波束天线,通道失衡,幅相误差,最小均方误差,校正

1.引言

随着人们对卫星通信要求的不断提高,卫星通信技术得到了很大的发展。其中,卫星多波束天线目前己成为提高卫星通信性能、降低系统成本的一项关键性技术。

多通道接收机是DBF 天线系统中信号的必经之路,正是这种多接收通道的结构,使DBF 天线系统增加了幅度和相位误差的潜在来源。与多个天线阵列相连接的多个接收机通道必须要有很高的一致性,否则通道间的失配将严重影响数字波束系统的性能。对多通道间误差的校正正是星载数字多波束天线的关键技术之一。由于目前国内对星载DBF 天线的研究还处于初级阶段,所以需要更多的借鉴智能天线、自适应天线和雷达等领域已有的研究成果。

本文主要针对基于卫星应用的两维阵列DBF 天线系统,采用目前最常用的LMS 算法设计并在FPGA 中实现了对其前端射频多通道接收机的幅相校正系统,最后给出了测试结果。测试结果表明,这种采用定点数制的LMS 算法对系统的幅相误差具有较好的校正性能。

2.数字多波束天线的幅相校正原理

数字多波束天线的组成如图1所示。前端天线阵是由多个天线单元组成两维阵列,阵元接收的信号经射频前端电路、A/ D 转换电路、数字下变频器后送入数字波束形成器处理。[2][1]

设计一个六边形排列的7单元天线阵,A/D后端的数字下变频器和波束形成器均采用FPGA 实现。天线阵接收到的信号首先通过射频通道混频后得到中频信号,再将此模拟中频信号经过ADC 后得到数字中频信号,然后送入DDC 进行下变频;下变频后,每路信号分为正交的I、Q 两路,这些正交的信号再送入波束成形器中进行波束成形,最后的输出即为合成的波束。接收通道在制造时的各种误差、电路器件的选择,A/D的量化精度、DDC 的性能、I/Q两路的正交误差等因素都会引起信号幅度和相位的变化。为了能够正确的波束成形,达到系统的精度要求,就必须要对多通道接收机进行校正,校正系统原理图如下图2

所示。

图1 数字多波束天线的组成原理图图2 一个通道的校正原理框图

针对7单元的DBF 天线阵,我们可以选择其中一路RF 接收通道作为参考信道,在DBF 天线系统开机使用时,首先注入校正信号通过自适应滤波器对多通道接收机进行幅相一致性的校正,校正完毕后进入工作状态。考虑到器件老化、工作环境变化等问题,系统在使用过程中每隔一段时间还要进行一次自动校正。从多波束天线的原理图中可以看出,接收通道、A/D和DDC 都可能产生幅相误差,因此将自适应滤波器置于DDC 之后,这样就可以不具体讨论误差是由哪个模块产生的,而是直接对波束成形之前所有模块产生的累积误差进行校正。

3.自适应算法的比较和选择

根据自适应滤波算法优化准则的不同,自适应滤波算法可以分为两类最基本的算法:最小均方误差(LMS 算法和递推最小二乘(RLS 算法。目前常用的主要有以下几种:

①变步长自适应滤波算法

由于固定步长的自适应滤波算法在收敛速度、时变系统跟踪速度与收敛精度方面对算法

调整步长因子μ的要求是相互矛盾的,为了克服这一矛盾,人们提出了许多变步长自适应滤波算法,即在初始收敛阶段或未知系统参数发生变化时,步长应比较大,以便有较快的收敛速度和对时变系统的跟踪速度;而在算法收敛后,不管主输入端干扰信号v(n 有多大,都应保持很小的调整步长以达到很小的稳态失调噪声。

②RLS 自适应滤波算法

RLS 算法对输入信号的自相关矩阵Rxx(n)的逆进行递推估计更新,收敛速度快,收敛性能与输入信号的频谱特性无关。但RLS 算法的计算复杂度很高,所需存储量极大,不利于适时实现;倘若被估计的自相关矩阵Rxx (n)的逆失去了正定特性,这还将引起算法发散。

③变换域自适应滤波算法

Dentino 等1979年首先提出了变换域自适应滤波的概念,其基本思想是把时域信号转变为变换域信号,在变换域中采用自适应算法。这样就可以通过作某些正交变换使输入信号自相关矩阵的特征值发散程度变小,提高收敛速度。

④仿射投影算法

仿射投影算法最早由K. Ozeki 和T. Umeda 提出,它是能量归一化最小均方误差(NLMS 算法的多维推广。它的性能介于LMS 算法和RLS 算法之间,其计算复杂度比RLS 算法低。

除了上面介绍的自适应滤波算法之外,还有一些其它的算法,如:系数部分更新自适应滤波算法、LMF (RLF 算法、Leaky-LMS算法等。其主要思想是在自适应滤波算法的每次迭代中,仅仅自适应滤波器的部分系数被更新,这使得整个自适应滤波算法的计算量有所降低。

由上面的介绍可以看出,不同的自适应算法各有其优缺点。考虑到多波束天线的校正系统需要对多个射频接收通道进行校正,不能选择算法复杂、存储量大、占用资源多的算法,同时由于系统对实时性要求不高,因此可以采用收敛速度相对较

慢的自适应算法。综合各项要求,最终采用了LMS 自适应算法,该算法具有良好的收敛特性,结构简单,鲁棒性强。下[3]

面主要讨论LMS 自适应滤波器在FPGA 中的定点实现。

4.LMS自适应滤波器的FPGA 实现

4.1 LMS算法原理

基于最速下降法的最小均方误差(LMS 算法的迭代公式如下:

e (n =d (n ?X (n t ?W (n

W (n +1 =W (n +2?μ*e (n *X (n

W (n T L ??滤波器的阶数d (n ??期望输出值X (n =[x (n , x (n ?1... x (n ?L

+1 ]T e (n ??误差= [w (n 0, w (n 1... w (n L ?1]μ--步长因子

其中X(n表示时刻n 的输入信号矢量,W(n表示时刻n 的自适应滤波器的权系数。LMS 算法收敛的条件为:0 <μ< 1/λmax ,λmax是输入信号自相关矩阵的最大特征值。

4.2 LMS算法的FPGA 实现

4.2.1 算法中数制的确定

众所周知,精度是靠有效字长来保证的。全浮点制,能最大程度保证算法的精度和动态范围,但速度慢且无法在FPGA中实现;而传统的全定点制虽然速度快,但无法获得算法所需的精度,而这很有可能最终导致算法根本不收敛[5,6]。可见,合理的数制能兼顾算法的精度和动态范围。进入FPGA的7路数据在通过A/D 时保持了满量程最多的有效位,FPGA芯片内部采用18 位的硬件乘法器。因此,在资源够用的前提下,采用18位硬件乘法器来实现算法。

首先根据Matlab的仿真确定算法各步骤中的变量范围。由于进入FPGA的数据的大小范围是确定的,那么通过仿真可以得到各个中间变量的变化范围,这为后面确定各步骤的数制提供依据。改进的定点制与传统的定点制的不同点在于小数点定标和乘积的截取。根据仿真得到的动态范围就可以确定各变量的小数点定标。xi(n 取18bit,假设输入信号为 x=A*sin(n),其中A的变化范围为-2~+2,因此可以用两位来表示整数部分,将小数点定标在第14bit上,这样就可以在满足动态范围的前提下提供最好的精度。同样参考信号d(n也定标在第14bit上。根据仿真结果,wi(n的范围在-1~+1之间,因此它的小数点定标在第15bit

上。又 e(n=d(n-y(n,因此y(n的定标与d(n相同。具体如图3示。在算法的中间过程中,为了保证收敛性能,中间变量都尽量保持最大的精度,尽量减少经过乘法器后的数据截位。

图3 算法各中间变量的定标

4.2.2 LMS滤波器的FPGA实现

由于本文所设计的自适应滤波器是用于星载DBF天线的,因此其输入输出的数据位数都必须与整个天线系统兼容。根据系统要求,设计该滤波器为8阶,输入

信号x(n、输入期待响应d(n经A/D采样后为11bit,送入滤波器后首先进行数位扩展,将其扩展为18bit以确保运算中的精度。整个系统采用100M的片内时钟,滤波器的结构框架如下图4。

两个通道的信号同时送入滤波器中,一路作为基准信号d(n送入d延时器中,另外一路作为需要调整的信号x(n送入X寄存器中。由于本滤波器是8阶的,因此X寄存器采用的是8阶的移位寄存器。将X寄存器中的8个x数据同时送入Y累加器中,与8个滤波器系数W(n)相乘累加出Y。Y送入计算e的模块,需要注意的是d和Y必须针对同一个时刻,这样才能正确的计算出e(n,因此加入一个d 延时器使得d和Y在时序上对齐。将算好的e(n送入△W模块中,同样为了保持e (n和X (n的时序对齐,此处加入了X延时器。另外,为了减少乘法器的个数,将2μ取为1/32,即只要右移5位即可。最后将得到的一组△W送入更新W的模块中,计算出一组新的W(n+1。更新后的W(n+1再次送入Y累加器中,和 (n+1时刻的x值相乘后再进行y的累加。同时还将W(n+1送入更新W的模块,和△W(n+1一起进行下一次的W的更新。

图4 滤波器的框架结构 4.3 仿真结果假设输入信号均为单频信号, x(n = Ai * sin(ωt + ?i........(i = 1,2 ,频率为2MHz,滤波器系数的初始值全部为零,则两路信号的幅度不平衡度为ΔR = 20lg(A2 / A ,相位不平衡度为1 Δ ? = ?2 ? ? 1 ,收敛条件是e≤1×10-8。仿真结果见下表1。表1 8阶LMS滤波器仿真结果收敛时收敛时间△R(dB △φ(o (10 s) 5 -5 △R(dB △φ(o 间(10 s) 1.88 2.22 2.32 2.32 2.82 2.92 - 30 -1 μ1= 1/16 -2 60 90 30 60 90 1.03 1.17 1.22 1.28 1.47 1.52 μ2= 1/32 -2 -1 30 60 90 30 60 90 从上面的表格中可以看出,幅相误差相同的情况下,步长越大收敛时间越短(注意所选步长必须在满足收敛条件的步长范围内);而步长相同的情况下,幅相误差越大收敛所需时间越长。我们预期的目标是通过校正后,系统的幅度不平衡:≤ 0.1 dB,相位不平衡:≤

0.5°。通过仿真可以知道,在目前采用的定点数制的条件下,当通道间的幅度误差≥-2.38 dB、相位误差在(?π / 2 ~ π / 2 )时,该滤波器可以迅速将两个通道的幅相特性校正到一致,达到幅度不平衡:≤ 0.01 dB,相位不平衡:≤0.1°,满足

系统要求。 5.结束语本文的创新点在于分析并实现了一种基于自适应算法的DBF 天线射频接收通道校正方法及其FPGA实现。通过仿真和FPGA的测试可以看出,有限字长效应是用FPGA 进行数字信号处理算法的关键问题之一。本文提出的这种改进的定点算法不但实现起来没有全浮点制那么复杂,而且能满足系统的精度和动态范围的要求,可以达到快速收敛。参考文献 [1] WINSTON LI, XINPING HUANG, HENRY LEUNG, Performance Evaluation of Digital Beamforming Strategies for Satellite Communications. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 1 JANUARY 2004:12—26 [2] 邢明,王明飞,贾明利. WCDMA中LMS自适应天线阵的硬件实现[J].微计算机信息, 2005,10-2:127-128. [3]覃景繁,欧阳景正.一种新的变步长自适应滤波算法[J].数据采集与处理,1997,12(3:171-194. [4]Nurgun E , Filiz S. Wavelet transform based adaptive filter : analysis and new results[J ] . IEEE Trans . on SP, 1996 , 44 (9 : 2163 - 2168. [5]朱亮,韩方景,张尔扬,陈国良.基于FPGA的定点LMS算法的实现[J] .国防科技大学学报,2005 ,27(4 :62 - 65. [6] 冯成燕 , 吴援明 , 刘刚 , 祝正威 . 基于改进NLMS 算法的通道校正技术研究 [J] . 信号处理,21(6:649 - 652.

多波束天线通道幅相一致性校正及实现(精)

多波束天线通道幅相一致性校正及实现 朱丽龚文斌杨根庆 (中科院上海微系统与信息技术研究所,上海 200050) 摘要:本文针对多波束天线接收机的通道幅相一致性校正,提出了一种基于自适应算法的校正方法并在FPGA 中实现了该方法。在满足系统要求的前提下,该方法不但实现起来相对容易,而且算法的精度和动态范围也有一定的保证。仿真和试验结果表明,该方法是可行的。关键词:多波束天线,通道失衡,幅相误差,最小均方误差,校正 1.引言 随着人们对卫星通信要求的不断提高,卫星通信技术得到了很大的发展。其中,卫星多波束天线目前己成为提高卫星通信性能、降低系统成本的一项关键性技术。 多通道接收机是DBF 天线系统中信号的必经之路,正是这种多接收通道的结构,使DBF 天线系统增加了幅度和相位误差的潜在来源。与多个天线阵列相连接的多个接收机通道必须要有很高的一致性,否则通道间的失配将严重影响数字波束系统的性能。对多通道间误差的校正正是星载数字多波束天线的关键技术之一。由于目前国内对星载DBF 天线的研究还处于初级阶段,所以需要更多的借鉴智能天线、自适应天线和雷达等领域已有的研究成果。 本文主要针对基于卫星应用的两维阵列DBF 天线系统,采用目前最常用的LMS 算法设计并在FPGA 中实现了对其前端射频多通道接收机的幅相校正系统,最后给出了测试结果。测试结果表明,这种采用定点数制的LMS 算法对系统的幅相误差具有较好的校正性能。 2.数字多波束天线的幅相校正原理

数字多波束天线的组成如图1所示。前端天线阵是由多个天线单元组成两维阵列,阵元接收的信号经射频前端电路、A/ D 转换电路、数字下变频器后送入数字波束形成器处理。[2][1] 设计一个六边形排列的7单元天线阵,A/D后端的数字下变频器和波束形成器均采用FPGA 实现。天线阵接收到的信号首先通过射频通道混频后得到中频信号,再将此模拟中频信号经过ADC 后得到数字中频信号,然后送入DDC 进行下变频;下变频后,每路信号分为正交的I、Q 两路,这些正交的信号再送入波束成形器中进行波束成形,最后的输出即为合成的波束。接收通道在制造时的各种误差、电路器件的选择,A/D的量化精度、DDC 的性能、I/Q两路的正交误差等因素都会引起信号幅度和相位的变化。为了能够正确的波束成形,达到系统的精度要求,就必须要对多通道接收机进行校正,校正系统原理图如下图2 所示。

2.4G 天线设计完整指南(原理、设计、布局、性能、调试)

本文章使用简单的术语介绍了天线的设计情况,并推荐了两款经过测试的低成本PCB天线。这些PCB天线能够与PRoC?和PSoC?系列中的低功耗蓝牙(BLE)解决方案配合使用。为了使性能最佳,PRoC BLE和PSoC4 BLE2.4GHz射频必须与其天线正确匹配。本应用笔记中最后部分介绍了如何在最终产品中调试天线。 1、简介 天线是无线系统中的关键组件,它负责发送和接收来自空中的电磁辐射。为低成本、消费广的应用设计天线,并将其集成到手提产品中是大多数原装设备制造商(OEM)正在面对的挑战。终端客户从某个RF产品(如电量有限的硬币型电池)获得的无线射程主要取决于天线的设计、塑料外壳以及良好的PCB布局。 对于芯片和电源相同但布局和天线设计实践不同的系统,它们的RF(射频)范围变化超过50%也是正常的。本应用笔记介绍了最佳实践、布局指南以及天线调试程序,并给出了使用给定电量所获取的最宽波段。

图1.典型的近距离无线系统 设计优良的天线可以扩大无线产品的工作范围。从无线模块发送的能量越大,在已给的数据包错误率(PER)以及接收器灵敏度固定的条件下,传输的距离也越大。另外,天线还有其他不太明显的优点,例如:在某个给定的范围内,设计优良的天线能够发射更多的能量,从而可以提高错误容限化(由干扰或噪声引起的)。同样,接收端良好的调试天线和Balun(平衡器)可以在极小的辐射条件下工作。 最佳天线可以降低PER,并提高通信质量。PER越低,发生重新传输的次数也越少,从而可以节省电池电量。 2、天线原理 天线一般指的是裸露在空间内的导体。该导体的长度与信号波长成特定比例或整数倍时,它可作为天线使用。因为提供给天线的电能被发射到空间内,所以该条件被称为“谐振”。 图2. 偶极天线基础 如图2所示,导体的波长为λ/2,其中λ为电信号的波长。信号发生器通过一根传输线(也称为天线馈电)在天线的中心点为其供电。按照这个长度,将在整个导线上形成电压和电流驻波,如图2所示。 输入到天线的电能被转换为电磁辐射,并以相应的频率辐射到空中。该天线由天线馈电供电,馈电的特性阻抗为50Ω,并且辐射到特性阻抗为377Ω的空间中。

信道状态信息的通道不一致性误差校正测向方法与相关技术

图片简介: 本技术介绍了信道状态信息的通道不一致性误差校正测向方法,属于室内定位技术领域。实现步骤如下:对CSI测向算法进行建模;利用单天线数 据计算直达波飞行时间ToF;成对天线间CSI数据平滑处理增加接收阵列孔径;利用直达波飞行时间ToF和直达波入射角度先验信息进行成对天线间 幅相误差计算;根据离线数据建立不同来波方向情况下幅相误差表格,在线过程中对照表格动态选取Γ值,进行通道幅相误差校正和迭代测向。本 技术解决了商用Wi Fi网卡复杂的通道间幅相误差校正问题,保证了Wi Fi网卡CSI测向的精度,有效降低基于商用Wi Fi网卡的室内定位系统部署使用 的复杂度和成本,应用前景广阔,而且操作简单、不需要专用设备、能有效适应室内多径环境。 技术要求 1.信道状态信息的通道不一致性误差校正测向方法,其特征在于,包括以下步骤: 步骤一、信道状态信息获取; 步骤二、接收信号模型建立,根据阵列信号处理相关知识,将接收信号建模为X(t)=AS(t)+N(t); 步骤三、直达波飞行时间ToF的计算,使用CSI数据同一天线的各子载波间的相位差计算出直达波飞行时间ToF; 步骤四、成对天线间CSI数据进行平滑处理增加天线孔径; 步骤五、通道间幅相误差计算; 步骤六、在线迭代测向,依据离线过程不同来波方向下幅相误差值,我们对在线数据迭代测向。 2.根据权利要求1所述的信道状态信息的通道不一致性误差校正测向方法,其特征在于,所述的直达波飞行时间ToF的计算具体为: ToF在子载波间引入可测量的相移,相邻子载波之间的相移函数可表示为可以得到阵列流型为A= [a(τ1),a(τ2),...,a(τN)],其中导向矢量为使用空间谱理论对CSI数据进行ToF值的求解。 3.根据权利要求1所述的信道状态信息的通道不一致性误差校正测向方法,其特征在于,所述的成对天线间CSI数据进行平滑处理以增加天线孔径具体为: 选取两个天线进行空间平滑处理可以避免通道幅相误差值Γ与AoA、ToF的耦合,进行成对天线间通道幅相误差Γ的独立求解,同时增加接收天线孔径,设一个天线平滑之后阵元个数为L,则成对天线平滑之后CSI矩阵的快拍数为Nsub-L+1,天线1对与天线i平滑结果如下所示:

通道校准技术的研究

通道校准技术的研究 【内容摘要】:本文介绍了校正和均衡的基本算法,通过仿真验证了理论的正确性。工程应用中硬件资源有限,文中分析了校正技术和均衡技术的性能差异,在满足良好性能的条件下以校正替代均衡减少计算复杂度。 【英文摘要】:In this paper, the basic algorithm of correction and equalization is introduced, and the correctness of the theory is verified by simulation. The hardware resources are limited in engineering applications. The performance differences between the correction technique and the equalization technique are analyzed in this paper. In order to satisfy the good performance, the equalization is corrected and the computational complexity is reduced 【关键字】:校准;时域;频域. 1.窄带校正技术 窄带系统中,通道内部的频率特性相同,失配现象主要由通道间的幅相特性不匹配引起。任意选取一路通道作为参考通道,则其余通道都称为失配通道。 ref s '()s()h() s '()s()h () i i t t t t t t =*=* (1.1.1) 分别取各通道频点的频率响应最大值 ef j ref _max ref ref_max j _max _max S'max{S '()}e , 1...K S'max{S '()}e , 1...K r i i i i k A k k A k ??====== (1.1.2) 其比值为 ef j 'ref _max ref_max j j ' _max _max S e e S e r i i i i i A a A ???= = (1.1.3) 从式(1.1.3)可以看出,将失配通道输出信号的频率响应乘以j e i i a ?就能使各通道输出信号的频率响应与参考通道输出信号的频率响应相等。如此,可以认为通道失配现象得到了校正。 2.宽带均衡技术 2.1 时域基本算法 图3-1为通道均衡时域算法的原理实现框图。

(整理)天线原理与设计习题集解答_第8_11章.

第八章 口径天线的理论基础(8-1) 简述分析口径天线辐射场的基本方 法。 答:把求解口径天线在远区的电场问题分为两部分: ①. 天线的内部问题; ②. 天线的外部问题; 通过界面上的边界条件相互联系。 近似求解内部问题时,通常把条件理想化,然后把理想条件下得到的解直接地或加以修正后作为实际情况下的近似解。这样它就变成了一个与外部问题无关的独立的问题了。 外部问题的求解主要有: 辅助源法、矢量法,这两种是严格的求解方法; 等效法、惠更斯原理法、几何光学法、几何绕射法,这些都是近似方法。 (8-2) 试述几何光学的基本内容及其在口径天线设计中的应用。 答:在均匀的媒质中,几何光学假设能量沿着射线传播,而且传播的波前(等相位面)处处垂直于射线,同时假设没有射线的区域就没有能量。 在均匀媒质中,射线为直线,当在两种媒质的分界面上或不均匀媒质传播时,便发生反射和折射,而且完全服从光的反射、折射定律。 B A l nds =? 光程长度: 在任何两个给定的波前之间,沿所有射线路径的光程长度必须相等,这就是光程定律。''PdA P dA = 应用: ①. 可对一个完全聚焦的点源馈电的天线系统,求出它在给定馈源功率方向图 为P(φ,ξ)时,天线口径面上的相对功率分布。 ②. 对于完全聚焦的线源馈电抛物柱面天线系统,口径上的相对功率分布也可 用同样类似的方法求解。 (8-3) 试利用惠更斯原理推证口径天线的远区场表达式。 解:惠更斯元产生的场: (1cos )2SP j r S SP jE dE e r βθλ-?= ?+?? 222)()(z y y x x r S S SP +-+-= r , r sp >>D (最大的一边)

变频通道幅相一致性测试方案介绍

变频通道幅相一致性测试 技术方案 2015 年 1 2 月 1 5日 张德锋

1 引言 有源相控阵(AESA)雷达具有快速波束成形、作用距离远、测量精度高及同时支持多种功能等优势,广泛应用于国防、航空航天应用中。有源相控阵雷达一般包含许多个T/R组件,为了保证相控阵雷达的总体性能,需要对T/R组件的性能严格把关。 图1. 有源相控阵(AESA)雷达 有源相控阵雷达具有成百上千个辐射单元——天线,每个天线连接一个T/R组件,每个T/R组件均包含发射和接收通道,以及移相器、衰减器等部件,典型的T/R 组件结构如图2所示。相控阵雷达通过调整T/R组件的移相器、衰减器来改变每一路信号的相位和幅度,从而实现波束的快速扫描。 发射链路 天线端 接收链路 图2. 典型的T/R组件结构示意图

对于相控阵雷达,只有精确已知各通道之间的幅度和相位差异,才能够准确地作相应的补偿 (基带补偿或者通过衰减器和移相器补偿),从而实现精确波束成形。如何精确地实现通道间的幅相差异测试,或者称为幅相一致性测试,将是保证相控阵雷达性能的关键。T/R组件中的发射通道和接收通道往往包含变频部件,通道的输入和输出频率不同,这将使得测试更加复杂。 针对以上测试,罗德与施瓦茨公司可提供完善的测试解决方案。凭借出色的射频性能和丰富的测试功能,罗德与施瓦茨公司的矢量网络分析仪可完美地完成变频通道幅相一致性测试,尤其是多端口矢量网络分析仪,将是多通道幅相一致性测试的理想选择。 2 变频通道幅相一致性测试 如果待测通道不包含变频器件,则直接测试每个通道的S参数得到相移和插损,便可以求出通道之间的幅相一致性。 如果待测通道包含变频器件,则通常有三种测试方法: (1) 基于R&S ZVA矢量网络分析仪的双音测试技术,可确定每个通道的相位及损 耗,再与参考通道相比较,从而得到通道间幅相一致性; (2) 直接将每个变频通道输出信号的相位和幅度与参考通道比较,从而得到通道间 幅相一致性。 (3) 使用参考混频器确定通道间幅相一致性。 下面对这三种方法分别加以描述。 2.1 基于双音测试技术确定通道间幅相一致性 基于R&S ZVA矢量网络分析仪的双音测试技术,专门针对变频模块及通道群时延的测试,该技术是由罗德与施瓦茨公司提出的,图3和图4分别给出了原理示意图和典型的测试连接图。双音测试技术,顾名思义,需要两个不同的激励信号参与测试,因此需要四端口ZVA,其基本原理:ZVA内部的两个激励源通过端口3的定向耦合器实现双音合路,然后再馈入端口1,端口1再输出双音信号至待测件;在待测件输入侧,双音信号存在相位差,其输出侧也存在相位差,利用输入侧相位差和输出侧相位差的差异及双音频率间隔便可以计算出群时延。该方法的优点:对于本振不可接入的变频器模块或通道,同时灌入双音信号,可消除本振对待测件输出信号相位的影响。 除了可以测试通道群时延外,该方法还可以测试相位及变频损耗,因此,可以用于测试通道间的幅相一致性。

阵列通道不一致性误差快速有源校正算法

第37卷第9期电子与信息学报 Vol.37 No.9 2015年9月 Journal of Electronics & Information Technology Sept. 2015 阵列通道不一致性误差快速有源校正算法 张柯①程菊明①付进*② ①(许昌学院信息工程学院许昌461000) ②(哈尔滨工程大学水声工程学院哈尔滨150001) 摘要:针对阵列通道不一致性引起的幅相误差校正问题,基于多级维纳滤波器(MSWF),该文提出幅相误差快速校正的简化的多级维纳滤波器(SMSWF)算法。SMSWF算法利用校正源的方位和波形信息对阵列幅相参数进行估计,无需估计协方差矩阵和进行特征值分解,大大地减小了计算量,且具有与特征分解方法相同的幅相参数估计性能。研究发现,单个信源入射到阵列且信源波形已知时,SMSWF算法获得的信号子空间等价于特征分解法得到的信号子空间,这表明SMSWF算法能够替代特征分解法,从而极大减小基于特征分解法的信号处理方法的计算量。 大量计算机仿真和消声水池试验验证了SMSWF算法的优越性能。 关键词:信号处理;阵列校正;有源校正;幅相误差;多级维纳滤波器 中图分类号:TN911.7 文献标识码:A 文章编号:1009-5896(2015)09-2110-07 DOI: 10.11999/JEIT141651 Fast Active Error Calibration Algorithm for Array Chanel Uncertainty Zhang Ke①Cheng Ju-ming①Fu Jin② ①(School of Information Engineering, Xuchang University, Xuchang 461000,China) ②(College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001,China) Abstract:Aiming the error calibration for the array channel uncertainty, a new fast algorithm named Simplified Multi-Stage Wiener Filter (SMSWF) based on the Multi-Stage Wiener Filter (MSWF) is proposed. The SMSWF takes the advantages of the DOA and the waveform of the cooperative source to estimate the gain and the phase factors, and it does not need to estimate the covariance matrix and the eigendecomposition operations. Compared with the eigendecomposition algorithm, the SMSWF has the same performance for estimating gain and phase factors while greatly reduce the complexity. The researches show that if a single source with a known waveform incidence on the array, the signal subspaces obtained by the SMSWF and one obtained by the eigendecomposition are equipollent, which demonstrate that the SMSWF is able to replace the eigendecomposition. The complexity of signal processing methods based on the eigendecomposition can greatly be reduced by replacing the eigendecomposition with the SMSWF. The extensive computer simulations and experiment in anechoice water tank show the superiori performance of the proposed algorithm. Key words:Signal processing; Array calibration; Active calibration; Gain and phase errors; Multi-Stage Wiener Filter (MSWF) 1引言 在测向系统中,生产工艺、安装误差以及平台扰动等使传感器阵列产生幅相误差、阵元位置误差以及互耦现象,这将导致实际的阵列导向矢量与理想的阵列导向矢量有所不同。在这种情况下,常规的高分辨波达方向(Direction Of Arrival, DOA)估计技术,诸如最小方差无畸变响应(Minimum Variance Distortionless Response, MVDR[1]) ,多重信号分类 2014-12-29收到,2015-03-31改回,2015-06-11网络优先出版 国家自然科学基金(51209059, 51279043)资助课题 *通信作者:付进zhangke1127@https://www.wendangku.net/doc/3d12906742.html, (MUltiple SIgnal Classification, MUSIC [2]),旋转不变子空间(Estimation of Signal Parameters via Rotational Invariance Technique, ESPRIT[3])和最大似然(Maximum Likelihood, ML[4])等算法的测向性能将严重下降甚至失效。因此,在使用传感器阵列进行DOA估计之前,阵列误差的校正工作是不可或缺的。 在阵列误差校正领域,众多国内外学者对阵列通道不一致所引起的幅相误差校正问题进行了深入的研究[511] -。文献[5]分析了通道幅相误差对MUSIC 算法空域谱及分辨性能的影响,推导了存在幅相误差时MUSIC算法空域谱的一阶统计表达式,揭示

基于相控阵天基测控通信的新颖通道幅相校正算法

基于相控阵天基测控通信的新颖通道幅相校正算法 赵奕 杨艳秋 王宗 重庆市公安局 摘要:针对相控阵天基测控通信卫星天线□径尺寸、转发器功率受限等特点,提出了一种基于PN 编码和无数据调制 BPSK 的校正算法。同时,结合多周期相干积累,在低信噪比下保证通道幅相校正精度。从仿真试验可以看出, 该方法具有低截获、抗阻塞干扰等特点。 关键词:相控阵技术天趣信校准艶删器BPSK 校正 引言 现代通信技术的快速发展,对警务工作提出了新的技 术要求,也是新时期警务通信接入业务的需求。因此,相控 阵测控技术逐渐成为警务、军事等通信系统中的一个研究热 点。目前在警用无人侦查机上已经得到广泛使用,相信在不 久的将来必将更广泛地应用到其他警务通信行业中。通道幅 相校正技术是相控阵天基测控通信的关键技术之一,其成功 与否将直接影响相控阵天线的波束形成质量和波束指向精 度,直接关系到中继卫星与航天飞行器之间通信链路的建 立。通常,雷达相控阵系统通过高信噪声比(约20dB~ 30dB)来保证通道幅相校正精度:幅度校正精度W0.8dB (rms),相位校正精度w 3° (rms),但对于相控阵天基 测控通信系统既要求应信号具有低截获、抗阻塞干扰的特 点,又受到卫星天线口径尺寸、转发器功率受限的局限,使 得校正信号信噪比低(约-10dB ~-6dB ),因此点频连续 波校正技术不适合相控阵天基测控通信。 鉴于此,本文提出了一种基于PN 编码+无数据调制 BPSK 校正的算法,并结合多周期相干积累在-10dB~-6dB 信噪比下,保证通道幅相校正精度:幅度校正精度WO.2dB (rms ),相位校正精度w 1.50 (rms ) o _、系统模型 相控阵天基测控通信校正模型如下: 图1相控阵天基测控通信校正模型 前向/返向链路校正时,校正天线接收/发射校正信 号,校准数据处理器CDPE ( Calibration Data Process Equiment )进行前向/返向链路各通道幅相差估计,并将估 波束控制单元进行前向/返向波束权系数修正。 前向/返向校正信号采用PN 码(m 序列)+无数据调制 BPSK 信号形式,即: S 0(t)=A - c°(t) ? COS[a>?+0o ] 其中&为校正信号幅度,0。为频综相差,c°(t)为PN 编码 序列,取值为诫者-1。 下面针对返向链路做具体数学分析。校正信号经校正 天线发射后到达相控阵(Mounted on TDRS )各阵列单元 的时间会有不同。假设到达第丘个天线单元时延为%第 匕个天线单元接收到的信号为: Ek(t)=A 0 ? Co"-%) ? cos[a )(t-80J[)+e 0]+n t (0设两个相距最远单元之间的波程差为: Oiff.wrMAX^-^, ij=0,1,…,30 2ns, 对于PN 码片宽度而言可忽略不计),对应造成的空间相差 札*是[02可内任意值,从而上式可改写为: EQ=& - C 0(t-80J ) ? * =1,…,30n(f ) 噪声之和,两者皆为平稳的高斯随机过程。 校正信号被接收后经FDM 合成、放大、变频后由Ka 频 段天线传发回地面,地面变频后经FDM 分离还原为30路通 道信号送至CDPE O 在经过了如此长的链路传输后,信号 被附加了时延、幅度以及相位失真。CDPE 输入端第k 个通 道的校正信号为: cos[a )ff i+60+<|>0ii +i|jJts/G7 - n'(t) 其中3”为接收中频频率,G/”屮*表示第k 个天线单元 32懂察覘3 2019年第5 期

一种阵列天线幅相误差校正方法设计

图1M 阵元阵列天线图Fig.1M -antenna array 一种阵列天线幅相误差校正方法设计 魏婵娟,刘鹏 (中国空间技术研究院航天恒星科技有限公司北京100086) 摘要:阵列信号处理是当前信号处理的热门方向,为信号处理带来极大的方便,阵列信号处理中的各通道不一致问题将会给阵列信号处理带来影响,很多文献中介绍过关于自适应幅相误差校正的理论及方法,但实现起来都比较耗费资源和时间,且效果有待实践验证。提出一种工程上可实现且计算量较小的通道校正方法-查表法。通过仿真,结果表明此方法可以对特定来向的有用信号进行较为准确的校正。 关键词:阵列信号;通道校正;查表法 中图分类号:TN91文献标识码:A 文章编号:1674-6236(2012)24-0047-04 Comparison of two adaptive anti -jamming algorithm of navigation reciever WEI Chan -juan ,LIU Peng (Space Star Technology Co.China ’s Academy of Space Technology ,Beijing 100086,China ) Abstract:Array signal processing is a promising aspect of digital signal processing ,it brings much convenience to digital signal processing.But the difference between each channel is a big problem in Array signal processing ,which must be eliminated some times.We can find a lot of calibration methods of the amplitude and phase error among RF channels in many papers ,but most of them need too much computation and time ,and the effect is unknown.A new calibration method -look up table method is put forward ,which are very easy to realize.The MATLAB simulation result reflect its serviceability. Key words:array signal ;amplitude and phase error elimination ;look up table method 收稿日期:2012-06-09稿件编号:201206069 作者简介:魏婵娟(1987—),女,河北石家庄人,硕士研究生。研究方向:信号与信息处理。 随着阵列信号处理技术的发展,多通道接收机被广泛应 用。在实际的阵列天线接收机系统中,各通道间所表现出的 幅相误差模型由多个部分多种形式的误差模型共同作用。一 些情况下接收机仅对特定来向的有用信号感兴趣,只需有用 信号方向的幅相误差被消除即可,无需对所有的信号进行校 正。本文在介绍信号模型及误差模型的基础上,介绍查表法 进而设计出其具体实现方法,并通过仿真验证其有效性。 1 阵列模型1.1阵列信号模型 以M 阵元有核均匀圆阵为例进行阵列信号模型分析。其 阵元分布如图1所示。 M 个阵元位于同一平面内,编号为0的阵元位于圆心, 编号为1~M -1的阵元均匀分布于半径为R 的圆周上。以原 点阵元接收信号为基准,假设信号入射方向为(θ,φ),则m 阵 元接收到的信号与原点接收信号的相位差准m 为[1]:准0(θ,φ)=0, 准m (θ,φ)=2πλR sin θcos[φ-2π(m -1)M-1]m =1,2,…M -1(1) 阵列对(θ,φ)来向信号的响应矢量可表示为:a (θ,φ)=[1,e -j 准1,e -j 准2,…,e -j 准M -1]T (2) x m (n )表示m 阵元接收到的信号,其中设阵元0接收到的信号x 0(n )=s (n )(文中信号均为窄带信号),则可以将阵列接收信号表示为:x (n )=[x 0(n ),x 1(n ),…x M -1(n )]T =a (θ,φ)s (n )(3)可以看出,阵列信号中包含了信号的来向信息,与天线阵元布局形状及阵元间距有关。电子设计工程Electronic Design Engineering 第20卷Vol.20第24 期No.242012年12月Dec.2012 -47-

多通道接收机幅相校准测试系统的设计

多通道接收机幅相校准测试系统的设计 时间:2013-09-26 来源:作者: 1.引言 现代雷达系统为了获得良好的性能,在强杂波环境中检测目标,通常采用将接收到的射频回波信号下变频到中频,再经正交解调器分解为I、Q信号。但是由于电路的不对称、各支路所选器件的不完善以及雷达工作频率和周围温度等环境的变化导致各通道I/Q支路的幅相特性不平衡及通道间的幅度相位不一致,从而造成系统的虚警或者增大系统测量误差。因此,各通道I分量与Q分量两路信号的幅相一致性指标以及通道间的幅相一致性指标是影响接收系统性能的主要因素之一。 2.幅相校准测试系统的校准原理 雷达接收单元采用5通道工作体制,工作频率范围覆盖0.05GHz~20GHz,为了解决宽带接收条件下的幅度相位一致性问题,接收单元采用在通道中插入相位均衡网络和幅度调节网络的方法来进行幅相补偿,实现该各通道间的幅相一致性能。图1是接收单元内部射频信号到中频信号的简单处理流程。5路线性通道的每个支路由接收前端,滤波器和开关电路、通道中频处理电路、AGC控制电路、正交相检电路、相位均衡网络和幅度调节网络等组成。接收通道设计时,提高中频接收机增益的预留量,采用程控衰减器进行预衰,实际操作中作为调节网络实现幅度调节功能。 3.幅相校准测试系统的组成 3.1 幅相校准测试系统的硬件组成 幅相校准测试系统以测控计算机为核心,包括了射频信号源,数字示波器,程控多路开关以及用于智能仪表连接的GPIB接口卡,系统框图如图2所示。测控计算机采用研华IPC610工控机,射频信号源为HP83732B,可提供10MHz~20GHz 频率范围的射频信号输出。数字示波器采用Agilent 54845,具有4通道,1GS采样,500M带宽,同时支持相位比较功能。在系统中使用NI公司GPIB-USB-A接口卡,实现USB到GPIB总线的转换,该卡可直接插到计算机的USB接口,方便地将示波器、信号源等仪器经GPIB总线与计算机相连。

一种高速多通道A_D幅相一致性修正的实现方法(精)

第32卷第6期2011年6月 微计算机应用MICROCOMPUTER APPLICATIONS Vol. 32No. 6Jun. 2011 一种高速多通道A /D 幅相一致性修正的实现方法 冀映辉 1,2 蔡炜 1,2 陈铭 2 (1中国科学院声学研究所北京1001902 北京中科海讯电子科技有限公司 北京100107) 摘要:相控阵雷达系统中多个A /D通道之间幅度、相位特性存在的不可避免的差异,降低了后续雷达数字信号处理使用数据源的精确度,从而影响了雷达系统的分辨率。针对这一问题,作者提出了一种自适应修正多A /D通道之间幅相不一致性的方法。实验证明该方法实现简单、修正结果较好、有较强的工程应用价值。关键词: 相控阵雷达 多通道A /D

幅相不一致性修正 数字下变频 Design of RapidIO user -Level Communication Interface and Its Improvement JI Yinghui 1,2,CAI Wei 1,2 ,CHEN Ming 2 (1Institute of Acoustics ,Chinese Academy of Sciences ,Beijing 100190,China , 2 Beijing Zhong Ke Hai Xun Electronics Technology Co. . Ltd. Beijing ,100107,China ) Abstract :In phased array radar system ,multiple A /Dchannels have different amplitude and phase characteristics unavoidably. This difference reduces source data accuracy in radar digital signal processing and has seriously affecting on phased radar resolution. In or-der to solve this problem , the author proposes an adaptive correction method which can revise this difference among different A /Dchan-nels. Experiment shows that this method is simple to realization ,has excellent correction results and Engineering applications. Keywords :phased array radar system ;multiple A /Dchannels ;difference amplitude and phase characteristics revise ;DDC 在相控阵雷达信号处理系统中,每个阵面中的多个阵元需要同时接收雷达的回波信号。中频回波信号

天线原理与设计期中考试资料

西南交通大学2012-2013 学年第( 2 )学期期 中考试试卷 课程代码 3143373 课程名称 天线原理与设计 考试时间 90分钟 阅卷教师签字: 一. 判断题:(20分)(正确标√,错误标?,每题2分) 1. 元天线的方向性系数为1.5。(√) 2. 元天线的远区辐射场是平面波。(?) 3. 在功率方向图中,功率为主瓣最大值一半对应两点所张的 夹角就是主瓣宽度。(√ ) 4. 侧射式天线阵须满足各单元馈电幅度和相位均相等。(√ ) 5. 坡印亭矢量法可以求出天线的辐射阻抗。(? ) 6. 对称振子的平均特性阻抗愈小,其频率特性就愈好。(√ ) 7. 对称振子的谐振长度总是略大于0.25和0.5。(? ) 8. 右旋圆极化天线可以接收左旋圆极化天线发射的信号。 (? ) 9. 要使接收天线接收到的功率达到最大,需满足阻抗匹配和 班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

极化匹配。(√ ) 10.笼形天线设计增加了阻抗频带宽度。(√ ) 二. 填空题:(30分,每空2分) 1.在场强方向图中,主瓣宽度是指场强大小下降到最大值的( 0.707 )倍处对应的两点之间的夹角。 2. 在功率方向图中,主瓣宽度是指功率大小下降到最大值的( 0.5 )倍处对应的两点之间的夹角。 3. 在分贝方向图中,主瓣宽度是指场强的分贝值下降到(-3 )dB 处对应的两点之间的夹角。 4.当2/(1.44)l λ≤时,对称阵子的最大辐射方向在0 90m θ=。 5.当2/ 1.44l λ≤时,对称阵子的最大辐射方向在 (90)m θ=。 6.半波天线的归一化方向图()cos cos 2( )sin F πθθθ ?? ???=, 方向性系数(1.64)D =,输入阻抗(73.142.5)Z j =+Ω。 7.间距为 d 的二元等幅同相(1,0)m α==阵因子 ()cos ,(2cos )a d f πθ θ?λ =。 8.间距为d 的二元等幅反相(1,)m απ==阵因子 ()cos ,(2sin )a d f πθ θ?λ =。 9. 间距为d 的均匀直线式N 元天线阵的阵因子

天线原理与设计 讲义

第八章 口径天线理论基础 在第七章以前我们讨论的是线状天线,其特点是天线呈直线、折线或曲线状,且天线的尺寸为波长的几分之一或数个波长。所构成的基本理论称之为线天线理论。既使是第七章的开槽缝隙天线,在分析时也是借助了缝隙天线的互补天线—金属线天线来分析。 在实际工作中,还将遇到金属导体构成的口径天线和反射面天线。有时我们统称为口面天线。它们包括:喇叭天线、透镜天线、抛物面天线、双反射面的卡塞格伦天线等。见P169图8-1。它们的尺寸可以是波长的十几到几十倍以上。 口面天线的分析模型如图8-1所示: 图8-1 口面天线的分析模型 S ′为天线金属导体面,为开口面,S S ′+构成一个封闭面,封闭面内有一源。 S 对这样一个分析模型,要求解空间某点p 处的电磁场E P 、H P 。它们可描述为由两部分组成:一部分是源的直达波,一部分是由天线导体面上感应电流产生的散射场。这种分析方法我们称之为面电流法。面电流法对反射面天线有效,它是分析反射面天线的方法之一。但是,面电流法对喇叭天线、波导口天线一类的口径天线无效,或者说处理很难。我们可采用口径场法。 口径场法步骤: 1、解内问题,即由场源求得口面上的场分布; 2、解外问题,即由口面上场分布求解远区辐射场。 由此可见,反射面天线也可用口径场法分析。 喇叭天线一类:口径场法; 反射面天线一类:口经场法,面电流法。(近似方法) 有的反射面天线如抛物环面,由于口径场不易确定,还只得用面电流法。 口径场法和面电流法都是近似的方法,它们只能求出口径面前方半空间的辐射场,口面后方半空间的场无法求得。实际上口面天线的外表面及口径边缘L 上均有感应电流。这部分电流就是对口面天线后向辐射的主要贡献。但通常的做法是采用几何绕射理论,求由边缘L 产生的绕射。 值得说明的是,口面天线的边缘绕射场与前方半空间的场相比是微不足道的。 如果采用口径场法,那么,现在的问题是:能否用口径天线口面上的场分布来确定天线辐射场?回答是肯定的,这就须由惠更斯—菲涅尔原理来说明。

天线原理与设计习题集解答-第2章

第二章 天线的阻抗 (2-1) 由以波腹电流为参考的辐射电阻公式:220 30 (,)sin r R d f d d π π ?θ?θθ?π = ? ? 计算对称半波天线的辐射电阻。(提示:利用积分201cos ln(2)(2)x dx C Ci x πππ-=+-?,式中,0.577, 023.0)2(-=πCi ) 解:半波振子天线的辐射方向图函数为 cos(cos ) 2(,)sin f π θθ?θ =, 则 2222000cos (cos )301cos(cos )2sin 60(cos )sin 2(1cos ) r R d d d ππππθπθ?θθθπθθ+==--??? 011130()[1cos(cos )](cos )21cos 1cos d ππθθθθ=+++-? 01cos(cos )1cos(cos )15[](cos )1cos 1cos d ππθπθθθθ++=++-? 01cos[(1cos )]1cos[(1cos )]15(cos )1cos 1cos d ππθπθθθθ -+--=++-? 1cos[(1cos )] 15[(1cos )](1cos )d ππθπθπθ-+=++? 01cos[(1cos )]15[(1cos )](1cos )d ππθπθπθ--+--? 20 1cos 215x dx x π -=?? 30[ln(2)(2)]C Ci ππ=+- 73.1()=Ω (2-2) 利用下式求全波振子的方向性系数 r R f D ) ,(120),(2?θ?θ= , θβθβ?θsin cos )cos cos(),( -=f 若全波振子的效率为5.0=a η,求其最大增益的分贝数和3/πθ=时的方向性系数。 解:(1) 求增益(即最大辐射方向上的方向性系数与效率的积) 全波振子半长度为/2l λ=,则 cos(cos )1()sin f πθθθ +=,max /2()|2f f θπθ===,199r R =Ω 2 max 1201204 2.41199 r f D R ?=== 0.5 2.41 1.205A G D η=?=?= (0.8)

天线原理与设计作业

天线原理与设计习题集 第一章 天线的方向图 1.如图1为一元天线,电流矩为Idz ,其矢量磁位A 表 示为r j 0r 4Idz ?βπμ-=e z A ,试求解元天线的远区辐射电磁场?θH E ,。 2.已知球面波函数r e r j /βψ-=,试证其满足波动方程:022=+?ψβψ 3.如图2所示为两副长度为λ= 2的对称线天线,其上的电流分别为均匀分布和三角形分布,试采用元天线辐射场的叠加原理,导出两天线的远区辐射场?θH E ,,方向图函数),(?θf 和归一化方向图函数),(?θF ,并分别画出它们在yoz 平面和xoy 平面内的方向图的示意图。 4.有一对称振子长度为 2,其上电流分布为:|)|(sin )(z I z I m -= β试导出: (1) 远区辐射场?θH E ,; (2) 方向图函数),(?θf ; (3) 半波天线(2/2λ= )的归一化方向图函数),(?θF ,并分别画出其E 面 和H 面内的方向图示意图。 (4) 若对称振子沿y 轴放置,导出其远区场H E ,表达式和E 面、H 面方向图 函数。 5.有一长度为2/λ= 的直导线,其上电流分布为z j e I z I β-=0)(,试求该天线的方向图函数),(?θF ,并画出其极坐标图。 6.利用方向性系数的计算公式: ??=ππ? θθ?θπ 20 2 sin ),(4d d F D 计算:(1) 元天线的方向性系数; (2) 归一化方向图函数为 ?? ?≤≤≤≤=其它,0 0,2/,csc ),(0 0??πθθθ?θ F 的天线方向性系数。

(3) 归一化方向图函数为:???≤≤≤≤=其它,0 20,2/0,cos ),(π ?πθθ?θn F n=1和2时的天线方向性系数。 7.如图3所示为二元半波振子阵,两单元的馈电电流关系为/212j I I e π=,要求导出二元阵的方向图函数),(?θT f ,并画出E 面(xoy 面)方向图的示意图。 8.有三付对称半波振子平行排列在一直线上,相邻振子间距为d ,如图4所示。 (1) 若各振子上的电流幅度相等,相位分别为 ββ,0,-时,求E 面和H 面方向图函数。 (2) 若4/λ=d ,各振子电流幅度关系为1:2:1,相 位关系为2/,0,2/ππ-时,试画出三元阵的E 面和H 面方向图。 9. 由四个元天线组成的方阵,其排列如图5所示。每个单元到阵中心的距离为8/3λ,各单元的馈电幅度相等,单元1和2同相,单元3和4同相但与1和2反相。试导出该四元阵的方向图函数及阵因子,并草绘该阵列xoy 平面内的方向图。 10. 设地面为无限大理想导电平面。图6所示为由等幅同相馈电的半波振子组成的水平和垂直二元阵,试求其E 面方向图函数,并画出E 面方向图。 11.一半波对称振子水平架设在理想导电平面上,架设高度为h 。试分别画出λλλ5.0,3.0,25.0=h 三种情况下的E 面和H 面方向图,并比较所得结果。 12.由长为4/λ= 的单极天线组成的八元天线阵如图7所示,各单元垂直于地面,排成2行4列的阵列,列间距为2/λ,行间距为4/λ。每个单元天线为等幅馈电,而相位配置由图中标出。试利用方向图相乘原理,绘出H 面方向图。

相关文档