文档库 最新最全的文档下载
当前位置:文档库 › 二次函数求最值参数分类讨论的方法

二次函数求最值参数分类讨论的方法

二次函数求最值参数分类讨论的方法
二次函数求最值参数分类讨论的方法

二次函数求最值参数分类讨论的方法

分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题.

一般地,对于二次函数y=a (x -m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。

①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。

含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论

题型一:“动轴定区间”型的二次函数最值

例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。

分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解:222()23()3f x x ax x a a =-+=-+-

∴此函数图像开口向上,对称轴x=a

①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远,

∴x=0时,min y =3,x=4时,max y =19-8a

②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远,

∴x=a 时,min y =3-a2,x=4时,max y =19-8a

③、当2≤a <4时,a 距对称轴x=a 最近,0距对称轴x=a 最远,

∴x=a 时,min y =3-a2,x=0时,max y =3

④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远,

∴x=4时,min y =19-8a ,x=0时,max y =3

例2、已知函数2()(21)3f x ax a x =+--在区间3

[,2]2

-上最大值为1,求实数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.

解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2-上取不到最大值为1,∴a ≠0

2)若a ≠0,则2()(21)3f x ax a x =+--的对称轴为0122a x a

-= (Ⅰ)若3()12f -=,解得103a =-,此时0233[,2]202

x =-∈- a<0, 0()f x 为最大值,但23()120

f -≠ (Ⅱ) 若(2)1f =解得34a =此时013[,2]32

x =-∈- 0310,43

a x =>=-距右端点2较远,(2)f 最大值符合条件

(Ⅲ) 若0()1f x =解得a =

当302

a -+=<时034[,2]2x =-?-

当302

a --=<时034[,2]2x =∈-

综收所述34a =或32a --= 评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。

题型二:“动区间定轴”型的二次函数最值

例3.求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。

解:2()23f x x x =-+2

(1)2x =-+

∴此函数图像开口向上,对称轴x=1

①当a >1时,a 距对称轴x=1最近,a+2距x=1最远,

∴当x=a 时,min y =- a 2+3 ,x=a+2时,max y = a 2 +2a+3 ②当0<a≤1时,1距对称轴x=1最近,a+2距离x=1最远,

∴当x=1时,min y =2 ,x=a+2时,max y = a 2

+2a+3 ③当-1<a≤0时,1距对称轴x=1最近,a 距x=1最远,

∴当x=1时,min y =2 ,x=a 时,max y =a 2

-2a+3 ④当a≤-1时,a+2距对称轴x=1最近,a 距x=1最远,

∴当x=a+2时,min y = a 2 +2a+3 ,x=a 时,max y = a 2

-2a+3

题型三:“动轴动区间”型的二次函数最值

例5、已知函数22()96106f x x ax a a =-+--在1

[,]3

b -上恒大于或等于0,其中实数[3,)a ∈+∞,求实数b 的范围. 分析:找出函数的对称轴:3a x =结合区间1[,]3b -讨论3a b ≥或133

a b -<<的情况 解:∵21()9()106,[,]33

a f x x a x

b =---∈- 若3a b ≥时,f(x)在1[,]3

b -上是减函数 ∴min y =2()9()1063a f b b a =---即29()1063a b a ---≥0则条件成立 令22()(610)96,[3,)u g a a b a b a ==-++-∈+∞

(Ⅰ)当3b+5≤3时.即23

b ≤-则函数g(x)在[)3,+∞上是增函数 ∴2min (3)9183096u g b b ==--+-

即2918270b b --≥解得b ≥3或b ≤-1 ∵23

b ≤-,∴b ≤-1 (Ⅱ)当3b+5>3即23

b >-

,min (35)3031u g b b =+=-- 若-30b-31≥0解得3130b ≤-与23

b >-矛盾; (2)若133a b -<<时, min ()1063

a y f a ==--即-10a-6≥0 解得35a ≤-与[3,)a ∈+∞矛盾; 综上述:

b ≤-1

评注:此题属于“动轴动区间”型的二次函数最值,解决的关键是讨论对称轴与定义域区间的位置更便于我们分类类讨论,然后依据口诀,很快就可解决问题。

最后,我们在得用分类讨论方法解题中要注意两个原则:一、分类不重不漏;二、一次分类只能按已确定的同一标准进行.

二次函数分类讨论补充习题

1.已知函数()222f x x x =++,若[]R a a a x ∈+∈,2,,求函数的最小值,并作出最小值的函数图象。

2.已知函数2()3f x x =-+,若()26f x kx ≤-+在区间[]2,1-上恒成立,求实数k 的取值范围。

3.已知k 为非零实数,求二次函数,122++=kx kx y (,2]x ∈-∞的最小值。

4.已知3a ≤,若函数()2

21f x x ax =-+在[]3,1上的最大值为()a M ,最小值为()a m ,又已知函数()()()a m a M a g -=,求()a g 的表达式。

含参数二次函数分类讨论的方法

二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数y=a (x -m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a ①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a ②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a ③、当2≤a <4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3 ④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =3 例2、已知函数2()(21)3f x ax a x =+--在区间3 [,2]2 -上最大值为1,求实数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

(完整版)二次函数综合题分类讨论带答案.doc

二次函数综合题分类讨论 一、直角三角形分类讨论: 1 1、已知点 A(1 ,0),B( -5,0),在直线y 2 x 2 上存在点C,使得 ABC 为直角三角形, 这样的 C 点你能找到个 2、如图 1,已知抛物线C1:y a x 2 2 5 的顶点为 P,与 x 轴相较于 A 、 B 两点(点 A 在点 B 的左边),点 B 的横坐标是 1.( 1)求 P 点坐标及a的值;( 2)如图 1,抛物线 C2与抛物线 C1关于 x 轴对称,将抛物线C2向右平移,平移后得到抛物线C3, C,3的顶点为 M ,当点 P、 M 关于点 B 成中心对称时,求C,3的解析式;( 3)如图 2,点 Q 是 x 轴正半轴上一点,将抛物线C1绕点 Q 旋转180 后得到抛物线 C,4,抛物线 C,4的顶点为 N,与 x 轴相交于 E、 F 两点(点 E 在点 F 的左边),当以点 P、 N、 F 为顶点的三角形 是直角三角形时,求点Q 的坐标。(2013 汇编 P56+P147)

3、如图,矩形 A’BC’O’是矩形 OABC( 边 OA 在 x 轴正半轴上,边 OC 在 y 轴正半轴上 )绕 B 点逆时针旋转得到的. O’点在 x 轴的正半轴上, B 点的坐标为 (1,3). (1)如果二次函数 y= ax2+ bx+c(a≠0)的图象经过 O、O’两点且图象顶点 M 的纵坐标为 —1.求这个二次函数的解析式; ? (2) 在 (1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM 为直角三角形 若存在,请求出P 点的坐标和POM 的面积;若不存在,请说明理由; (3)求边 C’O’所在直线的解析式.

含字母参数的二次函数问题

含字母参数的二次函数问题 引入 1.什么是函数? 2.我们已经学过哪些函数? 3.对于函数我们需要掌握哪些知识? 二次函数知识点回顾 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 3.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶 点为(h ,k ),对称轴是直线h x =. 4.二次函数由特殊到一般,可分为以下几种形式:①2 ax y =;②k ax y +=2 ;③ ()2h x a y -=;④()k h x a y +-=2 ;⑤c bx ax y ++=2.

它们的图像特征如下: 开口大小与|a |成反比,|a |越大,开口越小;|a |越小,开口越大. 5.用待定系数法求二次函数的解析式: (1)一般式:c bx ax y ++=2 .已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2 .已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 6.二次函数与一元二次方程的关系: (1)一元二次方程20ax bx c ++=就是二次函数c bx ax y ++=2 当函数y 的值为0时的情况. (2)二次函数c bx ax y ++=2 的图象与x 轴的交点有三种情况:有两个交点、有一个交点、 没有交点;当二次函数 c bx ax y ++=2 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2 +bx +c=0的根. (3)当二次函数c bx ax y ++=2 的图象与 x 轴有两个交点时,则一元二次方程02=++c bx ax 有两个不相等的实数根;当二次函数c bx ax y ++=2 的图象与x 轴有一个交点时,则一元 二次方程02 =++c bx ax 有两个相等的实数根;当二次函数y =ax 2 + bx+c 的图象与 x 轴没有交点时,则一元二次方程02 =++c bx ax 没有实数根. 练习1.请你利用配方法求下列函数的对称轴和顶点坐标。 (1)2 25y x x =++ (2)2 261y x x =+- (3)(2)(5)y x x =++ (4)(23)(1)y x x =+-

二次函数(专题)教学设计

二次函数(专题) ——线段问题 【教学目标】 一、知识技能 1.会用坐标表示线段长度; 2.能解决与抛物线有关的线段问题. 二、数学思考 1.通过用点的坐标表示线段的长度,体现数形结合的思想; 2.体会分类讨论的思想方法. 三、问题解决 1.引导学生归纳出解决与抛物线有关的线段问题的方法; 2.通过小组讨论发现问题,解决问题,体会在解决问题过程中小组合作的重要性. 四、情感态度 在解决问题的过程中,培养学生独立思考、敢于发表自己见解的学习习惯.在合作交流的过程中使学生体验成功的喜悦,增强学好数学的信心. 【教学重点】 1.用坐标表示线段长; 2.解决与抛物线有关的线段问题. 【教学难点】用坐标表示线段长. 【教学方法】探究归纳法、讲练结合法、小组合作法. 【教学准备】多媒体课件、学案等. 【教学过程】 一、知识回顾

1.已知(,) ,(,)A B --5212,则AB = ; 2.已知(,) ,(,-)C D --1512,则CD = . 一 般地,若 ()(),,, A x y B x y 1122,则当 y y =12时,AB x x =-12; 当x x =12时,AB y y =-12. 【设计意图】 在平面直角坐标系中,若已知点的坐标,可以用坐标求线段的长度.通过观察两点与坐标轴的关系,强调平行于x 轴(或在x 轴上)或者y 轴(或在y 轴上)这一重要前提条件.由两道具体问题的计算推广到一般情况,得出结论,体现了数学由特殊到一般的思想. 二、典例精讲 (一)知识准备 例 如图,抛物线y x bx c =- ++2 14 的图象过点(,)A 40,(,)B --44; (1)求抛物线和直线AB 的解析式; 学生在学案上独立完成,老师在大屏幕上展示解题过程,学生对改、订正. 【设计意图】 复习用待定系数法求函数解析式的过程,加强学生对坐标与解析式关系的 理解,加深对直线和抛物线图形的认识,为下一环节做准备.通过课件展示,规 范学生的解题过程. (二)问题解决 (2)若点D 是线段AB 上的一动点(不与、A B 重合),过点D 作y 轴的平行线,与抛物线交于点E ,与x 轴交于点C ,设点D 的横坐标为.m

含参数的二次函数求值域问题解析.doc

含参数的二次函数求值域问题专题 有时参数在区间上, 有时参数在解析式上, 构成了有时轴动区间定, 而有时轴定区间动 1 函数f(x)=x 2 -2x2的定义域为 Li, mJ 值域为41…由实数m 的取值范围是 H, 31 2 已知函数f(x)=x 2 -2x+3在区间d, rnJk 有最大值3,最小值2,则实数m 的取值范围是 匕2】 2 2 3 已知f (x) = -4x + 4ax 4a -a 在区间[0, 1]内有最大值一5,求a 的值? 3 a 解:??? f(x)的对称轴为X0二厂①当0 <- <1,即o 2时[f ( x)lmax= f ⑴=-4 殳2 = -5八 a = ±1 不合; 综上,a =—或a.= —5? 2 4已知定义在区间 [0,3]上的函数f(x)= kx- 解析:V f(x)= k(x- %— k, (1) 当k>0时,二次函数图象开口向上,当 ?k= 1; (2) 当k<0时,二次函数图象开口向下,当 —3. (3) 当k= 0时,显然不成立. 故k 的取值集合为{1, — 3}? 答案:{1, - 3} o =—x -ax b 有最小值一1,最大值1 ?求使函数取 得最大值和最小值吋相应的 x 的值? a 解:a>0, /. f(X )对称轴 X = —— V 0 J. [ f ( X )] min = f ( X )= —1 二 3 = b ; a 2kx 的最大值为3,那么实数k 的取值范围为 ___________ ? 2 x= 3时,f(x)有最大值,f(3) = k - 3-2kx3= 3k= 3 x= 1 时,f(x)有最大值,f(1)= k- 2k=- k= 3?k= 5. 已知 a>0,当 x e 函数 f (x) \T2 /(\ XI -

二次函数经典解题技巧

龙文教育学科教师辅导讲义

解:(1)根据题意,得?????+?-?=-+-?--?=. 0405, )1(4)1(02 2c a c a …2分 解得 ? ? ?-==.5, 1c a …………………………3分 ∴二次函数的表达式为542 --=x x y .……4分 (2)令y =0,得二次函数542 --=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).……………5分 由于P 是对称轴2=x 上一点, 连结AB ,由于262 2= +=OB OA AB , 要使△ABP 的周长最小,只要PB PA +最小.…………………………………6分 由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC . 因而BC 与对称轴2=x 的交点P 就是所求的点.……………………………………8分 设直线BC 的解析式为b kx y +=,根据题意,可得? ? ?+=-=.50,5b k b 解得???-==.5, 1b k 所以直线BC 的解析式为5-=x y .…………………………………………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组? ? ?-==5,2x y x 的解,解得???-==.3, 2y x 所求的点P 的坐标为(2,-3).……………………………10分 压轴题中求最值 此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值。 典型例题: 1如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点出发,沿射线BC 向右匀速移动.已知F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0). ⑴△EFG 的边长是____(用含有x 的代数式表示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部分面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式; ⑶探求⑵中得到的函数y 在x 取含何值时,存在最大值,并求出最大值. A D

2020年人教版中考复习之含参二次函数练习试题(无答案)

含参二次函数 类型一 函数类型确定型 1. 已知抛物线y =3ax 2+2bx +c . (1)若a =3k ,b =5k ,c =k +1,试说明此类函数图象都具有的性质; (2)若a =13,c =2+b ,且抛物线在-2≤x ≤2区间上的最小值是-3,求b 的值; (3)若a +b +c =1,是否存在实数x ,使得相应的y 值为1,请说明理由. 2. 在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴、y 轴分别相交于A (-3,0)、B (0,-3)两点,二次函数y =x 2+mx +n 的图象经过点A . (1)求一次函数y =kx +b 的表达式; (2)若二次函数y =x 2+mx +n 的图象顶点在直线AB 上,求m ,n 的值; (3)①设m =-2,当-3≤x ≤0时,求二次函数y =x 2+mx +n 的最小值; ②若当-3≤x ≤0时,二次函数y =x 2+mx +n 的最小值为-4,求m ,n 的值. 3. 在平面直角坐标系中,二次函数y 1=x 2+2(k -2)x +k 2-4k +5. (1)求证:该二次函数图象与坐标轴仅有一个交点;

(2)若函数y 2=kx +3经过y 1图象的顶点,求函数y 1的表达式; (3)当1≤x ≤3时,二次函数的最小值是2,求k 的值. 4. 已知二次函数y =ax 2+bx +c (a ≠0)的图象经过A (1,1)、B (2,4)和C 三点. (1)用含a 的代数式分别表示b 、c ; (2)设抛物线y =ax 2+bx +c 的顶点坐标为(p ,q ),用含a 的代数式分别表示p 、q ; (3)当a >0时,求证:p <32,q ≤1. 5. 已知抛物线y 1=ax 2+bx +c (a ≠0,a ≠c )过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)用含a 、c 的代数式表示b ; (2)判断点B 所在象限,并说明理由; (3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C (c a ,b +8),求 当x ≥1时,y 1的取值范围.

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

二次函数分类讨论

二次函数 【复习目标】 1. 掌握二次函数解析式的求解方法——待定系数法; 2. 能灵活应用二次函数的单调性和对称性解决有关问题; 3. 理解二次函数,二次方程,二次不等式之间相互转换的关键; 4. 掌握二次函数值域求解的三种基本类型:定轴定区间,动轴定区间,定轴动区间; 5. 能熟练应用二次方程的实根分布知识解决二次函数中的参数取值范围问题。 【重点难点】 二次函数值域求解中分类讨论;函数中的“换元”思想及如何控制换元的等价性;数形结合思想在二次方 程实根分布知识中的应用。 【典型例题】 例1(1)设二次函数)(x f 满足)2(-x f =)2(--x f ,且图象在y 轴上的截距为1,被x 轴截得的线段 长为22,求)(x f 的解析式。 (2)若定义在[]6,6-上的奇函数)(x f 在[]3,0上为一次函数,在[]6,3上为二次函数,且]6,3[∈x 时, )(x f ≤)5(f =3,)6(f =2,求)(x f 的解析式。 例2(1)已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是______________ (2)设函数)1(,0)()0()(2+<>++=m f m f a a x x x f 则满足的符号是 . (3)已知函数a x x x x a ax ax x f +=+<>+-=1,),1(12)(21212且若,则)()(21x f x f 与的大小关系 是 。 例3.(1)已知3 1≤a ≤1,若f (x )=a x 2-2x +1在区间[1,3] 上的最大值为M (a ),最小值为N (a ),令g(a )=M (a )-N (a )。 ① 求g(a )的解析式 ② 判断g(a )的单调性并求出g(a )的最小值。

中考数学专项突破——含参二次函数(word版+详细解答)

中考数学专项突破——含参二次函数 类型一 函数类型确定型 1. 已知抛物线y =3ax 2+2bx +c . (1)若a =3k ,b =5k ,c =k +1,试说明此类函数图象都具有的性质; (2)若a =13,c =2+b ,且抛物线在-2≤x ≤2区间上的最小值是-3,求b 的值; (3)若a +b +c =1,是否存在实数x ,使得相应的y 值为1,请说明理由. 解:(1)∵a =3k ,b =5k ,c =k +1, ∴抛物线y =3ax 2+2bx +c 可化为y =9kx 2+10kx +k +1=(9x 2+10x +1)k +1, ∴令9x 2+10x +1=0, 解得x 1=-1,x 2=-19, ∴图象必过点(-1,1),(-19,1), ∴对称轴为直线x =-10k 2×9k =-59; (2)∵a =13,c =2+b , ∴抛物线y =3ax 2+2bx +c 可化为y =x 2+2bx +2+b , ∴对称轴为直线x =-2b 2=-b ,

当-b >2时,即b <-2, ∴x =2时,y 取到最小值为-3. ∴4+4b +2+b =-3,解得b =-95(不符合题意,舍去),当-b <-2时即b >2, ∴x =-2时,y 取到最小值为-3. ∴4-4b +2+b =-3,解得b =3; 当-2<-b <2时,即-2<b <2,当x =-b 时,y 取到最小值 为-3,∴4(2+b )-4b 24 =-3, 解得b 1=1+212(不符合题意,舍去),b 2=1-212, 综上所述,b =3或1-212; (3)存在.理由如下:∵a +b +c =1, ∴c -1=-a -b , 令y =1,则3ax 2+2bx +c =1. ∴Δ=4b 2-4(3a )(c -1)=4b 2+4(3a )(a +b )=9a 2+12ab +4b 2+3a 2=(3a +2b )2+3a 2, ∵a ≠0, ∴(3a +2b )2+3a 2>0, ∴Δ>0, ∴必存在实数x ,使得相应的y 值为1. 2. 在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴、y 轴分

二次函数专题之参数范围问题

···二次函数专题之参数范围问题 基本思想方法: ①函数与方程; ②数形结合; ③化归与转化; ④逆向思维; ⑤分类 1x2-x+2 1.(2015海淀一模)在平面直角坐标系xoy中,抛物线y= 2 与y轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称。(1)求直线BC的解析式; (2)点D在抛物线上,且点D的横坐标为4,将抛物线在点A,D之间的部分(包含点A,D)记为图像G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围。 2.(2015朝阳二模)已知关于x的一元二次方程ax2-2(a-1)x+a-2=0(a >0). (1)求证:方程有两个不等的实数根. (2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2+x1,求这个函数的表达式. (3)在(2)的条件下,若使y≤-3a2+1,则自变量a的取值范围为3.(2015顺义二模)已知关于x的方程x2+(m-2)x+m-3=0.

(1)求证:方程x2+(m-2)x+m-3=0总有两个实数根; (2)求证:抛物线y=x2+(m-2)x+m-3总过x轴上的一个定点;(3)在平面直角坐标系xoy中,若(2)中的定点记作A,抛物线y=x2+(m-2)x+m-3与x轴的另一个交点为B,与y轴交于点C,且△OBC 的面积小于或等于8,求m的取值范围. 4.(2015怀柔一模)在平面直角坐标系xoy中,二次函数y=(a-1)x2+2x+1的图像与x轴有交点,a为正整数. (1)求a的值. (2)将二次函数y=(a-1)x2+2x+1的图像先向右平移m个单位长度,再向下平移m2+1个单位长度,当-2≤x≤1时,二次函数有最小值-3,求实数m的值. 5.(2015石景山一模)在平面直角坐标系xoy中,抛物线y=mx2-2mx-3(m≠0)与x轴交于A(3,0),B两点. (1)求抛物线的表达式及点B的坐标. (2)当-2<x<3时的函数图像记为G,求此时函数y的取值范围. (3)在(2)的条件下,将图像G在x轴上方的部分沿x轴翻折,图像G的其余部分保持不变,得到一个新图像M.若经点C(4,2)的直线y=kx+b(k≠0)与图像M在第三象限内有两个公共过点,结合图像求b的取值范围.

二次函数求最值方法总结

二次函数求最值方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

XX 教育辅导教案 学生姓名 性别 年级 学科 数学 授课教师 上课时间 年 月 日 第( )次课 共( )次课 课时: 课时 教学课题 二次函数求最大值和最小值 教学目标 利用二次函数的图像和性质特点,求函数的最大值和最小值 教学重点 与难点 含有参数的二次函数最值求解。 课堂引入: 1) 由二次函数应用题最值求解问题引申至一般二次函数求最值问题,阐述二次函数求最值问题 方法的重要性(初高中衔接、高中必修一重点学习内容)。 2) 当22x -≤≤时,求函数223y x x =--的最大值和最小值. (引导学生用初中所学的二次函数知识求解,为下面引出二次函数求最值方法总结做铺垫) 二次函数求最值方法总结: 一、设)0(2≠++=a c bx ax y ,当n x m ≤≤时,求y 的最大值与最小值。 1、当0>a 时,它的图象是开口向上的抛物线,数形结合可求得y 的最值: 1) 当n a b m ≤-≤2时,a b x 2-=时,y 取最小值:a b a c y 442min -=;y 的最大值在m x =或n x =处取到。 2) 若m a b <-2,二次函数在n x m ≤≤时的函数图像是递增的,则m x =时,y 取最小值;则n x =时,y 取最大值。 若n a b >- 2,二次函数在n x m ≤≤时的函数图像是递减的,则n x =时,y 取最小值;则m x =时,y 取最大值。

【变式训练】 变式1、当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,1max -=y ,当2x =时,5min -=y . 【例题解析】 例2、当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y =?--=-; (3) 当对称轴在所给范围右侧.即110t t +

中考 二次函数含参问题小综合~2018年九年级中考数学模拟篇

专题:二次函数含参问题小综合~2018年九年级中考数学模拟篇 1.(2018武昌模拟一16题)已知抛物线y=x2-2x-1在-1≤x≤4之间的图像与抛物线y=-x2+2x+1+a的图像有且只有一个交点,则a的取值范围是_________________________ 2.(2018江汉模拟一16题)无论x为何值,关于x的代数式x2+2ax-3b的值都是非负数,则a +b的最大值为 3.(2018硚口模拟二16题)已知a、b为y关于x的二次函数y=(x-c)(x-c-1)-3的图象与x 轴两个交点的横坐标,则|a-c|+|c-b|的值为___________ 4.(2018二中广雅模拟一16题)已知当-1<x<0时,二次函数y=x2-4mx+3的值恒大于1,则m的取值范围是________ 5.(2018文华中学模拟一16题)已知二次函数y=x2-2nx+n+2的最小值大于0,则n的取值范围是___________ 6.(2018文华中学模拟二16题)已知二次函数y=(x-h)2-h+2,当自变量x的取值在0≤x≤2的范围中时,函数有最小值h,则h的值为___________

7.(2018青山模拟一16题)已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x ≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为_________ 8.(2018勤学早模拟一16题)已知抛物线y =-x 2+(m -1)x +m 的顶点坐标为(x 0,y 0),当4 25410≤≤y 时,m 的取值范围是___________ 9.(2018勤学早模拟二16题)抛物线2 3212++=bx x y ,当0≤x ≤1时抛物线上的点到x 轴距离的最大值为3,则b 的值为_______________ 10.(2018新观察模拟五16题)关于x 的二次函数y =-(x -m )2+2,当2≤x ≤4时函数有最大值-m ,则m 的最大值为____ 11.(2018新观察模拟六16题)二次函数42 12-+-= m mx x y 与x 轴交于A 、B 两点,则AB 的最小值为___________ 12.(2018新观察模拟七16题)已知函数|3)(3 1|2--=h x y ,当0≤x ≤2时,函数y 随x 的增大而增大,则实数h 的最大值为___________

专题07 二次函数中基于对称轴进行分类讨论及求解函数最值题型(原卷版)

专题07 二次函数中基于对称轴进行分类讨论及求解函数最值题型 ·. 二次函数2 22424b ac b y ax bx c a x a a -??=++=++ ???的最值问题为: (1)当a >0时,当x =2b a -时有最小值,最小值为:244ac b a -; (2)当a <0时,当x =2b a -时有最大值,最大值为:244ac b a -. ·. 当二次函数的自变量取值范围不是全体实数时,需要考虑取值范围与对称轴的关系,再进行求解. 题型一、二次函数函数值的取值范围与一元二次方程的解的关系 1.(2019·山东潍坊中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2 +bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( ) A .2≤t <11 B .t ≥2 C .6<t <11 D .2≤t <6 二、二次函数对称轴位置不同产生的不同最值问题 2. (2019·浙江台州中考) 已知函数y =x 2 +bx +c (b ,c 为常数)的图象经过点(﹣2,4). (1)求b ,c 满足的关系式; (2)设该函数图象的顶点坐标是(m ,n ),当b 的值变化时,求n 关于m 的函数解析式; (3)若该函数的图象不经过第三象限,当﹣5≤x ≤1时,函数的最大值与最小值之差为16,求b 的值. 题型三、二次函数增减性与对称轴的关系 3. (2019·山东临沂中考)在平面直角坐标系中,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,抛物线2(0)y ax bx c a =++<经过点A 、B . (1)求a 、b 满足的关系式及c 的值. (2)当x <0时,若2(0)y ax bx c a =++<的函数值随x 的增大而增大,求a 的取值范围. (3)如图,当1a =-时,在抛物线上是否存在点P ,使△PAB 的面积为1,若存在,请求出符合条件的所有点P 的坐标,若不存在,请说明理由.

二次函数求最值参数分类讨论的方法(可编辑修改word版)

t t + s 2 s ① ② ③ ④ 二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数 y=a (x m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏, 可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数 f (x ) = x 2 - 2ax + 3 在 x ∈[0, 4] 上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解: f (x ) = x 2 - 2ax + 3 = (x - a )2 + 3 - a 2 ∴此函数图像开口向上,对称轴 x=a ①、当 a <0 时,0 距对称轴 x=a 最近,4 距对称轴 x=a 最远, ∴x=0 时, y min =3,x=4 时, y max =19-8a ②、当 0≤a<2 时,a 距对称轴 x=a 最近,4 距对称轴 x=a 最远, ∴x=a 时, y min =3-a2,x=4 时, y max =19-8a ③、当 2≤a<4 时,a 距对称轴 x=a 最近,0 距对称轴 x=a 最远, ∴x=a 时, y min =3-a2,x=0 时, y max =3 ④、当 4≤a 时,4 距对称轴 x=a 最近,0 距对称轴 x=a 最远, ∴x=4 时, y min =19-8a ,x=0 时, y max =3 例 2、已知函数 f (x ) = ax 2 + (2a -1)x - 3 在区间[- 3 , 2] 上最大值为 1,求实数 a 的值 2 分析:取 a=0,a≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分

含参数的二次函数问题

含参数的二次函数问题练习题 南平八中 许文新 1、当41≤≤x 时,求函数242-+-=x x y 的最小值。 2、已知函数()12-+=ax ax x f ,若()0

8、方程k x x =-2 32在()1,1-上有实根,求实数k 的取值范围。 9、已知()2223t tx x x f --=,当31≤≤-x 时,有()0≤x f 恒成立,求实数t 的取值范围。 10、已知()t x x x f ++-=232,当11≤≤-x 时,有()0≥x f 恒成立,求实数t 的取值范围。 11、已知()2234a ax x x f -+-=,当21≤≤x 时,有()0≥x f 恒成立,求实数a 的取值范围。 12、已知()b bx x x f +-=23,当12≤≤-x 时,有()0≥x f 恒成立,求实数b 的取值范围。

13、函数2()(0)f x ax bx c a =++≠的图象关于直线2b x a =- 对称。据此可推测,对任意 的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程[]2 ()()0m f x nf x p ++=的解集不可能是 A. {}1,2 B {}1,4 C {}1,2,3,4 D {}1,4,16,64 含参数的二次函数问题练习题答案: 1、2m in -=y ;2、04≤<-a ;3、2 1- ≥a ;4、21≤≤m ;5、1≤p 6、1≤a ; 7、23≤

专题04 等腰三角形与二次函数的分类讨论问题(解析版)

专题04 等腰三角形与二次函数的分类讨论问题 1、如图,二次函数y =ax 2+bx +4的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C ,点A 的坐标为(2,0),它的对称轴是直线x =﹣1. (1)直接写出点B ,点C 的坐标. (2)求这个二次函数的解析式. (3)若点P 在x 轴上,且△PBC 为等腰三角形,请求出线段BC 的长并直接写出符合条件的所有点P 的坐标. 【答案】(1) B (-4,0),C (0,4);(2) y =﹣1 2x 2 ﹣x+4;(3)BC=4√2 ,P (0,0)或(﹣4+4√2,0)或(﹣4﹣4√2,0)或(4,0). 【解析】(1)解:由对称轴是直线x=-1,点A 坐标为(2,0),以及二次函数y =ax 2+bx +4,易得B (-4,0)C (0,4) (2)根据题意得, { 4a+2b+4=0 -b 2a =-1 , 解得,{ a=-1 2 b=-1 , ∴二次函数的解析式y =﹣1 2x 2 ﹣x+4; (2)由(1)得B (﹣4,0),C (0,4),

∴BC=√(-4)2 +42=4√2; 设P(m,0), ∵B(﹣4,0),C(0,4), ∴BP2=(m+4)2,CP2=m2+16, ∵△PBC是等腰三角形, ∴①当BP=CP时, ∴(m+4)2=m2+16, ∴m=0, ∴P(0,0) ②当BP=BC时, ∴(m+4)2=32, ∴m=﹣4±4√2, ∴P(﹣4+4√2,0)或(﹣4﹣4√2,0)③当CP=BC时,m2+16=32, ∴m=4或m=﹣4(舍去),

∴P (4,0), 即:符合条件的所有点P 的坐标为P (0,0)或(﹣4+4√2,0)或(﹣4﹣4√2,0)或(4,0). 2、如图,在平面直角坐标系中,已知抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8). (1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2)试探究抛物线上是否存在点F ,使≌,若存在,请直接写出点F 的坐标;若不存在,请说明理由; (3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,是等腰三角形. 【答案】(1);B (8,0);E (3,-4); (2)()或(); (3)或. 【解析】 解:(1)抛物线经过点A (-2,0),D (6,-8), 2 8y ax bx =+ -FOE ?FCE ?OPQ ?2 1382 y x x = - -34 -34+-8 3-323 - 2 8y ax bx =+-

相关文档
相关文档 最新文档