文档库 最新最全的文档下载
当前位置:文档库 › 高考数学数列的求和测试

高考数学数列的求和测试

高考数学数列的求和测试
高考数学数列的求和测试

专题考案(2)数列板块 第3课 数列的求和

(时间:90分钟 满分:100分)

题型示例

已知y =f (x )是一次函数,且f (2),f (5),f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )(n ∈N x)的表达式.

分析 要求和,关键要先求出f (n ).

解 由y =f (x )是一次函数可设f (x )=ax +b ,则f (2)=2a +b ,f (5)=5a +b ,f (4)=4a +b ,

∵f (2),f (5),f (4)成等比数列,∴(5a +b )2=(2a +b )(4a +b ).

∴17a 2+4ab =0,又∵a ≠0.

∴a =-

17

4b ① 又∵f(8)=15,∴8a +b =15 ②

联立方程①、②解得a =4,b =-17,∴f (x )=4x -17.

∴f (1),f (2),…,f (n )可看作是首项为-13,公差为4的等差数列.

由等差数列前n 项和公式可求得S n =-13n +2)1(-n n ×4=2n 2-15n . 点评 此题渗透了函数思想,解题时要注意知识的横向与纵向之间的联系.

一、选择题(9×3′=27′)

1.数列{a n }是等差数列的一个充要条件是 ( )

A.S n =an +b

B.S n =an 2+bn +c

C.S n =an 2+bn (a ≠0)

D.S n =an 2+bn

2.设m =1×2+2×3+3×4+…+(n -1)·n ,则m 等于 ( ) A.3)1(2-n n B.21n (n +4) C.21n (n +5) D.2

1n (n +7) 3.若S n =1-2+3-4+…+(-1)n -1·n ,则S 17+S 33+S50等于 ( )

A.1

B.-1

C.0

D.2

4.阅读下列文字,然后回答问题:对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数.函数[x ]叫做“取整函数”,也叫高斯函数.它具有以下性质:x -1<[x ]≤x <[x +1].请回答:[log 21]+[log 22]+[log 23]+…+[log 21024]的值是( )

A.1024

B.8202

C.8204

D.9216

5.设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则{c n }的前10项和为 ( )

A.978

B.557

C.467

D.979

6.1002-992+982-972+…+22-12的值是 ( )

A.5000

B.5050

C.10100

D.20200

7.若等比数列{a n }的前n 项和S n =2n +r ,则r 的值是 ( )

A.2

B.1

C.0

D.-1

8.已知S =1+ΛΛ++++22213121n

,那么S 的范围是 ( ) A.(1,23) B.(2

3,2) C.(2,5) D.(5,+∞)

9.已知数列{a n }的前n 项和S n =a ??

????+--??????---11)21)(1(2)21(2n n n b (n =1,2,…),其中a ,b 是非零常数,则存在数列{x n }、{y n }使得 ( )

A.a n =x n +y n ,其中{x n }为等差数列,{y n }为等比数列

B.a n =x n +y n ,其中{x n }和{y n }都为等差数列

C.a n =x n ·y n ,其中{x n }为等差数列,{y n }为等比数列

D.a n =x n ·y n ,其中{x n }和{y n }都为等比数列

二、填空题(4×3′=12′)

10.一个有xx 项且各项非零的等差数列,其奇数项的和与偶数项的和之比为 .

11.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .

12.已知数列{a n }的前n 项和S n =n 2-4n +1,则|a 1|+|a 2|+…+|a 10|= .

13.数列,32

161,1665,825,

49,23…的前n 项和S n = . 三、解答题(9′+3×10′+12′+10′=61′)

14.求和:1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1. 15.求和:S n =)

12)(12(7595343112

+-++?+?+?n n n Λ. 16.已知数列{a n }的前n 项和S n =10n -n 2(n ∈N );数列{b n }的通项b n =|a n |,求数列{b n }的前n 项和T n .

17.数列{a n }中,a 1=a ,前n 项和S n 构成公比为q 的等比数列.(q ≠1)

(1)求证在{a n }中,从第2项开始成等比数列;

(2)当a =250,q =

2

1时,设b n =log 2|a n |,求|b 1|+|b 2|+…+|b n |. 18.已知数列{a n }的前n 项和S n 满足:S n =2an +(-1)n ,n ≥1.

(1)求证数列{a n +3

2(-1)n }是等比数列; (2)求数列{a n }的通项公式; (3)证明:对任意的整数m >4,有.8

711154<+++m a a a Λ 19.求包含在正整数m 与n 间(m

参考答案

1.D S n =na 1+

22)1(d d n n =-n 2+(a 1-2

d )n ,d 可以为0,对照知选D. 2.A a n =n 2-n .

3.A S n =???????-+)(2)(21为偶为奇n n n n

4.C [log 2N ]=???????????=<≤<≤<≤<≤1010

93222

,1022,922,22

2,121,0N N N N N Λ

故原式=0+1·(22-2)+2·(23-22)+…+9·(210-29)+10=9·210-(29+28+…

+2)+10=8204,故选C.

5.A 由题意可得a 1=1,设公比为q ,公差为d ,则???=+=+221

2d q d q

∴q 2-2q =0,∵q ≠0,∴q =2,∴a n =2n -1,b n =(n -1)(-1)=1-n,∴c n =2n -1+1-n,∴S n =978.

6.B 并项求和,每两项合并,原式=(100+99)+(98+97)+…+(2+1)=5050.

7.D r 等于2n 系数1的相反数-1,选D.

8.B .12112312)1(132121111123)1(14313211n S n n n n S n n n S -<<+-????

????-=-++?+?+<+-=+++?+?+>ΛΛ 9.C 由a n =S n -S n -1=a [2-(

21)n -1]-b [2-(n +1)(21)n -1]-a [2-(21)n -2]+b [2-n ·(2

1)n -2] =-(21)n -1a +a ·(21)n -2+b (n +1)·(21)n -1-bn (21)n -2=a ·(21)n -2[-(2

1)+1]+bn (21)n -2(21-1)+b (21)n -1=(a+b)·(21)n -1-bn (2

1)n -1 =[a +b (1-n )](21)n -1=[a -(n -1)b ]·[21·(2

1)n -2] 而a 1=S 1=a [2-(21)0]-b [2-2·(2

1)0]=a ,因此也适合上式. ∴x n =a -(n -1)b ,y n =21(2

1)n -2.选C. 10.1000

1001 设此数列{a n },其中间项为a 1001, 则S 奇=a 1+a 3+a 5+…+a xx =1001·a 1001,S 偶=a 2+a 4+a 6+…+a xx =1000a 1001.

11.6

1;21;31- 原式=.6326)12()1(23n n n n n n +-=-?- 12.67 .)2(52)1(2?

??≥-=-=n n n a n 13.

)211(2)1(n n n -++ a n =n +n 2

1. 14.解 a k =k ·[(n +1)-k ]=(n +1)k -k 2,

∴S n =[(n +1)·1-12]+[(n +1)·2-22]+…+[(n +1)·n -n 2]

=(n +1)(1+2+…+n )-(12+22+…+n 2)

=(n +1)·6

12)1(-+n n n (n +1)(2n +1) =6)2)(1(++n n n . 15.解 a k =)1

21121(8141)12)(12(414114)12)(12(222+--+=+-+=-=+-k k k k k k k k k , ∴S n =)

12(2)1()1211(814++=+-++n n n n n . 16.解 可按如下三个层次进行:

(1)由数列{a n }的前n 项和求a n .

由a n =???≥-=-)2()1(11n S S n S n n

得a n =11-2n (n ∈Nx ) (2)由a n 的正负确定{b n }的通项公式.

易知,当n ≤5时,a n >0,则b n =a n ;当n ≥6时,a n <0,则b n =-a n

∴b n =?

??≥-≤-)6(112)5(211n n n n (3)求数列{b n }的前n 项和T n

当n ≤5时,因为b n =a n 所以T n =S n =10n -n 2;

当n ≥6时,T n =a 1+a 2+a 3+…+a 5-(a 6+a 7+…+a n )=2S 5-S n =50-(10n -n 2)=n 2-10n +50.

∴T n =.)

6(5010)5(1022?????≥+-≤-n n n n n n 点评 数列{a n }与数列{|a n |}很多题目都有涉及,关键是把握两者的实质联系,我们分了三个步骤以方便同学们理清思路.

17.(1)证明 由已知S 1=a 1=a ,S n =aq n -1,∴S n -1=aq n -2,

∴当n ≥2时,a n =S n -S n -1=a (q -1)q n -2.

∵n n a a 1

+=q ,∴{a n }是当n ≥2时公比为q 的等比数列.

(2)解 a 2=S 2-S 1=a (q -1),∴a n =.)2()1().1(2??

?≥-=-n q q a a a n ∴当a =250,q =21时,b 1=log 2|a |=50,当n ≥2时,b n =log 2|a n |=log 2|250(21-1)(2

1)n -2|=51-n . ∴b n =51-n (n ∈N ).

①当1≤n ≤51时,|b 1|+|b 2|+…+|b n |=(51-1)+(51-2)+…+(51-n )=51n -(1+2+…

+n )=51n -.2

)101(2)1(n n n n -=+ ②当n ≥52时,|b 1|+|b 2|+…+|b n |=(50+49+48+…+1)+[1+2+3+…+(n -51)]=2

)101(2)50)(51(25150-=--+?n n n n 18.(1)证明 由已知得a n =S n -S n -1=2a n +(-1)n -2a n -1-(-1)n -1(n ≥2),

化简得 a n =2a n -1+2(-1)n -1(n ≥2),

上式可化为 a n +32(-1)n =2[a n -1+32(-1)n -1](n ≥2),∵a 1=1,∴a 1+32(-1)1=3

1. 故数列{a n +32(-1)n }是以3

1为首项,公比为2的等比数列. (2)解 由(1)可知a n +3

2(-1)n =321-n . ∴a n =31×2n -1-32(-1)n =32[2n -2-(-1)n ],故数列{a n }的通项公式为 a n =3

2[2n -2-(-1)n ]. (3)证明 由已知得m

a a a 11154+++Λ =??

????--++++++=??????--++++---m m m m )1(21631331151913123)1(21121121232232ΛΛ =)20

110151311(21)21111151311(21ΛΛ+++++<+++++ =.871201051201041513)21(511513)21525234(21211)211(513421555=<=

???????--+---m m m 故)4(8

711154><+++m a a a m Λ 19.解 方法1 这些分数是.3

13,323,,353,343,323,313--++++n n m m m m Λ 显然它既非等比数列也非等差数列,但如果在适当的位置上分别添上

)(3

3,333,,333,33*-+n n m m Λ 即成为)(3

3,313,323,333,,333,323,313,33**---+++n n n n m m m m Λ (xx)是一个有3n -3m +1项的等差数列,公差为3

1,首项是m ,末项是n , 其和为S =2

1(3n -3m +1)(m +n )而(x)是一个有n -m +1项的等差数列,公差为1,首末项分别为m ,n 其和S ″=2

1(n -m +1)(m +n ). 故适合条件的分数和为S =S ′-S ″=n 2-m 2.

方法2 设S =(m +31)+(m +32)+…+(n -32)+(n -3

1)注意到与首末两项等距离的两项和相等,于是把上式倒序相加得:2S =.,)()()(22)(2m n S n m n m n m m n -=∴++++++-444443

4444421Λ个

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

高二数学数列中裂项求和测试题

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列{}n a 是以d 为公差的等差数列,且 ) ,3,2,1(0,0 n a d n ,则 )1 1(111 1 n n n n a a d a a 例1已知二次函数()y f x 的图像经过坐标原点,其导函数为' ()62f x x ,数列 {}n a 的前n 项和为n S ,点(,)()n n S n N 均在函数()y f x 的图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a ,n T 是数列{}n b 的前n 项和,求使得20 n m T 对所有n N 都成立的最小正整数m ; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax 2 +bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2 -2x. 又因为点(,)()n n S n N 均在函数()y f x 的图像上,所以n S =3n 2 -2n. 当n ≥2时,a n =S n -S n -1=(3n 2 -2n )- )1(2)132 n n ( =6n -5. 当n =1时,a 1=S 1=3×12 -2=6×1-5,所以,a n =6n -5 (n N ) (Ⅱ)由(Ⅰ)得知13 n n n a a b = 5)1(6)56(3 n n =)1 61 561(21 n n ,

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

数列求和测试题练习题

数列求和 测试题 A 级 基础题 1.数列{1+2n -1}的前n 项和S n =________. 2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________. 3.数列112,314,518,71 16,…的前n 项和S n =________. 4.已知数列{a n }的通项公式是a n =1n +n +1 ,若前n 项和为10,则项数n = ________. 5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________. 6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2 n =________. 7.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列? ??????? ? ?1b n b n +1的前n 项和S n =________. 二、解答题(每小题15分,共45分) 8.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式; (2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式. 9.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式; (2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .

10.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有 S r S t =? ????r t 2 . (1)判断{a n }是否是等差数列,并证明你的结论; (2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n . B 级 创新题 1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列???? ? ? 1a n 的前5项和为________. 2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结 果可化为________. 3.数列1, 11+2,1 1+2+3 ,…的前n 项和S n =________. 4.在等比数列{a n }中,a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________. 5.已知S n 是等差数列{a n }的前n 项和,且S 11=35+S 6,则S 17的值为________. 6.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________. 7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13. (1)求{a n },{b n }的通项公式; (2)求数列???? ?? a n b n 的前n 项和S n .

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

数列求和方法及典型例题

数列求和方法及典型例题 1?基本数列的前n 项和 门佝 aQ 2 1 ⑴等差数列a n 的前n 项和:S n na n(n 1)d an bn ⑵等比数列a n 的前n 项和S n : ①当q 1时,S n na i ;②当q 1时,& a i (1 q n ) a 1 a .q ; ; 1 q 1 q 2.数列求和的常用方法: 公式法:性质法:拆项分组法:裂项相消法;错位相减法;倒序相加法 题型一公式法、性质法求和 a 99 ______________________ 2?等差数列 a n 中,公差d 2,且a1 a 3 a 5 a 99 60,贝V a 1 a ? a 3 a 100 111 [例1]求数列1 一,2 — ,3-, ,(n 右), 的前n 项和S n ? 题型二拆项分组法求和 (1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求S n 。 [练]?求数列(2n 1)2的前n 项和S n . [例]?求和: 1 n(n 1) 题型三裂项相消法求和 [例]?求和: 1 , 2 1 1 ■ 4 “3 [例]求和:1 [练4]已知数列a n 满足a 1 1,a n 1 2a n 1 nN 1?已知S n 为等比数列 a n 的前n 项和,公比q 2,S g9 7 ,贝V a 3 a 6 a 9 [练2]在数列 a n 中,已知 a 1=2, a n+1=4a n — 3n + 1, n € N

h 1 O h 1 1 nh 1 n (1)求数列a n的通项公式。⑵若数列b n满足41 4 2 4 3 4 n a n 1 ,求数列 2n 若c n,求数列c n的前n项和S n。 a n a n 1 题型四错位相减法求和 [例]?设数列a n为1 2,2 22,3 2 3,4 2 3 n 2n x 0求此数列前n项的和. [例]?设数列{a n}满足a1+ 3a2 + 32a3 + …+ 3n_ 1a n=£, n€ N*. (1)求数列{a n}的通项公式;⑵设b n= n,求数列{b n}的前n项和S n. [练1]已知数列{ a n}、{b n}满足a11 , a2 3, b n 1 2(n N*),b n a n 1 a n。 b n (1)求数列{b n}的通项公式; (2)数列{ C n}满足C n b n log 2( a n 1)(n * N ),求S n C1 C2 ........ C n。 [练4]等比数列a n中,已知对任意自然数n, a〔a? a3 a n 2n 1,求a;a;a3 2 A.2n 1 B.12n 1 C.4n 1 1 n . D.— 4 1 3 3 a;的值 b n的通项公式。(3)

(完整版)数列求和练习题(含答案)

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n (n +1) ,则S 5等于( ) A .1 B.5 6 C.16 D.130 B [∵a n =1n (n +1)=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( ) A .9 B .18 C .36 D .72 B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n = 1 a n a n +1 ,求数列{b n }的前n 项和. [解] (1)由已知得???? ? 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×9 2d =10a 1+45d =100, 解得??? a 1=1, d =2, 3分 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n = 1(2n -1)(2n +1)=12? ?? ??1 2n -1-12n +1,8分 所以T n =12? ? ???1-13+13-15+…+12n -1-12n +1 =12? ????1-12n +1=n 2n +1 .12分

详解数列求和的方法+典型例题

详解数列求和的常用方法 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+ =+= 2、等比数列的前n 项和公式 ?? ? ??≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(2 1 3211+= +?+++== ∑=n n n k S n k n (2)、)12)(1(6 1 321222212++= +?+++== ∑=n n n n k S n k n (3)、23 3331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列 }{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1 -n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1 321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则1 2 321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ②

①式—②式:n n n nq q q q q S q -+?++++=--1 321)1( ?)1(11 132n n n nq q q q q q S -+?++++-= - ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1) 1(12 综上所述:????????? ≠≠----=+==)10(1) 1(1)1)(1(2 1 )0(02 q q q nq q q q n n q S n n n 且 解析:数列}{1 -n nq 是由数列{}n 与{}1-n q 对应项的积构成的, 此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种 情况进行分类讨论,最后再综合成三种情况。 第三类:裂项相消法 这是分解与组合思想在数列求和中的具体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如: 1、乘积形式,如: (1)、1 1 1)1(1+- =+= n n n n a n (2)、)1 21 121(211)12)(12()2(2+--+=+-= n n n n n a n (3)、]) 2)(1(1 )1(1[21)2)(1(1++-+=++=n n n n n n n a n ( 4 ) 、 n n n n n n n n S n n n n n n n n n a 2 )1(1 1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 2、根式形式,如:

高三数学高考数列求和(裂项及错位)

考点十二 数列求和(裂项及错位) [真题1] (2009山东卷)等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记1()4n n n b n N a + += ∈,求数列{}n b 的前n 项和n T . [命题探究] 创新是高考命题的要求,《考试大纲》提出命题要“创设比较新颖的问题情境”,同时,“在知识的交汇点处设计命题”是近年来高考命题的一种趋势。本题将数列的递推关系式以点在函数图像上的方式给出,体现了这种命题理念,也渗透了数列是定义在正整数集上的函数观念。第(2)问中对b 的赋值,旨在使问题变得简捷,也使设置的数列求和问题降低难度,达成“不求在细节上人为地设置障碍,而是在大方向上考查考生的数学能力”的命题指导思想。 [命题探源] 本题在设置等比数列的递推关系时,以点(,)n n S 在函数(0x y b r b =+>的图像上的方式给出,这种命题方式与2008年福建一道文科有相似之处:“已知{a n }是正数组成的数列,a 1=1 1n a +)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a ,求证:b n ·b n +2<b 2 n +1.”本题中增加了对参数r 的求解,因此,如何正确求出r 的值,成为本题的解题思考点,这恰好需要对递推 关系式{ 11,(1) ,(2) n n n S n a S S n -==-≥的正确理解(理角题目的条件:数列{n a }是等比数列,则11S a =满足数列递推式)。第(2)问求数列{}n b 的前n 项和n T , 所用的方法是错位相减法,也是课本中推导等比数列前n 项和公式时所用的方法。高考复习历来提倡回归课本,理解教材,例题的求解方法、公式的推导方法,都需要我们在回归课本中积累知识,提炼方法,形成能力。 [知识链接] 数列求和的几种常见题型与求解方法 (1)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ① 111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③ )(1 )0(1 n k n k k k n n -+= >++ **④ 2 1 1 1 1 1 1 1 1(1)(1)1k k k k k k k k k - = < < = - ++--. (2)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 设{a n }是等差数列,且公差为d,{b n }是等比数列,且公比为q,记S n =a 1b 1+a 2b 2+…+a n b n n n n n n n n b a b a b a b a b a b a S ++++++=----1122332211... ① =n qS 1112233221...+-----++++++n n n n n n n n b a b a b a b a b a b a ② =-n S q )1(+11b a 11232)...(+---+++++n n n n n b a b b b b b d (3)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. (4)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 《规范解答》 广东省汕头市高三数学复习系列 等差数列、等比数列的性质及应用 新人教A 版 一.课题:等差数列、等比数列的性质及应用 二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力. 三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识:

相关文档
相关文档 最新文档