文档库 最新最全的文档下载
当前位置:文档库 › 厌氧消化反应器过程动力学模型

厌氧消化反应器过程动力学模型

厌氧消化反应器过程动力学模型
厌氧消化反应器过程动力学模型

污水处理厂污泥厌氧消化工艺选择与设计要点概要

污水处理厂污泥厌氧消化工艺选择与设计要点陈怡 (北京市市政工程设计研究总院 , 北京 100082 摘要以北京市小红门污水处理厂和西安市第五污水处理厂为例 , 对污水处理厂污泥厌氧消化工艺选择和设计要点进行了详细论述 , 包括污泥厌氧消化工艺选择、进泥预处理、厌氧消化池、沼气系统、上清液处理和污泥输送管路等 , 以保证污水处理厂污泥厌氧消化工艺的顺利实施。 关键词污水处理厂污泥厌氧消化工艺选择污泥投配污泥搅拌沼气系统 K e y p o i n t s o f t h e p r o c e s s s e l e c t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n w a s t e w a t e r t r e a t m e n t p l a n t C h e n Y i (B e i j i n g G e n e r a l M u n i c i p a l E n g i n e e r i n g D e s i g n a n d R e s e a r c h I n s t i t u t e , B e i j i n g 100082, C h i n a A b s t r a c t :T a k i n g t h e B e i j i n g X i a o h o n g m e n W a s t e w a t e r T r e a t m e n t P l a n t a n d X i ’ a n F i f t h W a s t e w a t e r T r e a t m e n t P l a n t a s e x a m p l e , t h i s p a p e r d e s c r i b e d t h e k e y p o i n t s o f t h e p r o c e s s s e l e c -t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n t h e w a s t e w a t e r t r e a t m e n t p l a n t , i n c l u d i n g s l u d g e a n a e r o b i c d i g e s t i o n p r o c e s s s e l e c t i o n , s l u d g e p r e -t r e a t m e n t , a n a e r o b i c d i g e s t i o n t a n k , m e t h -a n e s y s t e m , u p -l e v e l c l e a n l i q u i d t r e a t m e n t , a n d s l u d g e t r a n s m i s s i o n p i p

厌氧消化工艺处理城市生活垃圾的应用及前景

厌氧消化工艺处理城市生活垃圾的应用及前景 来源:百玛士环保科技有限公司阅读:310更新时间:2009-03-26 17:22 摘要:本文介绍了利用厌氧消化技术处理城市生活垃圾在欧美等发达国家的应用经验,结合百玛士环保科技有限公司在国内几个厌氧消化处理生活垃圾的工程实例,阐述了利用厌氧消化工艺处理城市生活垃圾的应用前景以及制约因素。 前言 随着经济的发展和城市化进程的加快,我国城市生活垃圾产生量迅速增加,而且城市生活垃圾存在大量的生物质垃圾,具有易生物降解和高含水的特点,其形成的恶臭是固体废物污染环境的主要污染源。与此同时,城市生物质垃圾中蕴含着大量生物质能,其高含水特性又为生物质能的转化提供了有利条件,针对生物质垃圾的“高固体厌氧消化(High Solid Anaerobic Digestion)技术”成为世界环保科技的研究热点。采用厌氧消化技术处理城市生活垃圾,并产生绿色能源“沼气”,特别是在能源日益紧张,CO2减排的呼声越来越高的情况下,该技术越来受到各国政府接受和推广,欧美等发达国家通过立法等手段大力推广该技术的应用,我国“十一”规划明确提出大力推广使用生物质能源,根据国家“十一五再生能源发展规划”,到2010年,建成沼气发电装机容量100万千瓦。“十一五”时期,加快建设规模化沼气工程,年产沼气约40亿立方米。 一、厌氧消化工艺原理 厌氧消化是无氧环境下有机质的自然降解过程,在自然界内广泛存在。在此过程中微生物分解有机物,最后产生甲烷和二氧化碳。影响反应的环境因素主要有温度、pH值、厌氧条件、C/N、微量元素(如Ni、Co、Mo等)以及有毒物质的允许浓度等。厌氧消化是在厌氧微生物作用下的一个复杂的生物学过程,厌氧微生物是一个统称,包括厌氧有机物分解菌(或称不产甲烷厌氧微生物)和产甲烷菌。在一个厌氧反应器内,有各种厌氧微生物存在,形成一个与环境条件、营养条件相对应的微生物群体。这些微生物通过其生命活动完成有机物厌氧代谢过程。 厌氧消化工艺处理有机垃圾,是人为创造厌氧微生物所需要的营养与环境条件,使反应器内积累高浓度的厌氧微生物,因此,人工厌氧消化的速度大大超过自然界中自发的厌氧消化过程。 生活垃圾的厌氧消化过程可以分为水解、酸化和产甲烷三个阶段,每个阶段都由一定种类的微生物完成有机物的代谢过程。三个阶段的情况介绍如下: 水解 有机物厌氧菌产生胞外酶水解有机物。参与细菌的种类和数量随着有机物种类而变化,通常按原料种类分为纤维素分解菌、脂肪分解菌和蛋白质分解菌。在这些细菌作用下,多糖分解成单糖;蛋白质转化成肽和氨基酸;脂肪转化成甘油和脂肪酸。 酸化 产酸菌,例如胶醋酸细菌、某些梭状芽孢杆菌等,分解前一步产生的较高级的脂肪酸并生成醋酸和氢。此外,有机物厌氧分解菌在分解脂肪时,也产生长链脂肪酸,如硬脂酸;

厌氧消化工艺设计要点

厌氧消化工艺设计要点 发布日期:2012-11-19 来源:互联网作者:佚名浏览次数:482 厌氧消化的工艺设计主要体现在对消化池型、搅拌方式和工艺运行参数的选择上。总的设计原则是:a)在参考相似工程案例及设计规范的基础上,试验得到最佳工艺运行参数,如停留时间、运行温度、固体负荷、有机负荷;b)适合的池型选择;c)良好的搅拌方式,搅拌均匀,不存死角;d)简单、稳定的运行保障,如易于操作维护的设备,避免温度波动的良好换热设备以及容易去除浮渣的措施等;e)安全可靠的沼气输送系统。 工艺设计需要确定的内容:a)消化方式的设计;b)消化池形选择;c)消化池中污泥的混合搅拌方式确定;d)设计参数的选定;e)污泥加热方式的确定;f)污泥投配方法的确定;g)污泥及沼气排放方式的确定;h)浮渣及上清液的排除方法;i)安全防护措施的保证;j)监测和控制方法的确定;k)其它附属装置的选用。上述诸多方面中,厌氧消化的方式、消化池的池形、主要设计参数、消化池中污泥的混合搅拌方式对消化池的工程造价和使用效果影响很大,应谨慎选择。 (1)消化方式的设计 ①消化温度,厌氧消化根据运行温度的不同分为中温消化(30~36℃)和高温消化(50~55℃),其中中温消化的最佳温度为35℃,高温消化的最佳温度会因其它影响因素发生较大变化。高温消化的特点是,分解速率快、产气速率高、停留时间短,进而提高消化处理能力,节省消化池容积;另外卫生学指标较好,对寄生虫卵的杀灭率可达95%,大肠菌指数可达10-100;能耗高,温度控制较难。中温消化的特点是,相对高温消化的各项优势较为逊色,但中温消化运行稳定、易于控制,能耗相对较低,设计运行经验成熟。目前,国内、外多采用中温厌氧消化。 ②消化等级,按照消化池的数量分为一级消化和两级消化。其中一级消化指污泥厌氧消化是在一个消化池内完成;两级消化指污泥厌氧消化在两个消化池内完成,第一级消化池设有加热、搅拌装置及气体收集装置,不排上清液和浮渣,第二级消化池不进行加热和搅拌,仅利用第一级的余热继续消化,同时排上清液和浮渣。两级消化工艺的土建费用较高,运行

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

城市污泥厌氧消化处理技术

城市污泥厌氧消化处理技术 彭光霞李彩斌王立宁张晓慧 (北京中持绿色能源环境技术有限公司北京100192) 摘要:随着我国城镇污水处理厂建设的推进,城市脱水污泥的处理处置问题越来越凸显出来。目前我国多数城市污水处理厂多采用浓缩、脱水后外运填埋或作农肥。城市污泥中的生物质能没得到充分利用,造成了资源、能源的浪费。污泥厌氧消化技术作为污泥处理处置的处理工艺,可以实现减量化、稳定化、无害化和资源化,可与多种工艺相结合,为现有污水厂污泥处理处置提供了很好的方向。 关键词:污泥处理处置、厌氧消化、分级分相、土地利用、资源化 1 概述 污泥厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥经厌氧消化后,体积大大减少,脱水性能大大提高,可实现污泥的减量化和稳定化;污泥在消化过程中,产生的甲烷菌具有很强的抗菌作用,可杀死大部分病原菌以及其它有害微生物,使污泥卫生化。同时,污泥厌氧消化产生大量的清洁能源--沼气,可用作锅炉燃料、直接驱动鼓风机、沼气发电提供污水处理厂的部分用电量、沼气提纯并网、沼气提纯用作汽车燃料等。 1.1 污泥厌氧处理技术原理 厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机物质的一种污泥处理工艺。消化过程中可回收能源,但消化后的污泥含水率较高,仍需进一步脱水。厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥厌氧消化是一个由多种细菌参与的多阶段生化反应过程,每一反应阶段都以某类细菌为主,其产物供下一阶段的细菌利用。厌氧降解过程的化学、生物化学和微生物学相发复杂,但是可以综合三阶段理论[2]:1)水解阶段;2)产酸阶段;3)产甲烷阶段。

两相厌氧消化反应器设计及启动方法

龙源期刊网 https://www.wendangku.net/doc/3e10008216.html, 两相厌氧消化反应器设计及启动方法 作者:杨红艳尹芳赵兴玲柳静杨红王昌梅刘士清张无敌 来源:《现代农业科技》2017年第23期 摘要本文设计应用UASB和EGSB 2种反应器进行串联耦合处理猪粪废水。由于产氢产乙酸菌和产甲烷菌繁殖特性的差异性,传统的厌氧消化工艺并不能使其发挥各自的优势。两相厌氧消化工艺可以使2个反应在各自最适宜的环境内进行厌氧发酵,由于产氢产酸和产甲烷2个阶段相互独立,故酸化反应器具有一定的缓冲作用,能够缓解冲击负荷对后续产甲烷反应器的影响,可以提高厌氧消化的反应效率。试验设计的目的在于将产氢气与产甲烷两相耦合起来,并探讨运行参数对猪粪两相厌氧消化的影响,同时为两相厌氧工艺的实施提供参考。 关键词两相厌氧消化反应器;串联耦合;能源转换效率;设计 中图分类号 X713 文献标识码 A 文章编号 1007-5739(2017)23-0152-03 Abstract In this paper,two digester(UASB and EGSB)were series-coupled,which were designed and applied to treatment of pig manure wastewater.Due to the difference of reproductive characteristics between obligate H2-producing acetogenic bacteria and methanogens,the traditional anaerobic fermentation process is not beneficial for methanogens and the obligate H2-producing acetogenic bacteria.Two-phase anaerobic process make the two anaerobic process in the more suitable for different fermentation.Due to the two stage of the producing acid and methane are independent and simultaneous,the acidification digester has a certain buffer action.It can alleviate the impact of shock load on the subsequent methane production digester,so the reaction rate of anaerobic digestion can be improved.The purpose of this experiment is to couple the hydrogen and methane together,and to discuss some factors on the effect of pig manure two-phase anaerobic fermentation. It′s hoped to find the optimal anaerobic fermentation conditions in order to maximize the energy conversion efficiency of raw materials,and to provide a reference for the implementation of two-phase anaerobic process. Key words two-phase anaerobic digester;series-coupling;energy conversion efficiency;design 两相厌氧工艺(two-phase anaerobic process)是由Ghosh和Pohland在20世纪70年代初 开发的,将水解发酵菌归为第一相产酸相,将共生的产氢产乙酸菌和产甲烷菌归为第二相[1]。传统的单相厌氧反应包括厌氧消化的全过程,即将产酸阶段和产甲烷阶段放置在一个反 应器中。而两相厌氧发酵工艺是将水解酸化过程的反应器和产甲烷过程的反应器进行串联。猪场污水具有高污染浓度、高COD、可生化性能强的特点,污水中主要含有未被猪吸收消化的食物如玉米颗粒和猪的代谢产物,其中含有大量微生物繁殖所需的营养物质[2],利用两相厌 氧消化工艺将其资源化利用对保护环境和缓解能源紧张问题都具有重要意义。厌氧消化工艺具有无能耗、减少二次污染[3]、产生清洁能源等优势。本文设计应用UASB和EGSB两相串联

实用汇总,13种厌氧生物反应器原理

实用汇总,13种厌氧生物反应器原理!目前,厌氧微生物处理是高浓度有机废水处理过程中不可缺少的一个处理阶段。它不仅能耗低,而且可以生产沼气作为二次利用的能源。厌氧反应的容积负荷远大于好氧反应的容积负荷,而处理等量COD厌氧反应的投资较低。 目前常用的厌氧处理方法是:UASB,EGSB,CSTR,IC,ABR,UBF等。其他厌氧处理方法包括:AF,AFBR,USSB,AAFEB,USR,FPR,两相厌氧反应器等。 1。UASB——上流式厌氧污泥床反应器 uasb是一种英文缩写,表示向上流动的、不能吸收的细长床/毯子。称为上游厌氧污泥床反应器,是处理污水的厌氧生物方法,又称升厌氧污泥床。它是由荷兰的Lettinga教授在1977年发明的(Ding Yinian)。 UASB由三部分组成:污泥反应区、气-液-固三相分离器(包括沉淀区)和气室。底部反应区储存了大量的厌氧污泥,沉淀和凝结性能好的污泥在下部形成了一层污泥层。待处理的污水从厌氧污泥床底部流入污泥层与污泥混合接触,污泥中的微生物分解污水中的有机物并转化为沼气。沼气不断地以微小气泡的形式释放出来,在上升的过程中,这些微小的气泡继续合并逐渐形成较大的气泡。在污泥床的上部,由于沼气的搅动,污泥浓度较低的污泥与水一起上升到三相分离器中。当沼气接触到分离器下部的反射器时,它围绕反射器弯曲,然后穿过水层进入气室。浓缩在气室沼气中,经导管输出,固液混合物反射到三相分离器的沉淀区,使污水中的污泥絮凝,颗粒逐渐增多,在重力作用下沉降。斜壁上沉淀的污泥沿斜壁滑回厌氧反应区,使大量污泥在反应区内堆积,从沉淀区溢流堰上部分离出的污水从溢流堰上部溢出,然后排出污泥床。

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

厌氧反应器的作用及工作原理

厌氧反应器的作用及工作原理 厌氧反应器为厌氧处理技术而设置的专门反应器。 厌氧消化技术在世界各地广泛应用,大部分处理城市生活有机垃圾的厂处理量在2500t/a以上。 厌氧过程实质是一系列复杂的生化反应,其中的底物、各类中间产物、最终产物以及各种群的微生物之间相互作用,形成一个复杂的微生态系统,类似于宏观生态中的食物链关系,各类微生物间通过营养底物和代谢产物形成共生关系(symbiotic)或共营养关系(symtrophic)。因此,反应器作为提供微生物生长繁殖的微型生态系统,各类微生物的平稳生长、物质和能量流动的高效顺畅是保持该系统持续稳定的必要条件。如何培养和保持相关类微生物的平衡生长已经成为新型反应器的设计思路。 UASB反应器 工作原理:上流式厌氧污泥床反应器(UASB)是传统的厌氧反应器之一。三相分离器是UASB反应器的核心部件,它可以再水流湍动的情况下将气体、水和污泥分离。废水经反应器底部的配水系统进入,在反应器内与絮状厌氧污泥充分接触,通过厌氧微生物的讲解,废水中的有机污泥物大部分转化为沼气,小部分转化为污泥,沼气、水、泥混合物通过三相分离器得于分离。技术特点:运行稳定、操作简单、可用絮状污泥、产生沼气、较低的高度、投资省。适用场合:广泛应用于食品、啤酒饮料、制浆造纸、化工和市政等废水的处理。 EGSB反应器 工作原理:EGSB厌氧反应器是在UASB厌氧反应器的基础上发展起来的新型反应器,EGSB反应器充分利用了厌氧颗粒污泥技术,通过外循环为反应器提供充分的上升流速,保持颗粒污泥床的膨胀和反应器内部的混和。TWT通过改进和优化EGSB的内外部结构,提供了效率,降低了能耗,增强了运行的稳定性,有效防止了颗粒污泥的流失。技术特点:污泥浓度高高负荷高去除率抗冲击负荷能力强占地面积小造价低适用场合: 适用于淀粉废水、酒精废水和其他轻工食品等高浓度有机废水的处理。 TWT-IC反应器 工作原理:TWT-IC反应器是继UASB、EGSB之后的新型厌氧反应器,需要处理的废水使用高效的配水系统由反应器底部泵入反应器,与反应器内的厌氧颗粒污泥混合。在反应器

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

厌氧生物处理反应器概述及展望

生物工程设备课程论文 厌氧生物处理反应器概述及展望学生姓名: 2017年11月

厌氧生物处理反应器概述及展望 摘要:概述了厌氧消化阶段理论与厌氧消化的主要影响因素;介绍了厌氧生物反应器的发展历史;并对几种典型的高效厌氧生物反应器(上流式厌氧污泥床,厌氧折板反应器,厌氧膨胀颗粒污泥床和内循环式反应器)的工作原理、构造、技术特点、运行机制及其应用情况等做了详尽的阐述;最后,对厌氧反应器今后的研究方向给予了展望。 关键词:厌氧消化;厌氧生物反应器;工作原理;研究方向 随着我国工业化进程的不断加快,环境保护压力也越来越大,大量难降解工业废水的处理是摆在我们面前的一个重大难题。在废水生物处理领域,常用的有好氧法和厌氧法两种,其中好氧生物处理技术的曝气需要大量的能耗,而厌氧生物处理技术相对而言能耗则低的多,并且能够产生沼气达到资源再利用,符合当今节能环保的主题。因此研究和开发新型高效的厌氧生物处理反应器及其相关工艺具有长远的战略意义。 1 厌氧消化阶段理论 厌氧消化,是指在严格厌氧条件下,通过多种微生物(厌氧或兼性菌)的共同作用,将各种复杂有机物进行降解,并产生大量的CH4和CO2等沼气能源的复杂过程[1]。厌氧消化阶段理论先后经历了两阶段理论、三阶段理论到四菌群学说,其中三阶段理论和四菌群学说描述较为全面和准确,是目前在业内相对得到公认的主流理论,占主导地位。

1.1 三阶段理论 M.P.Bryant根据对产甲烷菌和产氢产乙酸菌的研究结果,于1979 年,在两阶段理论的基础上,提出了三阶段理论[2]。该理论将厌氧发酵分成三个阶段,即水解和发酵阶段、产氢、产乙酸阶段及产甲烷阶段 1.2 四菌群理论 1979 年,J.G. Zeikus在第一届国际厌氧消化会议上提出了四菌群理论。该理论认为参与厌氧消化菌,除了水解发酵菌、产氢产乙酸菌、产甲烷菌外,还有一个同型产乙酸菌种群[3]。这类菌可将中间代谢物的H2和CO2转化成乙酸。厌氧发酵过程分为四个阶段,各类群菌的有效代谢均相互密切连贯,处于平衡状态,不能单独分开,是相互制约和促进的过程。 2 厌氧消化的影响因素 (1)温度。主要影响微生物的生化反应速率,进而影响有机污染物的分解速率。同时温度突变对厌氧菌影响大。厌氧消化分为常温、中温和高温厌氧消化[4]。 (2)pH 值。厌氧微生物的生命活动、物质代谢与pH 有密切的关系,pH 值的变化直接影响着消化过程和消化产物,不同的微生物要求不同的pH 值,其中产甲烷菌对pH 值尤其敏感,其最佳生存pH 值范围为6.5~7.2。 (3)搅拌。搅拌可使消化物料与微生物充分接触,从而提高消化效率、增加产气量。但搅拌也存在一定的负面效果,搅拌过快则不利于颗粒污泥的形成,实际操作上要选择最适宜的搅拌速度及搅拌时间。 (4)营养物。营养物质中最重要的是碳和氮两种,二者需要满足一定的比例。C/N 比太高,细菌氮量不足,消化液缓冲能力降低,造成pH 值上升,铵

污泥厌氧消化简介

简介: 污泥厌氧消化是指污泥在无氧条件下,由兼性菌和厌氧细菌将污泥中的可生物降解的有机物分解成二氧化碳、甲烷和水等,使污泥得到稳定的过程,是污泥减量化、稳定化的常用手段之一。 机理: 污泥厌氧消化是一个多阶段的复杂过程,完成整个消化过程,需要经过三个阶段(目前公认的),即水解、酸化阶段,乙酸化阶段,甲烷化阶段。各阶段之间既相互联系又相互影响,各个阶段都有各自特色微生物群体。 水解酸化阶段: 一般水解过程发生在污泥厌氧消化初始阶段,污泥中的非水溶性高分子有机物,如碳水化合物、蛋白质、脂肪、纤维素等在微生物水解酶的作用下水解成溶解性的物质。水解后的物质在兼性菌和厌氧菌的作用下,转化成短链脂肪酸,如乙酸、丙酸、丁酸等,还有乙醇、二氧化碳。 乙酸化阶段: 在该阶段主要是乙酸菌将水解酸化产物,有机物、乙醇等转变为乙酸。该过程中乙酸菌和甲烷菌是共生的。 甲烷化阶段: 甲烷化阶段发生在污泥厌氧消化后期,在这一过程中,甲烷菌将乙酸(CH3COOH)和H2、CO2分别转化为甲烷,如下: 2CH3COOH→2CH4↑+ 2CO2↑ 4H2+CO2→CH4+ 2H2O 在整个厌氧消化过程中,由乙酸产生的甲烷约占总量的2/3,由CO2和H2转化的甲烷约占总量的1/3。 影响因素: 温度: 在污泥厌氧消化过程中,温度对有机物负荷和产气量有明显影响。根据微生物对温度的适应性,可将污泥厌氧消化分为中温(一般30~36℃)厌氧消化和高温(一般50~55℃)厌氧消化。研究表明,在污泥厌氧消化过程中,温度发生±3℃变化时,就会抑制污泥消化速度;温度发生±5℃变化时,就会突然停止产气,使有机酸发生大量积累而破坏厌氧消化。 酸碱度: 研究表明,污泥厌氧消化系统中,各种细菌在适应的酸碱度范围内,只允许在中性附件波动。微生物对pH的变化非常敏感。水解与发酵菌及产氢、产乙酸菌适应的pH范围为5.0~6.5,甲烷菌适应的pH范围为6.6~7.5。如果水解酸化和乙酸化过程的反应速度超过甲烷化过程速度,pH就会降低,从而影响产甲烷菌的生活环境,进而影响污泥厌氧消化效果,然而,由于消化液的缓冲作用,在一定范围内避免这种情况的发生。 消化液是污泥厌氧消化过程血红有机物分解而产生的,其中含有除了CO2和NH3外,还有以NH4NCO3形态的NH4+,HCO3-和H2CO3形成缓冲体系,平衡小范围的酸碱波动。如下:H+ + HCO3- ═H2CO3 有毒物质浓度: 在污泥厌氧消化中,每一种所谓有毒物质是具有促进还是抑制甲烷菌生长的作用,关键在于它们的毒阈浓度。低于毒阈浓度,对甲烷菌生长有促进作用;在毒阈浓度范围内,有中等抑制作用,随浓度逐渐增加,甲烷菌可被驯化;超过毒阈上限。则对微生物生长具有强烈的抑制作用。 污泥厌氧消化分类:

厌氧消化的影响因素有哪些

厌氧消化的影响因素有哪些? 厌氧消化的影响因素有哪些? 甲烷发酵阶段是厌氧消化反应的控制阶段,因此厌氧反应的各项影响因素也以对甲烷菌的影响因素为准。 一、温度因素 厌氧消化中的微生物对温度的变化非常敏感(日变化小于±2℃),温度的突然变化,对沼气产量有明显影响,温度突变超过一定范围时,则会停止产气。 根据采用消化温度的高低,可以分为常温消化(10-30℃)、中温消化(33-35℃左右)和高温消化(50-55℃左右)。 二、生物固体停留时间(污泥龄)与负荷 三、搅拌和混合 搅拌可使消化物料分布均匀,增加微生物与物料的接触,并使消化产物及时分离,从而提高消化效率、增加产气量。同时,对消化池进行搅拌,可使池内温度均匀,加快消化速度,提高产气量。 搅拌方法包括气体搅拌、机械搅拌、泵循环等。气体搅拌是将消化池产生的沼气,加压后从池底部冲入,利用产生的气流,达到搅拌的目的。机械搅拌适合于小的消化池,液搅拌和气搅拌适合于大、中型的沼气工程。 四、营养与C/N比 厌氧消化原料在厌氧消化过程中既是产生沼气的基质,又是厌氧消化微生物赖以生长、繁殖的营养物质。这些营养物质中最重要的是碳素和氨素两种营养物质,在厌氧菌生命活动过程中需要一定比例的氮素和碳素(COD∶N∶P=200∶5∶1)。原料C/N比过高,碳素多,氮素养料相对缺乏,细菌和其他微生物的生长繁殖 受到限制,有机物的分解速度就慢、发酵过程就长。 若C/N比过低,可供消耗的碳素少,氮素养料相对过剩,则容易造成系统中氨 氮浓度过高,出现氨中毒。 五、有毒物质 挥发性脂肪酸(VFA是消化原料酸性消化的产物,同时也是甲烷菌的生长代谢 的基质。一定的挥发性脂肪酸浓度是保证系统正常运行的必要条件,但过高的VFA会抑制甲烷菌的生长,从而破坏消化过程。 有许多化学物质能抑制厌氧消化过程中微生物的生命活动,这类物质被称为抑制剂。 抑制剂的种类也很多,包括部分气态物质、重金属离子、酸类、醇类、苯、氰化物及去垢剂等。 六、酸碱度、pH值和消化液的缓冲作用 pH值的变化直接影响着消化过程和消化产物。 1、由于pH的变化引起微生物体表面的电荷变化, 进而影响微生物对营养物的吸收; 2、pH除了对微生物细胞有直接影响外,还可以促使有机化合物的离子化作用,从而对微生物产生 间接影响,因为多数非离子状态化合物比离子状态化合物更容易渗入细胞;

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

厌氧消化中的产甲烷菌研究进展

厌氧消化中的产甲烷菌研究进展 公维佳,李文哲*,刘建禹 (东北农业大学工程学院,黑龙江哈尔滨150030) 摘要:在厌氧消化过程中,通过控制产甲烷菌的活动可显著提高厌氧消化效率。文章介绍了厌氧消化中产 甲烷菌的生理生化特征及代谢途径,综述了微量元素、硫酸盐、pH值、氧化还原电位等显著影响因子对产甲烷菌活动和甲烷产量的影响。 关键词:厌氧消化;产甲烷菌;显著影响因子中图分类号:X703 文献标识码:A 收稿日期:2005-12-12 基金项目:国家自然科学基金项目(50376009);黑龙江省科技攻关(GC03A304) 作者简介:公维佳(1981-),女,黑龙江人,硕士研究生,研究方向为生物质能源。 *通讯作者 目前能源与环境已成为影响人类社会可持续发展的重大问题,厌氧消化技术在能源生产和环境保护等方面具有突出的优势而倍受青睐。沼气发酵是自然界极为普遍而典型的厌氧消化反应,各种各样的有机物通过沼气发酵,不断地被分解代谢产生沼气,从而构成了自然界物质和能量循环的重要环节。厌氧消化是极为复杂的生物过程,在参与反应的众多微生物中,产甲烷菌的优劣和密度是影响厌氧消化效率和甲烷产量的重要因素,因此对产甲烷菌特征以及影响因子的研究成为重点。本文试图对这些研究进行综合性的分析总结,为今后的研究提供参考。 1产甲烷菌概述 产甲烷菌的研究开始于1899年,当时俄国的 微生物学家奥姆良斯基(Omelianski)将厌氧分解纤维素的微生物分为两类,一类是产氢的细菌,后来称产氢、产乙酸菌;另一类是产甲烷菌,后来称奥氏甲烷杆菌(Methanobaci11usomelauskii)。1901年Sohzgen对产甲烷菌的特征及对物质的转化进一步作了详细的研究。1936年Barker对奥氏甲烷菌又作了分离研究。但这些研究,由于厌氧分离甲烷菌的技术尚不完备,均未取得大的进展。直到1950年 Hungate第一次创造了无氧分离技术才使甲烷菌的研究得到了迅速的发展[1]。 产甲烷菌是一类能够将无机或有机化合物厌氧消化转化成甲烷和二氧化碳的古细菌,它是严格厌氧菌,属于水生古细菌门(Euryarchaeota)。它们生活在各种自然环境下,如反刍动物的瘤胃、人类的消化系统、稻田、湖泊或海底沉积物、热油层和盐池,以及污泥消化和沼气反应器等人为环境中[2]。产甲烷菌是厌氧消化过程的最后一个成员,甲烷的生物合成是自然界碳素循环的关键链条。 由于产甲烷菌是严格的厌氧菌,对其研究需要较高的技术手段,所以,在20世纪70年代中期以前,产甲烷菌新种发现的不多,据《伯杰细菌鉴定手册》第八版记载,产甲烷菌只有一个科,即甲烷杆菌科,分三个属,有9个种。但是,随着其研究手段的飞速发展,和人们对产甲烷菌的关注,越来越多的产甲烷菌被人们发现,到目前为止,从系统发育来看,甲烷菌分成5个目,分别为甲烷杆菌目(Methanobacteriales)、甲烷球菌目(Methanococcales)、甲烷八叠球菌目(Methanosarcinales)、甲烷微菌目(Methanomicrobiales) 和甲烷超高温菌目(Methanop-yrales) [2] 。Schnellen第一个从消化污泥中分离纯化得到甲酸甲烷杆菌(Methanobacteriumformicium)和巴氏甲烷八叠球菌(Methanosarcinabarkeri),到目前为止,分离鉴定的产甲烷菌已有200多种[3]。 2产甲烷菌生理生化特征 在Hungate[4]厌氧分离培养纯化产甲烷菌的技 2006年12月JournalofNortheastAgriculturalUniversity December2006 文章编号 1005-9369(2006)06-0838-04 第37卷第6期东北农业大学学报37(6):838 ̄841

有机废物厌氧消化工艺应用现状及前景

有机废物厌氧消化工艺应用现状及前景 摘要近年来,随着时代发展进步,我国的城市化进程日渐加快,而居民的生活垃圾排放量也呈现出明显的上升趋势。在这样的背景下,为了进一步改善我国的生态环境,促进各项效益的取得,我国的有关部门采用先进技术以及工业开展具体作业。目前,有机废物厌氧消化工艺凭借着其自身的特点而获得了环保部门青睐,并获得了广泛的推广运用。本文基于此,着重分析有机废物厌氧消化工艺应用现状及前景。 关键词有机废物;厌氧消化;工艺应用;现状前景 作为以城市污水处理技术发展而来的新技术,有机废物厌氧消化技术的出现实现了居民各类生活垃圾的处理,并由此促进居民生活垃圾减少,确保生活垃圾无公害处理,实现各项生态、经济效益的取得,保障垃圾处理的资源化。本文基于此,着重分析了有机废物厌氧消化工艺,并就该工藝的具体运用进行叙述。 1 厌氧消化工艺分析 1.1 厌氧消化基本原理 所谓的厌氧消化,指的是在特定的无氧状态,有机物进行分解活动。在这样的状况下,有机物往往在微生物的氧化、分解下形成大量的CH4、CO2,被并进一步释放出能量满足微生物的发展需要。目前,我国的环保部门在垃圾处理的过程中就加强了对于该工艺技术的运用,并将该工艺分为三个阶段,分别是:水解阶段、产酸阶段、产甲烷阶段。 1.2 影响厌氧消化质量的因素 尽管我国的环保部门在居民生活垃圾以及废水的处理过程中积极引进该工艺技术,但是该工艺在运行的过程中普遍受到不同因素的影响。关于影响厌氧消化质量的因素,笔者总结以下几点。 (1)营养物质 在进行有机物的厌氧消化作业时,为了促进作业效率以及质量的提升,工作人员需要确保微生物的生长能够获得必要的营养,并且实现各营养元素之间的合理化配比。其中,最为重要的营养元素则为碳氮比。在这一过程中,一旦该元素的配比失衡,往往会导致微生物的急剧死亡,不利于厌氧消化反应的开展,一般而言,最为合理的碳氮比为20:1 。 (2)反应温度 相关的研究调查显示:有机废物厌氧消化往往在中温、高温的状况下进行,

相关文档