文档库 最新最全的文档下载
当前位置:文档库 › 瞬态弱磁场测量系统的研究

瞬态弱磁场测量系统的研究

瞬态弱磁场测量系统的研究
瞬态弱磁场测量系统的研究

华北电力大学(北京)

硕士学位论文

瞬态弱磁场测量系统的研究

姓名:肖保明

申请学位级别:硕士

专业:电力系统及其自动化指导教师:王泽忠

20040201

每乾电力大学(jE靛)硬士学位论文

予瀑态场予撬滚静溺量,渡{鬟l|信号包含各种频率成分,丽显在空蔺各处的福值不阐。测试系统不仅要能精确地测爨出场强螺值懿大小,还要熊褥到场强随时间交化终波形。所以就必须根据不同的场、不同地测缀目的采用不同的测量探头。

1.2。1弱羚疆突愦况

早在20懒纪60年代黼外就开始了瞬态电场和磁场传感器的研究工作,当时主要是为了测鬣由核爆炸版产生电磁脉冲(NEMP)的瞬态电场和瞬态磁场,厩且主委是…些攀工的磷究税桷在进行研究工{乍。经们狠爨测爨的篱要开发磁各莘孛形式的瞬态电磁场测鬟探头。最鞠开发静瞬惑电磁场传感系统中,电场探头为空心的球形偶极子(HSD—Hollow

Spherical

Dipole)结构:磁场探头为多间隙环(MGL—Multigap

Loop)结构…l。后来魄场探头的结橡榴继出现了激进圆锥形偎檄子(ACD—

AsymptoticConical

Dipole)探头、嵌入式阖盘形偶掇予(FpD—Flu娩一Plate

Dipole)

攘头、圜校形单极偶扳子(CylindricalMonopoleSensor)"2}探头等,蔟结构分别斑图1—2所示。磁场探头的结构还有多暇线圈环(M”FL—MultitumLoop)探头、圆露Moebius环(CML—CylindricalMoebiusLoop)、辫蔽环形线爨、自积分式传感嚣良及罄蔽拳环形磁场传感器}26301等形式,茭绩筏分粼麴霪l~3联示。

锣盛瞬

:、蠢蒜;每一

“一《。畦鹣墨∥;

(a)HSD传感箍(a)鞴GL侮感嚣

(b)ACD传感蒙

《e)P黪传麓繇

图1~2瞬态电场传感嚣

n)藏?L传搿器:c)m。ebius筇

图1~3璐态磁场传感嚣

早期这黧灏璧探头辕蹬的信号都怒谶过霞辘电缆传至l霹蔽浏爨孳或漭蔽室中

避露溺耋瓣。弱20整缌80年代涟羞必经技术靛发袋,馕褥测量镶号在强堍磁环壤下酌传输不褥受到限制。囱虢一系列嵬纤传输系统代餐了惑缆簧输系统,使得激悫

电磁场的测墩更加准确、可靠。如法国Thomson—csf公司研制的用于测量NEIvlP

量子弱磁场共振分析仪使用手册

量子弱磁场共振分析仪使用手册 一、前言 1.原理说明 人体是大量细胞的集合体,细胞在不断的生长、发育、分化、再生、死亡,细胞通过自身分裂,不断自我更新。成人每秒大约有2500万个细胞在进行分裂,人体内的血细胞以每分钟大约1亿个的速率在不断更新,在细胞的分裂、生长等过程中,构成细胞最基本单元的原子的原子核和核外电子这些带电体也在一刻不停地高速运动和变化之中,也就不断地向外发射电磁波。人体所发生的电磁波信号代表了人体的特定状态,人体健康、亚健康、疾病等不同状态下,所发射的电磁波信号也是不同的,如果能测定出这些特定的电磁波信号,就可以测定人体的生命状态。 量子医学认为人生病最根本原因是原子核外电子的自旋和轨道发生变化,继而引起构成物质的原子变化,再引起生物小分子的变化,再引起生物大分子的变化,接着引起整个细胞的变化,最后引起器官的变化。因为电子是一个带电体,当原子核外电子的自旋和轨道发生变化时,原子对外发出的电磁波就会发出变化,人体疾病和身体营养状况变化所发生的电磁波变化,其能量是极其微弱的,通常只有毫微高斯至微高斯,通过手握传感器来测定微弱磁场的频率和能量,经仪器放大、计算机处理后与仪器内部设置的疾病、营养指标的标准量子共振谱比较,输出相应的量价值,其量价值的大小标志着疾病性质、成份和营养水平等。这就有点类似于收音机收听电台的原理,空中有很多无线电波,如果要收听某个指定的电台,那就要把收音机调至该频率,这时就发生共振,就能收听到该电台,量子共振就是利用该原理进行检测。 2.什么是量子弱磁场共振分析仪 [量子弱磁场共振分析仪]是涉及医学、生物信息学、电子工程学等多学科高科技创新项目。它以量子医学为理论基础,运用先进的电子设备采集人体细胞弱磁场,进行科学的分析,对被测者的健康状况和主要问题做出分析判断,并提出规范的防治建议。[量子弱磁场共振分析仪]是身体全方位健康保健咨询和前言保健科学的个体化指南,具有全面、无创、实用、简便、快捷、经济、易于推广普及等特点和优势,随着科研工作的深入和发展,对人类健康事业将会做出更大贡献,有着广阔的开发和应用前景。

磁场测量的原理和元件

磁场测量的原理和元件 磁场是无形的,在实际检测中,通常是将磁场转换成电信号然后实现自动化处理,从而实现无形磁场的可视化。磁电转换原理和元件有以下几种: 1.感应线圈 感应线圈的原理:通过线圈切割磁力线产生感应电压,而感应电压的大小与线圈匝数、穿过线圈的磁通变化率或者线圈切割磁力线的速度成线性关系。感应线圈测量的是磁场的相对变化量,并对空间域上的高频率磁场信号更敏感。 2.磁通门 磁通门传感器是利用被测磁场中高导磁铁芯在交变磁场的饱和激励下,其磁感应强度与磁场强度的非线性关系来测量的弱磁场的一种传感器,其原理是建立在法拉第电磁感应定律和某些材料的磁化强度M与磁场强度H的非线性关系上。使用磁通门传感器的仪器有磁通门高斯计,如磁通门高斯计GF600,能精确测量微弱的磁场,仪表无须调零,是测量弱磁场最好的选择,但磁通门传感器不能长期暴露在高磁场环境下,使用环境应低于100G(10mT)。 3.霍尔传感器 霍尔传感器是根据霍尔效应制作的一种磁场传感器,测量绝对磁场大小。 霍尔效应从本质上讲是运动的带点粒子在磁场中收到洛伦兹力作用引起的偏转,从而形成霍尔电势V=K H①·I·B。以霍尔传感器开发出来的仪器有霍尔效应高斯计,常用的有手持式高斯计G100,具有精度高、温度补偿功能强、零点漂移小和磁场测量反应速度快等优点。 4.磁敏电阻 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。 常用的元件有磁敏电阻、磁敏二极管、磁敏三极管等。 5.磁共振法 原子核磁性的直接和精密的测量是利用核磁共振的方法。核磁共振是原子核磁矩系统在相互垂直的恒定磁场B和角频率ω的交变磁场的同时作用下,满足ω=γ②B时,原子核系统对交变磁场产生强烈吸收(共振吸收)现象。 除了上述介绍的几种方法外,还有磁光克尔效应法、磁膜测磁法、磁致收缩法、磁量子隧道效应法、超导效应法等。 ①元件的灵敏度,它表示在单位磁场和单位控制电流下霍尔电势的大小 ②为原子核的磁旋比,即原子核的磁矩与角动量之比。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

测量磁感强度的五种方法.

测量磁感强度的五种方法 程和界 李木成 磁感强度B 是物理学中的一个重要物理量。磁感强度的测量是一个与课本知识有关的设计性实验,而现在的高考题型重点考查学生的理解能力和计算能力,随着高考的深入,磁感强度的测量必将以探索性实验、设计性实验出现在高考题中,着重考查学生的设计能力和创新能力。为此,下面就高考中出现的以磁感强度的测量为背景而编制的试题进行分类归纳,介绍磁感强度的测量的五种方法,为即将到来的高考提供一些借鉴。 一、利用电磁感应的原理进行测量 把一个很小的线圈与测量电量的冲击电流计G 串联后放在待测处,然后改变线圈的状态使线圈产生感应电流,测出感应电量Q ,就可以算出该处的磁感强度B 。 例1. 如图1所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电量Q ,就可以算出线圈所在处的磁感应强度B 。已知测量线圈共有N 匝,直径为d ,它和表G 串联电路的总电阻为R ,则被测处的磁感强度B 为多大? 解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得: E N t N B d t ==?? ????Φ??222π 由欧姆定律得:I Q t E R ==? 由上述二式可得:B QR Nd = 22 π 二、利用物体的平衡原理进行测量 利用安培秤测出安培力的大小F ,然后根据安培力的公式F BLI =就可以算出磁感强度B 。 例2. 安培秤如图2所示,它的一臂下面挂有一个矩形线圈,线圈共有N 匝,它的下部悬在均匀磁场B 内,下边一段长为L ,它与B 垂直。当线圈的导线中通有电流I 时,调节砝码使两臂达到平衡;然后使电流反向,这时需要在一臂上加质量为m 的砝码,才能使两臂再达到平衡。求磁感强度B 的大小。

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

实验五 地磁场测定

实验五 地磁场测定 一.概述 地磁场作为一种天然磁源,在军事、航空、航海、工业、医学、探矿等科研中有着重要用途。本仪器采用新型坡莫合金磁阻传感器测量地磁场的重要参量,通过实验可以掌握磁阻传感器定标以及测量地磁场水平分量和磁倾角的方法,了解测量弱磁场的一种重要手段和实验方法,本仪器与其他地磁场实验仪(如正切电流计测地磁场实验仪)相比具有以下优点: 1.实验转盘经过精心设计,可自由转动,方便地调节水平和铅直。内转盘相隔ο180,具有两组游标,这样既提高了测量精度,又消除了偏心差。 2.新型磁阻传感器的灵敏度高达50V/T ,分辨率可达8710~10--T ,稳定性好。用本仪器做实验,便于学生掌握新型传感器定标,及用磁阻传感器测量弱磁场的方法,测量地磁场参量准确度高; 3.本仪器不仅可测地磁场水平分量,而且能测出地磁场的大小与方向,这是正切电流计等地磁场实验仪所不能达到的。 本仪器可用于高校、中专的基础物理实验、综合性设计性物理实验及演示实验。 二.仪器技术要求 1.磁阻传感器 工作电压 6V ,灵敏度50V/T 2.亥姆霍兹线圈 单只线圈匝数N=500匝,半径10cm. 3.直流恒流源 输出电流0—200.0mA 连续可调 4.直流电压表 量程0—19.99mV ,分辨率0.01mV

5.测量地磁场水平分量不确定度小于3% 6.测量磁倾角不确定度小于3% 7.仪器的工作电压AC 220±10V 三.仪器外型

FD-HMC-2型 磁阻传感器与地磁场实验仪 (以下实验讲义和实验结果由复旦大学物理实验教学中心提供) 一.简介 地磁场的数值比较小,约510-T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测量地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的

实验五 地磁场测定

实验五 地磁场测定 一.概述 地磁场作为一种天然磁源,在军事、航空、航海、工业、医学、探矿等科研中有着重要用途。本仪器采用新型坡莫合金磁阻传感器测量地磁场的重要参量,通过实验可以掌握磁阻传感器定标以及测量地磁场水平分量与磁倾角的方法,了解测量弱磁场的一种重要手段与实验方法,本仪器与其她地磁场实验仪(如正切电流计测地磁场实验仪)相比具有以下优点: 1.实验转盘经过精心设计,可自由转动,方便地调节水平与铅直。内转盘相隔 180,具有两组游标,这样既提高了测量精度,又消除了偏心差。 2.新型磁阻传感器的灵敏度高达50V/T,分辨率可达8710~10--T,稳定性好。用本仪器做实验,便于学生掌握新型传感器定标,及用磁阻传感器测量弱磁场的方法,测量地磁场参量准确度高; 3.本仪器不仅可测地磁场水平分量,而且能测出地磁场的大小与方向,这就是正切电流计等地磁场实验仪所不能达到的。 本仪器可用于高校、中专的基础物理实验、综合性设计性物理实验及演示实验。 二.仪器技术要求 1.磁阻传感器 工作电压 6V,灵敏度50V/T 2.亥姆霍兹线圈 单只线圈匝数N=500匝,半径10cm 、 3.直流恒流源 输出电流0—200、0mA 连续可调 4.直流电压表 量程0—19、99mV ,分辨率0、01mV

5.测量地磁场水平分量不确定度小于3% 6.测量磁倾角不确定度小于3% 7.仪器的工作电压AC 220±10V 三.仪器外型

FD-HMC-2型 磁阻传感器与地磁场实验仪 (以下实验讲义与实验结果由复旦大学物理实验教学中心提供) 一.简介 地磁场的数值比较小,约510-T 量级,但在直流磁场测量,特别就是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测量地磁场磁感应强度及地磁场磁感应强度的水平分量与垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维与三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 与电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别就是电流I 平行于M 与垂直于M 时的电阻率。当沿着铁镍合金带

地磁场水平分量的测量解读

实验二十九 地磁场水平分量的测量 1、教学目标 (1)学习测量地磁场水平分量的方法; (2)了解正切电流计的原理; (3)学习分析系统误差的方法 2、教学难点、重点 难点:地磁场的相关概念;正切电流计的原理。 重点:测量方法和测量公式。 3、实验室提供的仪器和用具 亥姆霍兹线圈(N=640匝,R=10cm ),地质罗盘(DL-I 型),直流稳压电源(DF173系列),电阻箱(ZX21型),直流电流表(0.5级,10Ma ),换向开关,水准器。 4、实验原理 4.1 地磁场与地磁要素 地球是一个大磁体,地球本身及其周围空间存着磁场叫做“地球磁场”又称地磁场,其主要部分是一个偶极场。地心偶极子轴线与地球表面的两个交点称为地磁极,地磁的南(北)极实际上是地心磁偶极子的北(南)极,如图1。地心磁偶极子的磁轴m m S N 与地球的旋转轴NS 斜交一个角度o 5.11,00≈θθ。所以地磁极与地理极相近但不 相同,地球磁场的强度和方向随 地点、时间而发生变化。 地球表面任何一点的地磁 场的磁感应强度矢量B 具有一定 的大小和方向。在地理直角坐标 系中如图2所示。O 点表示测量 点,x 轴指向北,即为地理子午 线(经线)的方向;y 轴指向东, 即为地理纬线方向;z 轴垂直于 地平面而指向地下。XOy 代表地 平面。B 在xOy 平面上的投影//B 称为水平分量,水平分量所指的 方向就是磁针北极所指的方向,即磁子午线的方向;水平分量偏离地理真北极的角度D 称为磁偏角,也就是磁子午线与地理子午线的夹角。由地理子午线起算,磁偏角东为正,西偏为负。B 偏离水平面的角度I 称为磁倾角。在北半球的大部分地区磁针的N 极下倾,而在南半球,则磁针的N 极向上仰,规定N 极下倾为正,上仰为负。B 的水平分量//B 在x 、y 轴上的投影,分别称为北向分量x B 和东向分量y B ;B 在Z 轴上的投影z B 称为垂直分量。故某一地点O 的地 磁要素有:⑴地磁场总磁感应强度B ,⑵磁倾角I ,⑶磁偏角D , ⑷水平分量//B ,⑸垂直分量z B ,⑹北向分量x B ,⑺东向分量y B 。 不难看出,它们是B 在各个坐标体系中的坐标值,比如z y x B B B ,,就是 图 1

弱磁场测量仪器的进展和应用解读

电源同频的和不同频的交流分量也都有相应的限制。界上至少有二十几个研究小组在开展这方面的工作〔〕。在环境的杂散磁场中的磁场影响最大千扰磁场 , 。 , 随时间作单调变化、用噪声源 , 测量人体磁场时 , 为消除各种 , 例如 , 离高压线较近的工频电车汽车的移动。、一方面可以采用磁屏蔽的办法另一附近有火车、方面也可以利用一次或二次微分形式的梯度探头。大型机电设备的动作等造成的干扰磁场。、赫尔辛基工业大学建成了目前最好的磁屏 , , 测量环境杂散磁场直流分量或波动的最简蔽室〔。〕该室除用于测量人体的心磁图和脑单仪器是磁通门磁强计它的灵敏度高测量的范围宽偿力 , 、磁图外还可用于研究磁场对细菌生长的作用。可以直读、有的仪器还带有地磁场补。以及某些化学反应中磁化率的变化测试磁场的变化很方便同时也可以用质需要和赫姆霍茨。由于环境污染而造成的矽肺病场可达。一 , 其稳态磁 , , 子旋进磁强计〔〕这种磁强计有很高的分辨 , , 。以上 , 。沉积在肺中的磁性物质很。 , 但是测量的范围很有限难用射线测出场较高 , 而利用磁场测量可以判明工线圈配合起来使用应线圈法来测量

示。。操作和计算也较复杂 , 并且可用作了解肺功能缺陷的手段除用测量外 , 由于肺磁测量环境杂散磁场交流分量一般利用感还可以利用高。其中最简单的是利用平均值电压表 , 灵敏度的磁通门梯度计来测量四、为了有较高的灵敏度 , 可采用匝数多展望弱磁场测量技术和弱磁传感器的应用十分的感应线圈 , 。并接到积分器、放大器后再显或者用高灵敏度的数字磁通表来直接测量广泛对于有严重干扰的杂散磁场 , , 在最近十几年来已经有了很迅速的发 , 必须找出其 , 展。展望未来的十年 , 弱磁场磁强计也必然会。来源而消除掉。对于无法消除的杂散磁场。要成为磁测量仪器的开路先锋场测量技术的发展、今后 , 我国弱磁采取屏蔽的方法在一些国家的弱磁场试验室。至少有以下几方面任务 , 中都建设有大型的多层磁屏蔽室推广磁通门磁强计的应用、发展高灵 , , 有时候还要求知道某种设备内部器件的移敏的、小探头的梯度探头的等系列化形式一“ 动带来的干扰磁场以及仪器内部电路之间的干扰磁场、其测量上限要求扩展到工。霍尔效应磁强计量范围相接续。、名以便和变压器的漏磁场等等。 , 这时利用小型核磁共振磁强计等仪器的测 , 的磁通门探头是比较合适的、为此对探头的材料。、工艺和生物磁浏量 , 结构等都要作相应的研究和改进但是 , 。、虽然人们很早就认识到生物磁现象只有到的心脏、光泵磁强计在国外已经成为商品化的 , 年代初由于超导量子磁强计的出现大脑、、稳定仪器泛应用。在空间 , 、地面等不同条件下得到广才为人体磁场的测量提供了最可能的手段肺等器官都有微弱的磁场。人其国内今后应注重对仪器的稳定性和灵以期供给一批实用的商品化 , 敏度方面的研究仪器理学。、中有交变的也有稳态的“ ‘ ” , 例如 , 健康人的心脏磁场变化可达生的磁场为一伴随骨骼肌收缩产、。国外对人体磁场的研究已经深入到生。“ , 脑磁场在睡眠时为测量人体某些器 , 精神生理学和医学的领域 , 。国内急需商、‘ 、一‘吕睡醒时为。品化的并且希望能迅速应用到临床 , 官的磁场可以诊断一些疾病测量已成为引人注目的课题法国、因此人体磁场的目前 , 诊断中去由于人体磁场的研究和磁学生理学等都

【CN110103739A】弱磁场激励三线圈检测装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910310870.1 (22)申请日 2019.04.18 (71)申请人 南京航空航天大学 地址 210016 江苏省南京市秦淮区御道街 29号 申请人 江苏展芯半导体技术有限公司 (72)发明人 张斌 陈乾宏 徐立刚 温振霖  任小永 张之梁  (74)专利代理机构 南京瑞弘专利商标事务所 (普通合伙) 32249 代理人 吴旭 (51)Int.Cl. B60L 53/12(2019.01) B60L 53/126(2019.01) B60L 53/38(2019.01) B60L 53/34(2019.01)H02J 50/90(2016.01)H02J 50/12(2016.01) (54)发明名称弱磁场激励三线圈检测装置(57)摘要本发明公开了一种弱磁场激励三线圈检测装置,包括交流激励源、检测信号采样板、原边激励线圈,还包括副边响应线圈、响应线圈谐振网络、检测单元。交流激励源与原边激励线圈相连,副边响应线圈与响应线圈谐振网络相连。检测单元包括至少一个检测线圈,检测单元与检测信号采样板相连。本发明可以在较弱的励磁功率和励磁电流条件下得到足够的检测信号强度,降低励磁功耗,减小电磁干扰,满足设备的电磁暴露的限制要求,并减小非接触变压器副边感应电流对检测信号的不利影响。实现泊车导引、位置检测和互感参数检测,为电动汽车无线充电系统和自动泊车提供位置信息,具有系统成本较低、可靠性高、 电磁辐射小的优点。权利要求书2页 说明书10页 附图6页CN 110103739 A 2019.08.09 C N 110103739 A

浅谈磁场测量技术的发展及其应用

龙源期刊网 https://www.wendangku.net/doc/3e11708993.html, 浅谈磁场测量技术的发展及其应用 作者:杨船前王晓丽 来源:《卷宗》2018年第10期 摘要:现阶段,磁场测量技术已经以其独特的优势被广泛应用在我国众多领域当中,对 我国的发展与稳定具有重要意义。基于此,本文首先从磁力法、电磁感应法、磁饱和法、电磁效应法、磁共振法以及超导效应法等方面分析了磁场测量技术的发展,其次从宇宙工程领域、工业领域、国防及军事领域等方面介绍了磁场测量技术的相关应用,具有重要的参考价值。 关键词:磁场测量技术;电磁感应;电磁效应 在我国东汉时期,就有了有关于磁场测量技术的记载,司南以及指南针等的应用都和磁场测量技术有着密不可分的联系。随着科学技术的不断发展,人们对电磁效应以及电磁感应等进行了深入研究,进而促进了磁场测量技术的快速发展。现阶段,人们已经拓宽了磁场测量技术的应用范围,对其在广度以及精度等方面也提出了全新的要求,而要想实现这一要求,就需要对磁场测量技术的发展及其应用进行充分研究,并在此基础上对磁场测量技术进行创新,进而实现它的稳定发展。 1磁场测量技术的发展 1.1磁力法 基于磁力法下的磁场测量仪器包括两种:磁强计式与电动式。对于磁力法而言,比较古老,主要将磁力作为原理,现阶段,在一些地磁场测量以及地磁研究方面依然在运用这种方法。 磁强计指的是可以使磁针发生偏转的磁场测量仪器,通过这种磁强计既可以测量磁针的偏转角与振动周期,又可以对一些不规则的磁场进行测量。在高科技时代背景下,人们在创新磁场测量仪器的同时,也促进了磁力法的快速发展。 1.2电磁感应法 电磁感应法主要是将磁石导电性、介电性以及导磁性等之间的差异作为基础,通过电磁感应原理,借助电磁场时间变化以及空间分布的规律,来寻找各种地质问题的解决方法。在电磁感应法当中,磁强针传感器实际上就是探测线圈,它的灵敏度会受到线圈大小以及铁芯材料等的影响。按照电磁感应强度,可以对电磁感应法进行细分,分成震动、固定、移动以及旋转等线圈法。通过这种方法进行测量,误差比较小。 1.3磁饱和法

弱磁场测量方法解读

弱磁场测量方法的研究 杨阳胡超陈冬梅戴厚德阳万安 中科院深圳先进技术研究院 摘要磁场测量技术是研究磁现象的重要手段,在国防、工业、医疗、交通等领域有广泛的应用。随着电子信息技术的进展,磁场测量有向弱磁方向发展的趋势。本文根据当前磁场测量的现状以及发展趋势,介绍常见的弱磁场测量基本原理和方法;并针对我们开发的基于3轴AMR 磁传感器HMC1043和单片机的手持式智能三轴磁场测量与定位仪,用实例介绍有关弱磁场测量的技术手段。关键词弱磁场,测量,3轴磁场传感器 1 前言 磁场测量技术是研究磁现象有关物理现象的重要手段,已经逐渐形成为一门独立的科学。在科学研究、国防建设、工业生产、医疗仪器、日常生活等领域,磁场测量常常起着越来越重要的作用。磁场测量是一门历史悠久并且不断发展的技术科学[1],是电磁测量技术的一个重要分支。远在公元一千年前,我们的祖先就知道了指南针有极性,并将其制成罗盘用于旅行和航海,这可称为世界上第一个磁场测量的仪器[2]。目前,由于磁测量技术的广泛应用,大大丰富了磁测量的内容,该技术几乎涉及所有的电测量方法。利用了各种电磁现象,发展了许许多多的技术应用;并且随着电子技术、计算机技术、自动化技术、冶金工艺、机械制造与工艺技术的发展,磁场测量已经走向小型化、电子化、数字化、和自动化,性能大为改善,磁场测量已向宽量程和高精度发展,特别是弱磁场的测量。弱磁场测量为磁技术的应用开辟了新的领域,如人体体内磁目标的跟踪定位。 针对这一趋势,我们设计了手持式智能三轴磁场计以对弱磁场进行测量。设计中采用低功耗、高灵 敏度、和高线性度的霍尼韦尔HMC1043三轴AMR(各

向异性磁阻)磁场传感器,并通过单片机和其它放大控制电路,准确的测量出目标空间3维磁场的强度,判断出磁场的极性,该磁场计还特别适合弱磁场的测量。 本文以下内容将介绍磁场特点及测量原理、基本测量方法、手持式智能三轴磁场检测仪的设计,最后给予总结。 2 磁场与测量原理 磁场测量技术所涉及的范围很广,从被测磁场 强度范围看,它可以从10-15T (特斯拉)至103T 以上;从其频率看,它包括直流、工频、高频、及各种脉冲;从测量技术所应用的各种原理来看,它涉及到电磁效应、光磁效应、压磁效应、热效应等各种效应;从测量中所采用的技术来看,它包括指针仪表、数字仪表直至电子计算机的系统测量。磁场测量包括磁参数和磁性材料磁特性的测量。磁参数的测量指的是磁场强度和磁通的测量。磁性测量一般是指的材料试样的测试,用以反映磁性材料的磁性参数。目前在国内厂家对于磁性测量的装置相对较多,但对于磁参数测量的装置生产的相对较少。因此,研究和发展高精度、灵敏度强、稳定性好、使用简单,成本低廉的磁场测量装置有着深远的意义。 对宏观磁场和磁性材料进行磁学量测量的仪器。通常按测量对象不同分为两大类。 第一类仪器用于测量磁场强度、磁通密度、磁通量、磁矩等表征磁场特征的物理量。典型仪器有磁通计、磁强计、磁位计等。这类仪器的工作原理可分三种:第一种是利用磁的力效应,用于测量地磁场强度和检验磁性材料;第二种根据法拉第的电磁感应定律,由感应电动势求出磁通的变化,再导出各种待求的磁场量;第三种利用磁致物理效应(如霍尔效应等)来测量磁通密度,对静止的或变动的磁场量均适用。 第二类仪器用于测量磁导率、磁化强度、磁化

螺线管内磁场的测量

实验九螺线管内磁场的测量在工业、国防和科学研究中经常要对磁场进行测量例如在粒子回旋加速器、受控热核反应、同位素分离、地球资源探测、地震预测和磁性材料研究等方面。测量磁场的方法较多从测量原理上大体可以分为五类力和力矩法、电磁感应法、磁传输效应法、能量损耗法、基于量子状态变化的磁共振法。常用的测量方法主要有冲击电流计法霍尔元件法、核磁共振法和天平法。练习一用冲击电流计法测量螺线管内磁场【实验目的】1学习用冲击法测量磁感应强度的原理和方法2学会使用冲击电流计3研究长直螺线管内轴线上的磁场分布4对比螺线管轴线上磁场的测量值和理论值加深对毕奥萨伐尔定律的理解。【实验仪器】冲击电流计、螺线管磁场测量仪、直流电源、直流电流表、电阻箱、滑线变阻器。【实验原理】1. 长直螺线管轴线上的磁场如图5.9.1所示设螺线管长为L半径为r0表面均匀地绕有N匝线圈放在磁导率为μ的磁介质中并通以电流I。如果在螺线管上取一小段线圈dL则可看作是通过电流为INdL/L的圆形载流线圈。由毕奥萨伐尔定律得到在螺线管轴线上距离中心O为x的P点产生的磁感应强度dBx 为3202rrLINdLdBx 5.9.1 图5.9.1长直螺线管轴的结构图OP2LLx0r21dLdBxrd 由图5.9.1可知0sinrrsinrddL代入式5.9.1得到dLμINdBxsin2 5.9.2 因为螺线管的各小段在P点的磁感应强度方向均沿轴线向左故整个螺线管在P点产生的

磁感应强度21coscos2sin22121LNIdLNIdBBx 5.9.3 由图 5.9.1可知5.9.3式还可以表示为2122rxLxLrxLxLLNIBx 5.9.4 令x0得到螺线管中点O的磁感应强度2120204rLNIB 5.9.5 令xL/2得到螺线管两端面中心点的感应强度2122202LNIBLr 5.9.6 当L≥r0时由式5.9.5和式5.9.6可知BL/2≈B0/2。只要螺线管的比值L/r0保持不变则不论螺线管放大或缩小也不论线圈的匝数N和电流I为多少磁感应强度相对值沿螺线管轴的分布曲线不改变。 2. 用冲击电流计测量磁场的原理如图5.9.2所示设探测线圈匝数为n平均截面为S线圈的法线和磁场方向一致当K1倒向一边使螺线管中通过电流的I。当K1突然断开时螺线管内的磁通突然改变探测线圈中的感应电流i通过冲击电流计G若测出在短时间内的脉冲电流所迁移的电量就可求得该点的Bx值。由法拉第电磁感应定律可知在探测回路中产生感应电动势ddt 5.9.7 设探测回路的总电阻为R则通过冲击电流计的瞬时感应电流为1diRdt 5.9.8 图5.9.2测量螺线管内磁场电路图 GA-1R2RgR1KER在磁通变化的时间内通过冲击电流计的总电量0000111dQidtdtdRdtRR 5.9.9 实验时把通过螺线管的电流由I突变为0即把K1断开使磁通量发生改变则有0t时0xBnSt0代入5.9.9式有xBnSQR 5.9.10 因此只需测量出R 及Q就可以算出Bx。Q值可以通过DQ-3/4型智能冲击电流计直接测出为了测出探测回路的总电阻为R使用图5.9.3

磁场强度测量方法归类

磁场强度测量方法归类 阳其保 一、利用安培力计算公式F =BIL 测磁感应强度B 例1. 如图1所示,天平可用来测定磁感应强度,天平的右臂上挂有一矩形线圈,宽度为l ,共N 匝,线圈下端悬在匀强磁场中,磁场方向垂直纸面。当线圈中通有电流I (方向如图)时,在天平左右两边加上质量分别为m m 12、的砝码,天平平衡,当线圈中电流反向时,右边需再加砝码m ,天平重新平衡。由此可知( ) 图1 A. 磁感应强度的方向垂直纸面向里,大小为 ()m m g NIl 12-; B. 磁感应强度的方向垂直纸面向里,大小为 mg NIl 2; C. 磁感应强度的方向垂直纸面向外,大小为 ()m m g NIl 12-; D. 磁感应强度的方向垂直纸面向外,大小为mg NIl 2。 分析与解:因为电流反向后,右边需加砝码,故可知电流反向之后,通电线圈受向上的安培力作用,由左手定则得磁场的方向垂直线面向里。又因为磁场对线圈的作用力:F NBIl =,电流反向前,由平衡条件有:m g m g NBIl 12=+,电流反向后有:m g m m g NBIl 12=+-(),综合以上各式有:B mg NIl = 2,正确答案为B 。 二、利用感应电动势E=BLv 测磁感应强度B 例2. 为了控制海洋中水的运动,海洋工作者有时依靠水流通过地磁场产生的感应动势以及水的流速测地磁场的磁感应强度向下的分量B ,某课外活动兴趣小组由四个成员甲、乙、丙、丁组成,前去海边某处测量地磁场的磁感应强度向下的分量B 。假设该处的水流是南北流向,且流速为v ,问下列哪种测定方法可行?( ) A. 甲将两个电极在水平面沿水流方向插入水流中,测出两极间距离L 及与两极相连的测量电势差的灵敏仪器的读数U ,则B U vL =; B. 乙将两个电极在水平面沿垂直水流方向插入水流中,测出两极间距离L 及与两极相连

无磁、弱磁材料磁性能的测量方法

无磁、弱磁材料磁性能的测量方法 最近几年,我们国家的经济以及科技都获取了显著的发展。比如弱磁探测相关的技术就得以明显发展。在这种背景之下,无磁以及弱磁材料对设备的性能影响变得更加明显。所以,我们必须认真开展无磁以及弱磁物质的磁性测试以及筛选工作。作者具体分析了几类常见的测量措施,并且简单的比对了它们的运用区间以及测量关键点等相关内容。 标签:无磁材料;弱磁材料;磁天平;磁导率;磁化率 引言 所谓的无磁材料,具体的说指的是那种不具有磁性的材料,像是最常见的铜铝等。而弱磁材料,指的是那种磁性非常低的材料。在过去的时候,当我们设计零件的时候,非常关注永磁型物质的性能,对于那些没有磁性的物质的性能却在很大程度上忽略了。不过由于当前时期,电子工艺不断发展,此时电子设备开始朝着小型化以及高精确性方向发展,这时那种没有磁性的物质的性能对设备的特性影响就变得非常受关注了。目前很多行业都使用无磁材料,比如我们国家的国防工作。潜艇中所用的系列无磁不锈钢,导航系统所用的铜材,铜漆包线、铝材、钛合金、陶瓷等全部属于无磁物质,这些物质的磁导率等特性会对设备的精确性等产生非常明显的影响。通过长久的开展无磁材料性能测试工作,我们发现了非常多的问题,很多的使用人都不熟悉此类物质的特性,也不知道怎样检测它们的性能,在选择以及运用的时候不知道怎样测试它们的品质,最终的后果是使得设备不符合规定,有的根本不能正常使用,最终只能再次检查,这就在无形之中加大了材料的浪费率,而且浪费时间和金钱。作者在这个前提之下,具体分析了无磁以及弱磁物质的性能测量工作。 1 测量方法研究 文章讲到的磁性指的是无磁以及无磁物质的磁化率以及剩磁等数值,我们常使用磁天平、振动样品磁强计和磁通门磁强计等来测试,它们的原理并非是完全一样的。 1.1 磁天平的测量原理 磁天平的基本原理概括来说就是通过非均匀磁场作用在磁性物质上的力的测量,以此来获取磁性数值的一种措施。按照测量措施来区分的话,它又可以分成古依法和法拉第法等[2]。古依法测量原理,将横截面积均匀的长棒状样品悬挂在天平挂钩上,并放置在由电磁铁产生的磁场中,要求样品下端处于电磁铁两极头的中心点,上端处于在磁场零点处或是接近零点处。 1.2 振动样品磁强计的测量原理

磁阻传感器与磁场测量

北航基础物理实验研究性报告各向异性磁阻传感器(AMR)与地磁场测量 第一作者: 13271138 卢杨 第二作者: 13271127 刘士杰 所在院系:化学与环境学院 2015年5月27日星期三

摘要 物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。 磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。 磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。 关键词:磁阻传感器;磁电转换;赫姆霍兹线圈;车辆检测;罗盘

目录 一、实验目的 (4) 二、实验原理 (4) 三、实验仪器介绍 (5) 四、实验内容 (8) 1.测量前的准备工作 (8) 2.磁阻传感器特性测量 (8) a.测量磁阻传感器的磁电转换特性 (8) b.测量磁阻传感器的各向异性特性 (9) 3.赫姆霍兹线圈的磁场分布测量 (9) a. 赫姆霍兹线圈轴线上的磁场分布测量 (9) b.赫姆霍兹线圈空间磁场分布测量 (10) 4.地磁场测量 (11) 五、实验数据及数据处理 (13) 1.磁阻传感器特性测量 (13) a.测量磁阻传感器的磁电转换特性 (13) b.测量磁阻传感器的各向异性特性 (14) 2.赫姆霍兹线圈的磁场分布测量 (15) a.赫姆霍兹线圈轴线上的磁场分布测量 (15) b.赫姆霍兹线圈空间磁场分布测量 (16) 3.地磁场测量 (17) 六、误差分析与思考题 (17) 1、误差分析 (17) 2、思考题 (18) 七、实验中注意事项及改进方法 (19) 1、注意事项 (19) 2、实验改进 (19) 八、总结与收获 (20) 九、原始数据照片 (20)

如何对弱磁场传感器进行选型

如何对弱磁场传感器进行选型 根据目前市场上测量弱磁场应用范围比较广的弱磁场传感器主要是磁通门传感器,它具有分辨率高、精度高、测量弱磁场范围宽,线性度好、易于集成,经济可靠耐用等其他弱磁场传感器无可比拟的优点,那么针对磁通门传感器又有不同的分类,在实际工作中,我们该如何选择适合自己测量的传感器呢? 选型前,我们需要考虑几个重要的因素: 1、根据测量对象和测量环境来考虑传感器类型 磁通门传感器常用于0-10G的磁场中,完全适用于地磁检测、包裹检测、水下磁场监控、剩磁检测、微弱磁场测量、实验室等环境中,具有高性价比和高可靠性的特点,模拟信号输出和数字信号RS485输出皆可,方便客户选择。 2、灵敏度的选择 在线性范围内,传感器的灵敏度越高越好。灵敏度越高,测量精度就越高。弱磁场传感器最大能测量0.1nT微弱磁场,灵敏度非常高。 3、频率响应特性 传感器的频率响应高,可测的信号频率范围就宽!磁通门高斯计的频率响应范围可达到DC-1KHZ,大大提高了传感器的响应速度。 4、线性误差 线性误差越小,越能保证测量结果的准确性。那么弱磁场传感器的线性误差最小可达0.0015%,能实现多种弱磁场环境的精准测量。 5、稳定性 影响传感器长期稳定性的因素有传感器本身结构和使用环境。弱磁场传感器采用特种工程塑料PEEK等材料,能保证在苛刻的空间环境,水下2000米甚至更复杂的环境中长期使用达12年之久。 6、精度 精度是传感器的一个重要的性能指标,传感器的精度越高,其价格越昂贵,弱磁场传感器的精度可达0.5%,可根据测量环境选择合适精度的传感器。 因此,在常见的检测微弱磁场环境中,选择和使用不同型号类型的磁通门传感器和弱磁场高斯计就显得非常必要!如三维磁通门智能变送器GFP703常用于10G以下的磁场中,具有高分辨率0.1nT、高可靠性的特点,能进行高精度RS485数字输出,提供5-36VDC宽幅电源,高防护等级和DC/AC测量模式切换易于集成到系统之中,可适用于各种不同的环境和场合,是测量弱磁场的良好选择!

磁场测量讲义

各向异性磁阻传感器(AMR)与地磁场测量 实验指导书 北京航空航天大学物理实验中心 2013年3月10日

各向异性磁阻传感器与磁场测量 物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。 磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。 磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。 一、实验要求 1.熟悉和了解AMR的原理 2.测量磁阻传感器的磁电转换特性和各向异性特性 3.测量赫姆霍兹线圈的磁场分布 4.测量地磁场磁场强度,磁倾角,磁偏角 二、实验原理 各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。沉积时外加磁场,形成易磁化轴方向。铁磁材料的电阻与电流和磁化方向的夹角有关,电流与磁化方向平行时电阻R max最大,电流与磁化方向垂直时电阻R min最小,电流与磁化方向成θ角时,电阻可表示为: R = R min+(R max-R min)cos2θ 在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。图1中,易磁化轴方向与电流方向的夹角为45度。理论分析与实验表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。 无外加磁场或外加磁场方向与易磁化轴方向平 行时,磁化方向即易磁化轴方向,电桥的4个桥臂 电阻阻值相同,输出为零。当在磁敏感方向施加如 图1所示方向的磁场时,合成磁化方向将在易磁化 方向的基础上逆时针旋转。结果使左上和右下桥臂 电流与磁化方向的夹角增大,电阻减小ΔR;右上 与左下桥臂电流与磁化方向的夹角减小,电阻增大 ΔR。通过对电桥的分析可知,此时输出电压可表示 为: U=V b×ΔR/R (1) 式中V b为电桥工作电压,R为桥臂电阻,ΔR/R 为磁阻阻值的相对变化率,与外加磁场强度成正比, 故AMR磁阻传感器输出电压与磁场强度成正比, 图1 磁阻电桥

相关文档
相关文档 最新文档