文档库 最新最全的文档下载
当前位置:文档库 › 储层流动单元划分与描述的方法

储层流动单元划分与描述的方法

储层流动单元划分与描述的方法
储层流动单元划分与描述的方法

储层识别方法

储层识别方法 研究区储层物性可以反映在地球物理测井参数上,对于研究区的储层识别可以充分应该常规测井并结合测井新技术。储层的划分主要是依据自然电位曲线结合自然伽马曲线,并通过中子、密度、声波、电阻率曲线等特征判别储层好坏,若结合地质特征、钻井、录井显示、试油资料以及岩心分析等,更能综合准确分析储层的好坏。储层的测井划分标准: (1)好储层 岩性较纯,泥质含量较低。在井眼正常的情况下,常规测井自然电位负异常,并异常幅度大,一般大于20mV,自然伽马一般集中在40-70API;电成像图上呈棕黄色显示,排除暗色泥质条带和高亮度致密岩性。 孔隙度较大:常规测井上声波时差大于230μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般小于2.5g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的右边,T2分布谱越靠右分布越好。 渗透性较好:常规测井上,储层井径正常或略有缩径,深浅双侧向(深中感应)电阻率有或无差异;在排除泥质影响情况下,斯通利波能量有衰减。 (2)中等储层 岩性较纯,泥质含量较低:井眼正常的情况下,常规测井自然电位负异常幅度中等-大,一般在10-20mV,自然伽马一般集中在60-95API; 孔隙度较大:常规测井上声波时差大于220μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般小于2.6g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的中-右边,孔隙以中孔为主。 渗透性较好:常规测井上,储层井径正常或略有缩径,深浅双侧向(深中感应)电阻率有或无差异;在排除泥质影响情况下,斯通利波能量有衰减。 (3)差储层识别方法 岩性较纯,泥质含量较低:井眼正常的情况下,常规测井自然电位负异常幅度中等-大,一般在小于10mV,自然伽马一般集中在70-95API; 孔隙度较小:常规测井上声波时差小于220μs/m;且随泥质含量增大而有所增大;井眼正常处,补偿密度值一般大于2.6g/cm3;核磁测井孔隙度较大,T2分布谱大多分布在T2截止值的中-左边,孔隙以小孔为主。

储层描述基本单元为小层

储层描述基本单元为小层。 1)沉积微相描述 ①岩石相及组合 描述不同岩石相类型的沉积特征以及其组合特征。 ②测井相 依据岩心组合与测井曲线之间的对应关系,建立各类微相的测井响应模式,利用测井曲线进行全区单井沉积微相划分。 ③沉积微相 ss="MsoNo rmal" style="text-indent: 27pt; line-height: 22.5pt;">确定出沉积微相类型,并描述不同沉积微相的特点,包括岩性、沉积构造、沉积韵律等。 ④平面微相展布特征 描述微相平面展布特征,并编制出各小层的平面沉积微相图。 2)地应力及裂缝描述(裂缝油藏重点描述) ①地应力 描述地应力状况,包括最大主应力和最小主应力方向和大小。 ②裂缝描述 结合以前对裂缝的认识,分组系描述裂缝性质、产状及其空间分布、密度(间距)、开度等。 3)储层微观孔隙结构 ①孔隙类型 描述薄片、铸体、电镜观察到的储层孔喉情况,参考成因机制,确

定储层孔隙类型(原生孔、或次生孔、或混杂孔隙类型等)。并描述不同孔隙类型的特征。 ②喉道类型 确定对储层储集和渗流起主导作用的喉道类型并描述其特征。 ③孔隙结构特征参数 描述各类储层的毛管压力曲线特征,确定其孔隙结构特征参数,主要包括:排驱压力(MPa)、中值压力(MPa)、最大孔喉半径(μm)、孔喉半径中值(μm)、吼道直径中值(μm)、相对分选系数、孔喉体积比、孔隙直径中值(μm)、平均孔喉直径比等。 ④储层分类 以渗透率为主对孔隙结构特征参数进行相关分析,确定分类标准,并对孔隙结构和储层进行分类,描述各类储层的物性及孔喉特征。 ⑤储层粘土矿物分布特征 确定出储层粘土矿物的主要类型,描述其在储层中的分布特征。 ⑥储层敏感性分析 描述储层的敏感性特征。 ⑦储层评价 通过以上的储层描述对储层进行分类评价。 4)储层物性及非均质性 ①储层物性 研究储层的“四性”关系,建立储层物性参数的测井解释模型,根据模型解释储层物性参数。

流动单元的划分方法

流动单元的划分方法 1.定义 流动单元是横向上和纵向上连续的,具有相似的渗透率、孔隙度和层理特征的储集带。流动单元定义的提出为砂岩的储集层的划分及作图提出了比较量化的定义,同时为油藏动态的数值模拟提供了一个比较理想的基础。并且,流动单元是一个相对的概念,从宏观到微观的不同级次上的,影响流体流动的岩石特征和流体本身渗流特征相似的储集岩体,都可以称之为流动单元。随着开发阶段的深入,根据油田实际地质开发条件的需要,流动单元的级次应该不断细化,一般分为以下4个级次: 1)标志层法:用区域上稳定发育的泥岩或夹层进行划分,把泥岩或夹层纵向上分隔开的每一个层都称之为一个流动单元; 2)沉积相法:用沉积相进行划分,把某几个相带或某几个相带的组合称之为流动单元; 3)成因相法:把在沉积相带研究基础上进一步细分出的成因相或岩相作为流动单元; 4)渗流单元划分:具有特定的影响流体流动的岩石物理特征,是一个成因砂体或砂体内部的次级要素,其外界与成因砂体和次级要素的边界相一致,不能穿相。渗流单元分析的目的是建立符合油藏精细数值模拟所需的三维地质模型。 2.描述储层流动单元的参数分类 描述储层流动单元的参数主要有以下几类:沉积特征参数、储层宏观参数、储层微观孔隙结构参数、流体物性参数和综合参数。 表1-1 描述储层流动单元分类 参数类型典型代表 沉积特征参数层理构造、粒度中值、泥质含量、砂岩厚度、 砂岩有效厚度、净毛比、夹层厚度 储层宏观参数孔隙度、渗透率、渗透率变异系数、渗透率突进系 数、渗透率极差系数、垂直渗透率与水平渗透率之 比 储层微观孔隙结构参数孔隙结构类型、孔隙半径、平均渗流半径、流动带 指数 流体物性参数含油饱和度、原油粘度、原油密度、体积系数、胶 质沥青质含量 综合参数流动系数、存储系数 流动单元参数的选取要紧密的和油藏地质和油藏工程,以及生产区的研究目的联系起来,选取流动单元参数尤其重要,一般,这些参数主要有孔隙度、渗透率、粒度中值、泥质含量、地层系数、饱和度、传导系数、存储系数、孔喉半径、孔喉比等。其中,孔隙度和渗透率是反映宏观特征的主要参数,尤其是进行流动单元的研究,渗透率尤为重要;粒度中值和泥质含量则在一定程度上能反映沉积环境,但是二者的相关性很好,只要选取其中一个参数,避免分析权重的影响;另外,一般还要选取孔喉半径等能反映微观孔隙结构的相关特征参数,只有全面考虑到地下流体相关的各种特征参数,才能准确的进行流动单元的划分。 3.流动单元划分方法 流动单元的划分方法已从最初定性的、宏观的以沉积相、夹层、隔层和断层等控制边界划分发展为当前的以定量的、微观的孔隙结构、渗流特征等差异为分类标准的研究划分,并

储层精细地质研究进展

第28卷第2期地球科学与环境学报 Vol .28No .22006年6月 J ournal of Earth Scienc es an d Environ ment Jun .2006 [收稿日期] 2005-05-08 [基金项目] 中国科学院边缘地质重点实验室基金项目(MSGL 04-3) [作者简介] 吴诗勇(1971-),男,安徽太湖人,博士研究生,从事油田开发地质学研究。 精细地质研究现状及发展趋势 吴诗勇1,2,李自安1 (1.中国科学院广州地球化学研究所,广东广州510640;2.中国科学院研究生院,北京100039) [摘要] 水驱采油后期,油层的含水率越来越高,然而大量的可动剩余油却滞留于地下。要提高这部分油层的采收率,必须加强对储层微观非均质性的认识。精细地质研究作为一种方法,在这种背景下,便得到了快速的发展和应用。旨在对其做一个阶段性的小结,从储集层砂体几何形态、内部结构以及孔、渗空间变化特征出发,概述了精细地质研究的内容为细化开发单元、成因单元砂体的连续性和连通性描述、砂体内部建筑结构单元的划分、流动单元的研究、表外储层研究、地质建模等。并提出了今后研究发展的主要方向。为油田的可持续发展提供技术支持。 [关键词] 精细地质;成因单元;结构单元;流动单元;表外储层;综述 [中图分类号] TE 122. 2;P 618.130.2 [文献标识码] A [文章编号] 1672-6561(2006)02-0058-07Actuality and Dev elopment of Fine Ge ology WU Shi -yo ng 1,2 ,LI Z i -an 1 (1.Guangzho u Institute of G eochemistry ,Chinese Acade my of Scienc es ,Guangzhou 510640,Guangdo ng ,C hina ; 2.S ch o ol Graduate ,C hine se A cademy of Science s ,Beij ing 100039,C hina ) Ab s tra ct :At the later stage of w ater -driven ex ploitatio n ,so me proble ms appe ared ,o ne is the hig h w ater co ntent in the oil strata ,and the other is a gre at de al of surplus oil detained in the strata .To enhance rec overy ratio ,it is nec essary to have a better u nderstan d on the micro -hetero geneity of reserv oir .As a m easure to res olve these pro b -lem s ,the stu dy of fine geolo g y gets alo ng very well .B ased on the ge om etric fe atures of reserv oir ,structure an d the spatial variatio n of bore -se epage ,this paper carries o ut the followin g six aspects :①ac curate divisi on of ex -ploitation u nits ;②descripti on of continuity of genetic u nit ;③division of internal structure u nit of sand -b od y ;④investigatio n of flow unit of reservo ir ;⑤rese arch of outside -deli mited reserv oir ;⑥geolo gic m odelin g .At last ,thre e develo ping tren ds of fin ge olog y are put forward to afford so m e i de as for the future rese arches .S o it will of -fer so me effe ctive techn olo gies for the sustainable develop ment of oilfield . Ke y w ord s :f ine geolo gy ;genetic u nit ;structure unit ;flow unit ;o utside -delimited reserv oir ;review 0 引言 精细地质是储层表征的重要内容,其研究得力于石油生产的需要及相应的理论和技术的发展。 (1)20世纪80年代以来,世界一些主要产油国的油气田相继进入高成熟开发阶段,由于勘探成本 的大幅度上升,提高油气采收率便成为老油田获取 最大经济效益的一条有效途径,因而要求储层地质研究向更精细、定量化方向发展。 (2)新理论和技术的诞生,特别是计算机技术的快速发展,为储层精细描述提供了技术上的支持。 中国一些老油田自20世纪90年代以来,基本

储层

储层:凡是能够储集和渗滤流体的地层的岩石构成的地层叫储层。 储层地质学:是一门从地质学角度对油气储层的主要特征进行描述、评价及预测的综合性学科。 研究内容:储层层位、成因类型、岩石学特征、沉积环境、构造作用、物性、孔隙结构特征、含油性、储集岩性几何特征储集体分布规律、对有利储层分布区的预测。有效孔隙度:指那些互相连通的,且在一定压差下(大于常压)允许流体在其中流动的孔隙总体积与岩石总体积的比值。 绝对渗透率:如果岩石孔隙中只有一种流体存在,而且这种流体不与岩石起任何物理、化学反应,在这种条件下所测得的渗透率为岩石的绝对渗透率。 剩余油饱和度:地层岩石孔隙中剩余油的体积与孔隙体积的比值 残余油饱和度:地层岩石孔隙中残余油的体积与孔隙体积的比值 储层发育的控制因素:沉积作用、成岩作用、构造作用低渗透储层的基本地质特征:孔隙度和渗透率低、毛细管压力高、束缚水饱和度高 低渗透储层的成因:沉积作用、成岩作用 论述碎屑岩储层对比的方法和步骤: 1、依据 2、对比单元划分 3、划分的步骤 1、依据:①岩性特征:指岩石的颜色、成分、结构、构造、地层变化、规律及特殊标志层等。在地层的岩性、厚度横向变化不大的较小区域,依据单一岩性标准层法,特殊标志层进行对比;在地层横向变化较大情况下依据岩性组合②沉积旋回:地壳的升降运动不均衡,表现在升降的规模大小不同。在总体上升或下降的背景上存在次一级规模的升降运动,地层剖面上,旋回表现出次一旋回对比分级控制③地球物理特征:主要取决于岩性特征及所含流体性质,电测曲线可清楚反映岩性及岩性组合特征,有自己的特征对比标志可用于储层对比;测井曲线给出了全井的连续记录,且深度比较准确,常用的对比曲线:视电阻率曲线、自然电位曲线、感应测井曲线 2、对比单元划分:储层层组划分与沉积旋回相对应,由大到小划分为四级:含油层系、油层、砂层组和单油层。储层单元级次越小,储层特性取性越高,垂向连通性较好 3、划分的步骤:沉积相的研究方法主要包括岩心沉积相标志研究、单井剖面相分析、连续剖面相对比和平面相分析四种方法 岩心沉积相标志的研究方法是以岩石学研究为基础,可分为三类:岩性标志,古生物标志和地球化学标;单井剖面分析是根据所研究地层的露头和岩化剖面,以单井为对象,利用相模式与分析剖面的垂向层序进行对比分析,确是沉积相类型,最后绘出单井剖面相分析图;连井剖面相对比分析主要表示同一时期不同井之间沉积相的变化,平面相分析是综合应用剖面相分析结果进行区域岩相古地理研究的方法。 碳酸盐岩与碎屑岩储层相比,具有哪些特征? ①岩石为生物、化学、机械综合成因,其中化学成因起主导作用。岩石化学成分、矿物成分比较简单,但结构构造复杂,岩石性质活泼,脆性大②以海相沉积为主,沉积微相控制储层发育③成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。 扇三角洲储层特征? ①碎屑流沉积。由于沉积物和水混合在一起的一种高 密度、高粘度流体,由于物质的密度很大,沿着物质聚集体内的剪切面而运动。②片汜沉积。是一种从冲积扇河流末端漫出河床而形成的宽阔浅水中沉积下来的产物,沉积物为呈板片状的砂、粉砂和砾石质。 。③河道沉积。指暂时切入冲积扇内的河道充填沉积物。④筛积物。当洪水携带的沉积物缺少细粒物质时,便形成由砾石组成的沉积体。 碎屑岩才沉积作用:垂向加积、前积、侧向加积、漫积、筛积、选积、填积、浊积 喉道:在扩大孔隙容积中所起作用不大,但在沟通孔隙形成通道中起着关键作用的相对狭窄部分,称为喉道。孔隙结构:岩石所具有的孔隙和喉道的几何形状、大小、分布、相互连通情况以及孔隙与喉道间的配置关系。 碎屑岩的喉道类型:孔隙缩小型喉道、缩颈型喉道、片状喉道、弯片状喉道、官束状喉道 孔隙类型:原生孔隙、次生孔隙、混合孔隙 排驱压力:非润湿相开始进入岩样所需要的最低压力,它是泵开始进入岩样最大连通孔喉而形成连续流所需的启动压力,也称阀压。 成岩作用:指碎屑沉积物在沉积之后到变质之前所发生的各种物理、化学及生物的变化。 同生成岩作用:沉积物沉积后尚未完全脱离上覆水体时发生的变化与作用的时期。 表成岩作用:指处于某一成岩阶段弱固结或固结的碎屑岩,因构造抬升而暴露或接近地表,受到大气淡水的溶蚀,发生变化与作用的阶段。 成岩作用的基本要素:岩石、流体、温度、压力 孔隙水的流动方式和动力:压实驱动流、重力驱动流、滞流 碎屑岩主要的成岩作用有哪些?分别对孔隙有什么影响? 根据成岩作用对储层孔隙演化的影响,可将碎屑岩的残岩作用分为两大类:一是降低储层孔渗性的成岩作用,主要有机械压实作用和胶结作用,其次压溶作用和重结晶作用;其中机械压实作用是沉积物在上覆重力及静水压力作用下,发生水分排出,碎屑颗粒紧密排列而使孔隙体积缩小,孔隙度降低,渗透性变差的成岩作用;胶结作用是指孔隙溶液中过饱和成分发生沉淀,将松散的

储层地质学及油藏描述试题

2007-2008学年第二学期 储层地质学及油藏描述试题 专业年级 姓名 学号 院(系) 考试日期 2008年6月20日

1、请论述现代油藏描述技术特点。(20分)。 答:现代油藏描述技术的特点主要体现在一下三个方面: (1)发展单项技术水平,促进油藏描述水平的提高 不断提供和发展单项技术水平,促进整个油藏描述水平的提高。比如发展水平技术,为确定性建模提供准确的第一手资料。发展和建立最优化的数据库,从中可进行地球物理和地质建模及生产模拟。目前建立高质量的数据库,如历史拟合和建模等主题已引起世界各石油公司的关注。总之,各学科描述技术紧密适应地质描述及建模的需求发展。 (2)地质统计学在油藏描述中的应用 现代油藏描述的直接目的在于准确提供油藏数值模型,为勘探开发奠定基础。传统的油藏模型是以少量确定性参数(钻井取芯及测井),以常规统计学方法进行参数求取及空间分布内插。结果所提供模型不能准确反映地质体变化的非均质性及随机性。由于地质变量在空间具有随机性和结构化的特点,为了准确求取油藏各项特征参数,仅二十年来发展的区域化变量理论和随机模拟理论为油藏描述提供了一种新的工具,使油藏非均质性特征得以更准确地描述,可以建立较符合地下实际情况的模型。地质统计学在油藏描述中的应用可归纳为以下几个方面:一是参数估计,地址统计学的基本原理就是应用线性加权的方法对地质变量进行局部的最优化估计。二是储层非均质性研究。储层非均质性对勘探开发都有重要影响,储层模型中对非均质性的描述与表征是关键。地质统计学中的随机建模技术就是针对非均质性研究提出来的,随机技术是联系观察点和未采样点之间的桥梁。其目的是以真实和高效的方法在储层模型中引入小型和大范围的非均质性参数。三是各种资料的综合应用。油藏描述涉及多学科、多类型资料信息,如何系统的匹配使用好各种资料信息至关重要,地质统计学为此提供了许多方法,如指示克里金技术可将定性的信息进行系统编码,将定性的概念定量化。协同克里金可综合多种类型的信息,给出未采样的参数值落入任一给定范围的概率分布。通过定量回归处理出的模型与多种信息资料取得一致,而不是地质模型、地球物理模型、生产模型自成系统无法综合在一起。四是不确定性描述,静态、动态的确定性模型很难反映油藏地下复杂的变化,只有通过不确定性描述,从地质统计观点概括和综合地质模型,才能真实地反映复杂的油藏模型,而不会导致传统油藏模型把控制流体在油藏中运动的复杂地质现象过于简单化,如“蛋糕层模型”,用这种模型模拟的历史表明,往往给出了过于乐观的油藏动态预测,造成开发过程的低效益。(3)建立了多学科综合研究管理系统 ①地质、地震、测井、岩石物理、地球化学、工程(钻井、完井、开发、采油)等学科的资料及成果是油藏描述的基础,它们以各自不同的方式反映地下油藏特点。以井为出发点的测井、岩石物理、地球化学、工程等学科,能提供油藏的各种精细参数,但是在空间上的分布的尺度较小,尤其是勘探早期,探井很少,在如此稀疏的空间上所采集到的数据,难以代表整个油藏,它们的数据与油藏参数也有某种相关性,但却无法直接求出油藏各种参数的精确值。这主要是地震资料本身的分辨率不高,而且还有许多不确定性因素存在。若把这些学科的资料与成果综合起来用于油藏描述,肯定比只依靠单门学科好,所建立的油藏模型一定更为可信。 ②现阶段,油气勘探综合研究是以地质、地震、测井地球化学、油藏工程及计算机等多学科先进技术为依据。它必须通过各学科研究人员的相互配合,把各方面研究成果互相渗透、综合利用,才能提高油田勘探开发效益。目前我们在油藏描述研究中,还存在着主要依靠单一学科研究,多学科不能有机结合的问题。同国外石油公司多学科协同作战、科学严密的管理方法相比,我们的管理

第二章 系统的层次划分

第二章系统的层次划分 1.简述 N层的应用软件系统,由于其众多的优点,已经成为典型的软件系统架构,也已经为广大开发人员所熟知。在一个典型的三层应用软件系统中,应用系统 通常被划分成以下三个层次:数据库层、应用服务层和用户界面层。如下图 (图2.1)所示: 图2.1 其中,应用服务层集中了系统的业务逻辑的处理,因此,可以说是应用软 件系统中的核心部分。软件系统的健壮性、灵活性、可重用性、可升级性和可 维护性,在很大程度上取决于应用服务层的设计。因此,如何构建一个良好架 构的应用服务层,是应用软件开发者需要着重解决的问题。 为了使应用服务层的设计达到最好的效果,我们通常还需要对应用服务层 作进一步的职能分析和层次细分。很多开发者在构建应用服务层的时候,把数 据库操纵、业务逻辑处理甚至界面显示夹杂在一起,或者,把业务逻辑处理等 同于数据库操纵,等等,这些,都是有缺陷的做法。我们将就在这个方面进行 设计时可采用的方案进行一些探讨。 在一个分布式应用系统中,整个系统会部署在不同的物理设备上,如上面 所示的三层体系,用户界面和应用服务器可能在不同的设备上,这就涉及到不 同机器之间的通信问题,也就是层间的通信和交互问题。我们已经有了很多可 以用于分布式远程访问的技术,如CORBA,在Java平台上,我们还有Java RMI、EJB,在Windows平台上,从DCOM到COM+,再到.Net下的Web Service和.Net Remoting等。如何选用合适的远程访问技术,也是我们在系统 框架中需要考虑的问题。 为了使讨论更具有针对性,本文也会讨论一些比较流行的系统架构,例如 J2EE架构,以及JDO,然后,我们会讨论Websharp在这个方面的一些设计 理念。 2.设计的原则和评判标准 同软件工程的原则一样,应用服务层的设计,必须遵循的最重要的原则就 是高内聚和低耦合。软件分层的本来目的,就是提高软件的可维护性和可重用性,而高内聚和低耦合正是达成这一目标必须遵循的原则。尽量降低系统各个 部分之间的耦合度,是应用服务层设计中需要重点考虑的问题。

A油田某油层储层精细描述方法研究

A油田某油层储层精细描述方法研究 【摘要】本文在充分调研国内某油层描述方法的基础上,综合运用现代沉积理论,以岩心资料为依据,从油层对比、沉积环境、油水分布特征等方面对A 油田某油层进行研究,研究成果对于指导某油层射孔方案编制、油田开发方案制定具有较高的应用价值。 【关键词】某油层储层描述研究 1 前言 A油田某油层为浅水湖泊—三角洲相沉积,空气渗透率一般在0.1~1.5mD 之间,孔隙度在10%~16%之间,属于低孔、特低渗储层。为降低启动压力梯度,建立有效驱动体系,提高井网控制程度,试验区采用井距300m、排距80m的大规模压裂矩形井网线性注水方式;为使井网系统面积波及系数最大,驱替效率最高,试验区井排方向采用裂缝系统方向,即北东70°方向。为了搞清某油层地质特征,从油层对比、沉积环境和油水分布等方面开展了项目研究。 2 建立垂向细分对比标准 某油层目的层地层厚度约340m,垂向划分为四个油层组。经过分析,决定GR、RLLD、RLLS、微电极、AC测井曲线作为垂向细分对比和微相识别曲线(如图1,2)。 在各级基准面旋回识别的基础上,充分利用试验井测井曲线特征进行闭合对比,将某油层细分为52个沉积单元。 3 某油层沉积环境 3.1 建立测井相模式 通过对取芯井分析,三角洲前缘亚相主要为绿色、灰绿色泥岩沉积,岩性以泥岩、泥质粉砂岩为主,三角洲分流平原相主要为紫色、紫红色砂、泥沉积,岩性以粉砂岩、泥质粉砂岩为主,岩性较三角洲前缘沉积粗。在某油层主要选取了GR、AC,RMG、RMN曲线,同时配合深浅侧向曲线,建立微相研究的标准测井相模式。根据曲线形态、韵律性、发育厚度共建立主河道砂、分流河道砂、河间薄层砂、滨湖砂坝、河间泥五种微相类型。 3.2 分析沉积环境 根据离研究区最近的C井岩心柱状综合图,结合高分辨率层序地层学,从下至上,将某油层划分为3个中期基准面半旋回。整个Y油层一组是中期基准面上升半旋回,岩心中紫红色泥岩大量存在,植物化石少,说明水体很浅,干旱

储层精细划分

油田进入开发后期,进一步提高采收率、挖掘剩余油潜力的难度越来越大,必须 进行精细的地层划分、对比工作。建立在地震地层学、层序地层学基础之上的高分辨 率层序地层学1995 年引入我国油气勘探领域后,其地层划分与对比方法在油田开发 中得以应用并取得了很好的效果;20 世纪60 年代,我国的石油地质工作者依据陆相 盆地多级次震荡运动学说和湖平面变化原理,在大庆油田会战中创造出了适用于湖相 沉积储层精细描述的“旋回对比、分级控制、组为基础”的小层对比技术,80 年代 中期,在小层沉积相研究的基础上,又将这一方法进一步发展为“旋回对比、分级控 制、不同相带区别对待”的相控旋回等时对比技术[56-58],使之更加适用于湖盆中的河 流-三角洲沉积,这项技术以其精细性和实用性,成为我国陆相油田精细油藏描述的 技术基础,得到了广泛应用。高分辨率层序地层对比与大庆油田的相控旋回等时对比 技术,一种理论性强,一种实用性强,均属于地层学中的精细地层划分、对比技术, 有许多相似之处,也各有其优缺点。本章首先简要介绍了高分辨率层序地层学的基本 原理和大庆油田的相控旋回等时对比技术,然后对这两种方法的作了比较,最后综合 应用两种方法,对商河油田南部沙二段地层进行了划分与对比,建立了研究区沙二段 的精细等时地层格架。 3.1 高分辨率层序地层学基本原理 层序地层学作为地层划分与对比的方法广泛应用于油气勘探的各个阶段。层序地 层学已发展成三个不同的学派,即Exxon 沉积层序、Galloway 成因层序及Cross 高分辨率层序地层学,它们已成为层序研究的三种基本方法。其共性是都与事件地层学相 关联,并且都是基于岩石地层旋回性以及相对地层格架的测定。主要差别在于旋回之 间界面的确定。Galloway 成因地层学使用了最大海(湖)泛面,Exxon 沉积层序使用 了不整合面,而Cross 的高分辨率测序地层则采用地层基准面原理。Cross 的高分辨 率层序地层与Galloway 成因地层和Exxon 沉积层序之间的差别在于前者采用二分时 间单元(地层基准面旋回),而后者采用的是三分时间单元。这三种方法各有其优缺 点,只要弄清楚用的是哪一种方法,或是在同一研究中使用几种方法都是可以的[59] 。由美国科罗拉多区矿业学院Cross 教授提出的高分辨率层序地层学理论,是近年 来新掘起的层序地层学新学派[33]。该理论经邓宏文、徐怀大等传入我国后,在我国 第三章地层的精细划分与对比 24 陆相盆地储层预测研究中发挥着重要的作用[22,60],极大地提高了陆相盆地的储层预 测精度。高分辨率层序地层学是在现代层序地层学的基础上发展起来的,它所依据的 仍然是层序地层学的基本原理。它与盆地或区域规模的层序分析不同在于,它以露头、 岩心、测井和高分辨率地震反射剖面资料为基础,运用精细层序划分和对比技术,建 立油田乃至油藏级储层的成因地层对比骨架。这里所谓的“高分辨率”是指“对不同 级次地层基准面旋回进行划分和等时对比的高精度时间分辨率,也即高分辨率的时间 -地层单元既可应用于油气田勘探阶段长时间尺度的层序单元划分和等时对比,也适 合开发阶段短时间尺度的砂层组、砂层和单砂体层序单元划分和等时对比”[24]。 以郑荣才、邓宏文两位教授为代表的高分辨率层序地层专家将高分辨层序地层的 理论运用于我国含油气盆地储层预测的实践中,极大地丰富和发展了高分辨率层序地 层学理论。高分辨层序地层应用于陆相盆地层序分析中的关键技术之一是识别和划分 不同成因的界面与不同级次的基准面旋回[20-26]。郑荣才教授根据他在辽河、胜利、长庆、大庆及滇黔桂等油田的实践,将不同构造性质的湖盆在盆地构造-沉积演化序列 中的控制因素进行分类,根据界面成因特征提出了“巨旋回,超长周期旋回、长周期 旋回、中期旋回、短期旋回、超短期旋回”的划分方案,建立了各级次旋回的划分标

精细油藏描述规范

3 工作流程 以油田钻井资料、地震资料为基础,通过井点地层精细对比、井断点的落实及地震精细解释,建立三维构造精细模型;通过储层精细划分、井点夹层描述、储层参数测井精细解释及取心井资料研究,建立三维储层精细模型(包括沉积相模型);开展模型合理粗化方法研究,把精细地质模型不失真的输入到数值模拟软件,并通过快速历史拟合,对模型进行验证,反馈信息,进一步修改完善地质模型。最终实现油藏的高精度拟合,并把数值模拟成果输出,进行各种剩余油指标的定量计算、统计分析,寻找剩余油潜力,结合油田开发状况分析及开发效果评价,制定合理、高效的油田开发调整及挖潜方案。同时实现油藏地质模型和数值模拟模型的资源共享,初步建立“数字油藏”。油藏描述工作流程见图1: 图1 精细油藏描述工作流程 4 精细油藏描述的基础资料 4.1 基础地质资料 4.1.1 地震资料:二维、三维地震资料。 4.1.2 钻井资料:工区内所有的探井、开发井、取心井,包括井别、井位坐标、

补心高、补心海拔、完钻井深、完钻层位、靶点坐标等信息。 4.1.3 测井资料:用于地层对比划分的常规测井曲线及相应的测井曲线数字带,特殊测井(核磁测井、成像测井等)曲线及数字带。 4.1.4 井斜资料:包括斜井、侧钻井、水平井的数字化井轨迹数据。 4.2 开发动态资料 4.2.1 开发数据:油田、开发单元及单井的开发数据,包括油水井月数据、油田开发月综合数据;井史资料(射孔、封堵、措施等数据)。 4.2.2 动态监测资料:包括动静液面、压力、试井、产液、吸水剖面,C/O测井、剩余油饱和度测井等监测资料。 4.3 开发实验资料 4.3.1 取心井资料:常规岩心分析、岩石薄片、扫描电镜、X衍射粘土矿物分析、X衍射全岩矿物分析、润湿性、敏感性、毛管压力、相对渗透率曲线等资料。 4.3.2 高压物性资料:包括油、气、水的高压物性数据(溶解油气比、地下原油密度、粘度、原油体积系数、压缩系数、天然气组份、体积系数等)。 4.3.3 原油性质数据:地面原油密度、粘度,不同含水时期、不同深度、平面不同部位原油性质变化数据。 4.3.4 油田水性质数据:主要包括矿化度和水型,不同含水时期的水型及水质变化数据。 4.3.5 天然气性质:气的类型(溶解气、气顶气和纯天然气)、气的主要成份、气密度等数据。 4.4 已有成果资料 以前开展研究的成果:包括文字报告、图件、表格及数据库等。 4.5 资料核实与修正 数据存在常规性错误,或数据之间存在着逻辑错误在所难免,为使研究成果更加准确、可靠,必须对数据进行检查与修正,减少数据的出错率,提高基础数据质量。如主要在以下几个方面进行数据校验: ◆数据的唯一性和一致性检查; ◆同一层的顶底面关系,顶面深度应小于或等于底面深度; ◆上下层之间的顶底面关系,上一层的底面深度应小于或等于下一层顶面深度;

多重地层的划分

一般概念 1.1 地层学(Stratigraphy) 地层学学是研究构成的所有层状或似层状岩石体固有的特征和属性,并据此将它们划分为不同类型和级别的单位,进而建立它们之间的空间关系和时间顺序的一门基础地质学科。地层学的研究范围实际上涉及到岩层中所有能识别的特征和属性(包括形状、分布、岩性特征、化石内容、地质年龄、地球物理和地球化学性质等),及其形成环境或形成方式和演化历史。构成地壳的各类层状或似层状的岩石——沉积岩(包括固结的或未固结的沉积物)、火山岩及变质岩都属于地层学的研究范畴。 1.2 地层(Stratum, Strata) 地层是具有某种共同特征或属性的岩石体。能以明显界面或经研究后推论的某种解释性界面与相邻的岩层和岩石体相区分。 1.3 地层分类(Stratigraphic classification) 根据构成地壳的岩层、岩石体的不同方面的特征或属性,将其划分成不同类型的地层单位。地层所具有的特征是多样的,属性也不尽相同,每种特征或属性原则上都可以据以作为地层分类的依据。因此,地

层划分的类别也是多样的。如,岩石地层、生物地层、年代地层,等等。 1.4 地层区划(Stratigraphic regionalization) 由于中国地域辽阔,各个地区的地层发育特征和状况颇不相同,把不同地区的地层加以对比研究,找出其共同点和不同之处,阐明其原因,并划分出不同的地层区域,这即是地层区划。这种划分不但具有重要科学意义,而且也有很大的实用价值。 地层工划主要依据地层发育的总体特征来划分。而决定和影响这些特征的,主要是地壳的活动性、古地理与古气候条件、古生物群的变化等综合因素,其中构造环境起着控制作用。现行的地层区划,是综合各个层系共同特点的综合地层区划。 地层区划可分为两级。一级地层区划(即地层区),相当于大地构造分区上的一级构造单元(或构造域);在同一地层区内,“系”级以上地层单位在岩相和生物区系上应可对比,“统”级地层单位可基本对比。二级地层区划(即地层分区),相当于大地构造分区上的二级构造单元(地块、褶皱带);在同一地层分区内,要求“统”级地层单位在岩相和生物组合上完全可以对比,“组”级单位基本可以对比。根据实际需要,有时可进一步划分三级地层区划(即地层小区),

储层描述工作内容及成果

储层描述工作内容及成果 一、储层描述工作内容 储层描述是油气藏开发过程中地质研究的一项重要内容,是编制油气藏开发方案的地质基础。其主要工作内容有如下几个方面: 1、储层细分与对比 制定储层细分与对比原则,确定对比标志层及对比方法、步骤,划分出合理的细分与对比单元。 2、储层产状描述 按不同区块分油层组、砂岩组、小层及单砂体,描述其储层顶、底埋藏深度,砂 ( 砾)层厚度,有效厚度,砂 ( 砾)层层数,砂 ( 砾)层形状及纵、横向的分布及变化。 3、储层岩性描述 主要包括岩矿组分、岩石结构、岩石分类及命名 4、沉积相描述 主要包括:取心井单井微相研究、平面微相研究、沉积微相模式及微相综合评价。 5、储层物性描述 5.1 储层物性参数确定依据 储层物性参数研究应以取心资料为基础,采用岩心刻度测井技术,利用标准化后的测井资料,建立研究区主要储层物性参数的测井解释模型,通过多井测井解释,提供高精度储层物性参数。 5.2 有效孔隙度

5.2.1 对裂缝性储集层应确定裂缝 ( 或溶孔、溶洞)孔隙度和基质孔隙度。 5.2.2单层中岩性相同的小段,当胶结程度也相同时,用算术平均法求得该岩性段的有效孔隙度;岩性相同的小段,当胶结程度不同时,用各胶结程度的小段有效厚度加权求得该岩性段的有效孔隙度。一个层组的有效孔隙度平均值用该层组内不同岩性段的有效厚度加权求得。 5.2.3如果各井或各井的同一层组的有效孔隙度值悬殊不大,且平面上井点分布比较均匀,则用算术平均法求得一个区块的有效孔隙度平均值。否则,必须用单井控制的有效孔隙体积加权求得。 5.2.4研究储集层孔隙压缩规律,并将地面孔隙度校正为地下孔隙度。 5.2.5 描述有效孔隙度与储集层岩性的关系,确定和评价各类岩性储集层工业油流的有效孔隙度下限值。 5.3渗透率 5.3.1 适量选取有代表性的岩心做垂直渗透率分析,并确定垂直渗透率与水平渗透率关系。 5.3.2 有效渗透率数据通过试井资料计算求得,描述测井解释渗透率与试井求得的有效渗透率两者之间的关系。 5.3.3 分井、分层、分岩性段的渗透率平均值计算方法按5. 2 . 2执行。 5.3.4一个区块的渗透率平均值,一般用调和平均方法求

地层划分

地史与大地构造 一、地史 (一)地质年代 地质年代又称为地质时代,是指各种地质事件(如地层的形成)发生的时代和年龄,它包括两方面的含义:一是指地质事件发生距今的实际年数,称为绝对地质年代。二是指地质事件发生的先后顺序,称为相对地质年代。 1、绝对地质年代 绝对地质年代,又称为同位素地质年龄,单位以百万年计。它是依据岩石中所含放射性元素及其蜕变产物的比例,用衰变常数(半衰期)进行计算和确定。 2、相对地质年代 相对地质年代是依据地层形成的顺序和生物演化规律的原理来划分和确定,分别叫做地层层序律和生物层序律。 (1)地层层序律 沉积物的形成是由下而上一层一层的叠置起来的,先沉积的在下面,后沉积地在上面,沉积岩层这种正常的层序关系,反映了沉积历

史的先后,具有下老上新的相对关系,称为地层层序律。地层层序律只能确定岩层的相对新老关系,而不能解决地层归属及不同地区地层时代对比问题。 沉积岩的正常层序 (2)生物层序律 地球上的生物,经历了由简单到复杂,由低级到高级的发展过程,而且生物的进化是不可逆的,也就说任何一种生物一经灭绝,在以后的演化过程中,绝对不再重复出现,同时生物演化的历史,又使生物不断适应生活环境的过程。在不同环境的地质历史时期,必定有不同的生物种属和生物群,所以地质年代越老的地层,保存的生物化石越低级简单,地质年代新的地层,保存的生物化石越高级复杂,称为生物层序律。利用生物层序律就可以确定地层时代的归属和不同地区地

层时代的对比问题。 生物演化系谱 3、地质年代表 通过对全世界各地区地层剖面的划分和对比,综合岩石同位素年龄测定和古生物研究资料,结合我国实际,将地球发展演化的历史,按从新到老的顺序,进行系统性的排列,编制而成的年表,称为地质年代表。地质年代表的内容包括了地质年代划分的顺序、名称、代号和绝对年龄,以及历次重大构造运动和生物演化规律。它简明扼要地反映了地壳发展的主要特征,便于地质工作对比应用。 (二)地层单位

油田开发层系的划分意义与原则

119 1?油层间非均质性的地质特性主要表现1.1?储层性质的不同 油田纵向上会存在很多储油层,一些储集层相互之间的差异性很大,主要表现在储集层岩性的差异,目前各类岩性的地层都可称为储集层。而各种岩性形成的储集层中的储集空间和渗流孔道差异很大,即使在同一类储集空间内的油层,其各个油层的渗透率也存在较大差异,而油层间渗透率的不同将直接影响油田开发效果。 1.2?储集层之间油水关系不同 田开发中,油气水的关系有的非常简单,有的却很复杂,常因油水关系的作用将油藏定性为相应名称,如存在底水、边水的油藏、存在气顶的油藏和纯油藏等。 1.3?油藏驱动方式的不同 油藏驱动大致可分为水驱、弹性能驱动、溶解气驱动、气顶驱动和重力驱动等驱动方式,如同一油田的不同油层或者不同区块都可能存在多种驱动方式,所以在油田的实际开发过程中,要根据油藏自身性质充分利用天然能量进行开发。 1.4?油层油气水性质的差异 由于不同油层中的原油黏度和油层压力系统存在差异,针对这种性质的油田,在开发过程中要采取不同的方式。所以要合理地划分开发层系,将储层的非均质性影响效果降至最低。 2?开发层系划分的意义 通过合理的划分开发层系,才能把特征相似的油层进行组合,然后利用同一套生产井网进行有效的开发,由于油田中各个油层纵向上的沉积条件和沉积环境的差异性,导致油层特性也不相同,在开发过程中会出现层间矛盾。所以在开发过程中将特征相似的油层组合在一起,使用同一套井网进行开采,既可以缓解层间矛盾,还能够充分发挥油层的生产能力,所以合理地划分开发层系对实现油田的稳产高产和提高油田最终采收率具有重要意义。 在多油层油田中,纵向上存在的多个油层不能在同一种开采工艺下都发挥最大作用,而实际生产过程中常常采用分层注水和分层开采的方式,目的是使各个油层都能均匀吸水,而目前所拥有的分层开采技术还不能达到逐层分开的效果,所以必须对性质相近的油层进行合理划分组合,这样才能发挥采油工艺的最大效果,发挥各油层的作 用,提高采油速度,最终实现油田经济效益最大化。 3?开发层系划分的原则 开发层系划分的目的就是将性质相近的油层组合到一块,然后采用同一套井网进行开采,所以在性质相近的油层组合时应注意以下几点: 1)性质相近的油层组合主要是为了减少开采过程中的层间矛盾,油层性质相近主要表现为,油藏的沉积条件相似,油层的渗透率相似。一般情况下,常以油层作为组合开发层系的基本单元,目前有的油田通过砂岩组的特征划分开发层系。 2)每个开发层系都应具有充足的油气储量,不同开发层系之间应具有良好的隔层,防止层系之间串通和相互干扰,而同一套开发层系中的压力系统、油水边界及原油性质应相似,在现有条件下,对不同的开发层系通常采用分层开采工艺,但在层系划分是不易过细,以便减少多余的工作量,提高工作效率。 3)当储集层岩性差异较大、油层渗透率差异较大、油层的压力系统不统一且驱动方式不同等情况下,各个油层不能采用同一套开发层系进行开发。 4?开发层系调整 对于拥有多油层的油藏,在注水条件下不能够使用同一套井网进行开发,所以在实际开发过程中,要将其划分为多个开发层系,针对各个层系的特性使用不同的井网开发方式。已经划分好的开发层系由于长期开发,其内部会产生新的注采平衡,而为了对油层更加合理的开发,又需要进一步对原有的开发层系进行划分,一种是原开发层系进一步细分,另一种是把原来相邻的开发层系中的开发效果较差的油层组合进去,从新形成一组新的开发层系,在开发层系的调整过程中要强调经济效益的重要性,避免对无效益的开发层系进行重新划分。 5?结束语 油田综合开发必须依靠合理的层系划分,通过对层系划分的原则和意义的深入了解,进一步确定层系划分在油田开发中的重要地位,确保油田达到较好的经济指标。 参考文献? [1]郎兆新.油藏工程基础[M].北京:石油大学出版社,1991[2]黎文清,李世安.油气田开发地质基础[M].北京:石油工业出版社,1993 [3]达克.油藏工程原理[M].北京:石油工业出版社,1984 油田开发层系的划分意义与原则 张帆?赵丹凤 延长油田股份有限公司吴起采油厂 陕西 延安 716000 摘要:油层具有非均质性会对多油层油田的开发部署和开采效果造成重大影响,采用合理的方式划分开发层系能够有效的解决多油层油田的非均质性。 关键词:开发层系?油层?非均质性 The?significance?and?principle?of?the?division?of?oil?field?development?strata Zhang?Fan?,Zhao?Danfeng Yanchang Oil ?eld Company ,Shanxi 716000 Abstract:The?heterogeneity?of?the?oil?layer?has?a?great?influence?on?the?development?and?deployment?of?the?multi?oil?reservoir?and?the?exploitation?effect.?The?rational?way?of?dividing?the?development?layer?can?effectively?solve?the?heterogeneity?of?the?oil?field. Keywords:development?layer;oil?layer;heterogeneity

相关文档