文档库 最新最全的文档下载
当前位置:文档库 › 求分式函数值域的几种方法-精品

求分式函数值域的几种方法-精品

求分式函数值域的几种方法-精品
求分式函数值域的几种方法-精品

求分式函数值域的几种方法-精品

2020-12-12

【关键字】情况、方法、条件、领域、问题、难点、良好、沟通、发现、掌握、研究、特点、关键、理想、思想、需要、途径、重点、反映、检验、化解、分析、树立、解决、方向

摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问

题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.

关键词:分式函数 值域 方法. 1 引言

求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析.

2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域

如果分式函数变形后可以转化为2

122

a

y b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域.

例1 求2

1

231

y x x =-+的值域. 解:2

131248y x =

?

?--

??

?,

因为2

31248x ?

?-- ??

?≥18-,

所以函数的值域为:(],8-∞-∪()0,+∞.

例2 求函数221

x x

y x x -=-+的值域.

解:2

1

11

y x x -=

+-+, 因为2

2112x x x ?

?-+=- ??

?34+≥34,

所以34-

≤21

01

x x -<-+, 故函数的值域为1,13??

-????

.

先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件.

2.2 利用判别式法求分式函数的值域

我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ?=-≥0常常利用这一结论来求分式函数的值域.

例1 求2234

34

x x y x x -+=++的值域.

解:将函数变形为()()()2133440y x y x y -+++-=①,

当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以?≥0,

即()()()334144y y y +---7507y y =-+-≥0, 解得,

17

y ≤1或1y <≤7,

又当1y =时,0x =,

故函数的值域为1,77??

????

.

例2 函数22

21

x bx c

y x ++=+的值域为[]1,3,求b ,c 的值. 解:化为()20y x bx y c --+-=,

⑴当2y ≠时()()42x R b y y c ∈??=---≥0,

?()224428y c y c b -++-≥0,

由已知()2244280y c y c b -++-=的两根为1,3, 由韦达定理得,2c =,2b =±. ⑵当2y =时20c

x b

-=

=有解 综上⑴和⑵,2b =±,2c =.

由这两个例题我们知道在利用判别式法求分式函数的值域时要注意下列问题: 1、函数定义域为R (即分母恒不为0)时用判别式求出的值域是完备的.

2、当x 不能取某些实数时(分母为零),若要用判别式法求它的值域则需要对使

()22222111y a x b x c a x b x c ++=++的判别式0?=的y 值进行检验.

3、转换后的一元二次方程若二次项系数中含有字母则需要讨论其是否为0只有在其不为0的情况下才可以使用判别式法.

2.3 利用函数单调性求分式函数的值

对于求函数的值域问题,我们通常使用能够揭示此类函数本质特征的通性通法即利用函数的单调性来求其值域.

例1求函数21

(,1)1

x y x R x x -=∈≠-+的值域. 解:211x y x -=

+=2(1)31x x +-+3

21

x =-+, 当1x >-时,

3

1

x +是x 减函数进而y 是x 的增函数,于是(),2y ∈-∞-; 当1x <-时,同样y 是x 的增函数,于是y ∈()2,+∞; 所以21

1

x y x -=

+(1)x ≠-的值域为(),2-∞-∪()2,+∞. 在求分式函数时我们常运用函数a

y x x

=+

的单调性的结论: ⑴当0a >

时在(-∞

和)

+∞

上增函数,在)??

和(上是减函数.

⑵当0a <时在(),0-∞和()0,+∞上是增函数.

例2 求函数24

x

y x x =

-+(1≤x ≤3)的值域.

解:0x ≠所以41x

y x x

=

+-.

令4

t x x

=+在[]1,2上是减函数,在[]2,3是上增函数,

所以2x =时,min 4t =;

1x =时,max 5t =; 所以[]4,5t ∈,[]13,t t -∈,

故值域为11,43??

????

.

2.4 利用反函数法求分式函数的值域

设()y f x =有反函数,则函数()y f x =的定义域是它反函数的值域,函数()y f x =的值域是其反函数的定义域.那么如果一个分式函数的反函数存在,我们就可以通过求反函数的定义域来求其值域.

例1

求函数251

x

y x =

+的值域. 解:由于函数251x y x =

+1

()5

x ≠-的映射是一一映射因此反函数存在,其反函数为25x y x =

- 明显知道该函数的定义域为2|5x x ?

?

≠???

?

, 故函数的值域为2,5??-∞ ??

?∪2,5??+∞ ???.

说明:由于本方法中所具有的某些局限性,一般说来,用此方法求值域只用

ax b

y cx d

+=

+(c≠0)的函数,并且用此方法求函数的值域,也不是比较理想的方法.我们用这种方法目的是找关于y 的不等式所以反函数求值域的实质是反函数的思想树立这种思想是我们的宗旨.

下面这种方法就是利用了反函数的思想比较通用的方法.

2.5 利用方程法求分式函数的值域

在1999年第2期《数学教学》第38页给出了下面的结论和证明.对函数()y f x =

()x D ∈将其视为方程若能通过同解变形得到单值函数()x g y =*()y A ∈即()y f x =()x D ∈?()x g y =*()y A ∈则*A 即为()y f x =的值域利用这一结论函数问题转化

为方程问题.又在2006年第2期《数学教学》“用方程法求函数值域”一文中给出了这样的引理及其证明.引理:设函数()y f x =的定义域为A 值域为B ,又设关于x 的方程()

y f x =

在A 中有解的y 的取值集合为C ,则C B =.

例1 (2005年全国高考理科卷Ⅲ第22题)已知函数247

()2x f x x -=-[]0,1x ∈求函数

()f x 的值域

解:247

()2x f x x

-=-,[]0,1x ∈,

所以2247y xy x -=-,[]0,1x ∈, 即24(72)0x yx y +-+=,[]0,1x ∈.

这样函数的值域即为关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解的y 的取值集.

令()g x =24(72)x yx y +-+,[]0,1x ∈,

则关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解?(0)(1)g g ?≤0

或(0)0(1)001224

44(72)0

g g b y

a b ac y y >??>???<-=-

2.6 利用换元法求分式函数的值域

当题目的条件与结论看不出直接的联系(甚至相去甚远)时,为了沟通已知与未知的联系,我们常常引进一个(或几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向.换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式).在中学数学问题中,常见的基本换元形式有式代换、三角代换、点代换、参数代换等.

例1

求函数]0,1[,5

44

4)(2

2-∈++++=x x x x x x f 的值域. 解:令2+=x t ,

则]1,2

1

[1,11112

2

2∈+=+=t t t t y .

因为]2,4

5

[112∈+

t , 所以函数)x (f 的值域是]5

4

,21[.

例2 求函数4

23

(1)x y x =+的值域.

解:令tan x θ=,(,)22

ππ

θ∈-

, 则44233

tan tan (1tan )sec y θθθθ

==+=42

sin cos θθ =222

1sin sin 2cos 2θθθ≤3

2221sin sin 2cos 23θθθ??++ ?

??427

=. 当且仅当2tan 2θ=时“=”成立.

所以函数423(1)x y x =+的值域为40,27??

????

. 在这道例题中不仅用了换元法还用了均值不等式.利用三角函数来代换是我们在用换元法解题最常用的在换元后根据三角函数的有界性求能求出函数的值域 .

在用换元法的时候重要的就是要注意换元后的自变量发生了改变,那么它的定义域也就变了.注意到这点才能准确地求出值域.

2.6 利用不等式法求分式函数的值域

“不等式法”就是通过利用不等式的一些性质和均值不等式来求某些具有一定特性的分式函数的值域.若原函数通过变形后的分子分母符和下列条件①各变数为正;②各变数的和或积为常数.则可以考虑用均值不等式求它的值域.要注意在得到结论之后要说明其中等号能够取到.

例1 求函数2

24(1)

(3)x y x +=+(1)x >-的值域. 解:224(1)

(1)4(1)4

x y x x +=

++++244

(1)4

1

x x =

++++.

因为10x +>,所以4

11

x x +++≥4, 则4

1481

x x ++

+≥+,

所以0y <≤

24

38

=(当1x =时取等号), 故函数的值域为(]0,3. 例2 设123n S n =++++,n N ∈求1

()(32)n

n S f n n S +=

+的最大值.(2000年全国高

中数学联赛)

解:1()(32)n n S f n n S +=+(1)

2(1)(2)(32)2

n n n n n +=

+++?

2(32)(2)3464

n n n n n n ==++++, 即化为了求分式函数最值的问题1

()64

34f n n n =++

.

又因为64

34n n

++

≥3450=, 当64n n =

即8n =时“=”成立,所以对任何n N ∈有()f n ≤1

50

, 故()f n 的最大值为1

50

.

例2表面上看是数列的问题而实际是我们可以将其转化为求函数值域的问题在这里我们利用均值不等式的性质来求其值域就使得整个解题过程利用数更简单.

2.8 斜率法求分式函数的值域

数形结合是中学数学中的一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.这种方法不仅仅体现在数学的其它领域中,在求函数的值域与最值时也有良好的反映.

联想到过11(,)A x y ,22(,)B x y 的直线AB L 的斜率为21

21

AB y y k x x -=-,我们可以考虑把分式函数化为斜率式并利用数形结合法来求函数的值域.

例1 求函数232

()()2(32)3t f t t t =

>-的最小值. 解:函数()f t 可变形为()f t 23064t t -=-2

()3

t >,

设2(6,3)A t t ,(4,0)B 则()f t 看作是直线AB 的斜率, 令6x t =,23y t =则212(4)x y x =>.

在直角坐标系中A 点的轨迹为抛物线的一部分直线与抛物线相切是斜率最小. 过点(4,0)B 直线方程为:(4)y k x =-将它代入212x y =, 有212480x kx k -+=,则0?=推算出4

3

k =此时8x =, 即8t =时,min 4()3

f t =

. 例2 求211x x y x +-=+1

(2

-≤x ≤1)的值域.

解:2()1

(1)

x x y x +-=--,令(1,1)A -,2(,)B x x x +,

则AB y k =,点B 的轨迹方程为2y x x =+1

(2

-

≤x ≤1), 111(,)24B --,2(1,2)B ,152AB k =-,212AB k =,

所以51,22AB y k ??=∈-????,

即函数的值域为51,22??

-????

.

斜率法同样可以运用在形如ax b

y cx d

+=

+的分式函数中,函数的值域就转化为求直线斜率的范围给出了这样的结论:对于函数ax b

y cx d

+=

+22(0,0,0)c a b bc ad ≠+≠-≠,x ∈[],m n ,若记{}1min (),()m f m f n =,{}2max (),()m f m f n =,则当d

x c

=-

(),m n ∈时值域为(]1,m -∞∪[)2,m ∞.当d

x c

=-

?(),m n 时,值域为[]12,m m . 3 结论

整篇文章介绍了求分式函数八种比较常用的方法,可以根据题目不同的特点灵活选取不同的方法,而实际上在我们通常遇到的题目中并不是只用一种方法就能解决问题,而是要综合几种方法.当然有一些特殊的分式函数,在求值域的时就会用到特殊的方法.但是最重要的是每种方法都要注意其函数的定义域.

参考文献:

[1]贾士代.用方程法求函数值域[J] . 数学教学,2006(2):21

[2]王习建. 2111

2222a x b x c y a x b x c ++=++型函数值域的求法[J] .数理化解题研究 ,2003(6):25

[3]张莲生.sin sin a x b

y c x d

+=

+ 的值域的求法[J] .数理天地(高中版),2001(10):19-20

[4]王建海. 活用均值不等是巧解数学题[J] .数学教学通讯,2003(12):17 [5]钟国雄 .一个函数最小值问题的多种解法[J] . 中学生数学,2002(5):23 [6]江思容、望孝明 .求最值问题的若干途径[J] . 中学数学研究,2003(8):35 [7]傅洪海、陈宏. 关于反函数求值域的思考[J] . 数学教学, 1999(2):29-30 [8]陈士明.从求()b

f x x x a

=+

+的单调区间谈起[J] . 数学教学,1999(2):27-28

附录2(分式函数求值域方法总结)

分式型函数求值域的方法总结 一、形如()ax b f x cx d += + (,0a o b ≠≠)(一次式比一次式)在定义域内求值域。 例1:求21()32 x f x x +=+(2)3x ≠-的值域。 解:242()133()2323()3x f x x x +-=-++=123332 x -+∵1122330,323323x x -≠∴-≠++ ∴其值域为}2/3y y ?≠?? 一般性结论,()ax b f x cx d += + (,0a o b ≠≠)如果定义域为{x /d x c ≠-},则值域}/a y y c ?≠?? 注:本题所用方法即为分离常数法,分离常数之后,分子便不含有x 项,使计算变得简便。 例2:求21()32x f x x += +,()1,2x ∈的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:21()32x f x x +=+=123332x -+,是由1 3y x =-向左平移23,向上平移23得出,通过图像观察,其值域为35,58?? ??? 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

x 分析:此类函数中,当0a <,函数为单调函数,较简单,在此我们不做讨论,当0a >时, 对函数求导,'2()1,a f x x =-'()0f x > 时,(x ∈-∞? +∞),'()0f x <时, (x ∈?,根据函数单调性,我们可以做出此类函数的大致图像,其我们常 其图像 例3:求4()2,((1,4)f x x x x =+ ∈上的值域。 解:将函数整理成2()2()f x x x =+,根据双钩函数的性质,我们可以判断此函数在单调递减,在)+∞1,4出的函数值,我们可以知道在1处取的最大值,所以其值域为) ?? 三、用双钩函数解决形如2()mx n f x ax bx c +=++(0,0m a ≠≠),2()ax bx c f x mx n ++=+(0,0m a ≠≠)在定义内求值域的问题。 例3:已知0t >,则则函数241t t y t -+=的最小值为_______. 解:24114t t y t t t -+==+-,t o >∴由基本不等式地2y ≥-

分式函数值域的求法

分式函数值域的求法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

分式函数22221121c x b x a c x b x a y ++++=的值域 函数值域是函数三要素之一,求函数值域无定法,且方法灵活,是中学数学的一个难点。今天我们主要讨论分式函数2 2221121c x b x a c x b x a y ++++=的值域求法。 一、若21a a ,同时为零,则函数2 2221121c x b x a c x b x a y ++++=就变为形如2211c x b c x b y ++=(22b b ,不同时为零)的函数,可以用分离常数法或求反函数法来求函数的值域。 例1 求函数3 12+-=x x y 的值域 解法1:(分离常数法) 利用恒等变形可化为:3 7237)3(2+-=+-+=x x x y 所以,该函数的值域为)2()2(∞+-∞∈,, y : 解法2:(求反函数法) 函数312+-=x x y 的反函数为132 x y x -=-所以原函数值域为{}2≠∈y y y (即反函数定义域为原函数值域)。 二、若21a a ,不同时为零,但分子与分母有公因式子,可先约分再求值域。如果不约分,直接采用下面三的方法,将加大运算量(如例6)。 例2 求函数2 312+--=x x x y 的值域 解:可先将函数变为)2)(1(1)(---= =x x x x f y 。 约分后函数变为2 1)(-= x x g 。 所以0)(≠x g

约分后函数)(x g 的定义域扩大了(严格来说()g x 与原函数)(x f 不是同一个函数,但在不引起混淆的情况下也可直接约分),)(x g 在1处所对应的函数值1-,也是)(x f 不能取到的值,所以函数2 312+--=x x x y 的值域是)(0,0)1(1),(∞+∞- ,--。 例3求函数2 652-+-=x x x y 的值域 解:函数可变形为32 )3)(2(-=---=x x x x y ,所以该函数的值域是{}1-≠∈y y y 。 三、若21a a ,不同时为零,分子与分母没有公因式子,可以通过判别式法、分离常数法、基本不等式法求函数的值域。 例4函数221 x x y x x -=-+的值域. 解法1:(判别式法) 将221 x x y x x -=-+转化为关于x 的一元二次方程(y 看作参数): (这是一个必有解的方程。讨论使上方程有解的参数y 的范围,恰为函数221 x x y x x -=-+的值域) ①若1=y ,则10=矛盾 ②由1≠y ,这时由0≥?解得1113y y -≤≤≠且;13y =-时,12 x =。 ∴综上所述知原函数的值域为1[,1)3 -. 解法2:(分离常数法) 221x x y x x -=-+=2111x x --+=21113()24 x --+ 设213()()24g x x =-+,则()g x 的值域是3[,)4 +∞ 所以,原函数值域为1[,1)3 -。

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

高中函数值域的12种求法

高中函数值域的12种求法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨:根据算术平方根的性质,先求出√(2-3x)的值域。解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y-1或y1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为 {y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

次分式函数值域的求法

二次分式函数值域的求法 甘肃 王新宏 一 定义域为R 的二次分式函数用“判别式”法 解题步骤:1 把函数转化为关于x 的二次方程 2 方程有实根,△≥0 3 求的函数值域 1:求y =2 2222+++-x x x x 的值域 解:∵x 2+x+2>0恒成立 由y =2 2222+++-x x x x 得, (y -2)x 2+(y+1)x+y-2=0 ①当y-2=0时,即y=2时,方程为x=0∈R ②当y-2≠0时,即y ≠2时, ∵x ∈R ∴方程(y -2)x 2+(y+1)x+y-2=0有实根 ∴△=(y+1)2 -(y-2) ×(y-2) ≥0 ∴3y 2-18y+15≤0 ∴1≤y ≤5 ∴函数值域为[]5,1 练习1:求y =432+x x 的值域 ?? ????-43,43 二 分母最高次幂为一次的二次分式函数值域常转化为“√”函数或用“均值不等式”来做。 先来学习“√”函数。 形如y =x+ x k (x>0 ,k>0)的函数,叫“√”函数 图像

单调性:在x ∈[] k ,0时,单调递减。在x ∈[] +∞,k 时,单调递减。 值域:[]+∞,2k 解题步骤:①令分母为t,求出t 的范围 ②把原函数化为关于t 的函数 ③利用“√”函数的单调性或均值不等式来求值域 例2 求y =12122-+-x x x (32 1≤

高考求函数值域及最值得方法及例题_训练题

函数专题之值域与最值问题 一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1:求函数) + =的值域. y- 3x 3 2( 点拨:根据算术平方根的性质,先求出) -的值域. 3 2(x 解:由算术平方根的性质,知) 2(x -≥3。∴函数的值域为) 3 -≥0,故3+) 2(x 3 ,3[+∞ . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算 术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2:求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。 这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。 此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

函数值域的13种求法

函数值域十三种求法 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y =的值域 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y -=的值域 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得: 4)1x (y 2+-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法(只有定义域为整个实数集R 时才可直接用) 例4. 求函数 22 x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2=-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2≥----=? 解得:23y 21≤≤ (2)当y=1时,0x =,而??????∈23,211 故函数的值域为????? ?23,21

例5. 求函数)x 2(x x y -+=的值域 解:两边平方整理得: 0y x )1y (2x 222=++-(1) ∵R x ∈ ∴ 0y 8)1y (42≥-+=? 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥?,仅保证关于x 的方程: 0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥?求出 的范围可能比y 的实际范围大,故不能确定此函数的值域为????? ?23,21。 可以采取如下方法进一步确定原函数的值域。 ∵2x 0≤≤ 0)x 2(x x y ≥-+=∴ 21y ,0y min +==∴代入方程(1) 解得:] 2,0[22 222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+ 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数6x 54 x 3++值域 解:由原函数式可得: 3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:33(,)(,)55 -∞?+∞

次分式函数值域的求法.doc

二次分式函数值域的求法 甘肃王新宏一定义域为R 的二次分式函数用“判别式”法 解题步骤: 1把函数转化为关于x 的二次方程 2 方程有实根,△≥ 0 3 求的函数值域 1:求y = 2x2 x 2 的值域 x 2 x 2 解:∵ x 2 +x+2>0 恒成立 由y = 2x 2 x 2 得, x 2 x 2 (y -2 ) x 2 +(y+1)x+y-2=0 ①当 y-2=0 时,即 y=2 时,方程为x=0 R ②当 y-2 ≠ 0 时,即 y≠ 2 时 , ∵x R ∴方程( y -2 ) x 2 +(y+1)x+y-2=0 有实根∴△ =(y+1) 2 -(y-2) × (y-2) ≥ 0 ∴3y 2 -18y+15 ≤ 0 ∴ 1≤ y≤ 5 ∴函数值域为1,5 练习 1:求 y = 3x 的值域 3 3 2 4 , x 4 4 二分母最高次幂为一次的二次分式函数值域常转化为“√”函数或用“均值不等式”来做。 先来学习“√”函数。 形如 y =x+ k (x>0 ,k>0)的函数,叫“√”函数x 图像

y 2 k k x 单调性:在 x ∈ 0, k 时,单调递减。在 x ∈ k , 时,单调递减。 值域: 2 k , 解题步骤:①令分母为 t, 求出 t 的范围②把原函数化为关于 t 的函数③利用“√”函数的单调性或均值不等式来求值域 例 2 求 y = 2x 2 x 1 ( 1 x 3 )的值域 2x 1 2 解 令 2x-1=t, 得 0

分式函数求值域问题

分式函数求值域问题的通用解法 韩善豪 我这里所讲的分式函数指的是一次除一次,二次除一次,一次除二次,二次除二次,具体来看是指一下四种形式: 一次除以一次d cx b ax y ++= 二次除以一次n mx c bx ax y +++=2 一次除以二次c bx ax n mx y +++=2 二次除以二次r nx mx c bx ax y ++++=22 下面我以一些具体的例子来说一说分式函数值域的具体求法。 例1.求函数2 12-+=x x y 的值域。 解析:此题的标准解法叫分离常数 2 5225)2(2212-+=-+-=-+= x x x x x y 则该函数是由x y 5=向右平移两个单位,向上平移2个单位得到,显然值域为()()+∞?∞-,22, 说明:d cx b ax y ++=该函数可以称为是反比例型函数,其值域为?? ? ??+∞???? ??∞-,,c a c a 即???? ??≠c a y y 。另外此函数的对称性和单调性规律也很简单,大家可以试着总结一下。 再随便举一个例子:231-+=x x y 其值域为???? ??≠31y y 例2.求函数x x x y 422++=的值域。 解析:此例子比较简单,分母上的一次只是x ,显然我们可以化简得 24++=x x y 则可以用对号函数的单调性解决值域为(][)+∞?-∞-,62, 例3.求函数1 422+++=x x x y 的值域。 解析:此题和例2其实一样,只不过分母稍复杂一点。 令1),0(1-=≠+=t x t x t 代入上式得

t t t t t t t y 334)1(2)1(22+=+=+-+-= 所以值域为(][)+∞?-∞-,3232, 例4.求函数4 212+++=x x x y 的值域。 解析:此题为一次除以二次的形式,则根据例3当01≠+x 时,我们可以先求出 y 1的值域为(][) +∞?-∞-,3232,,则此时??? ??????????-∈63,00,63y ,当01=+x 时,0=y ,综上进得到该函数的值域为?? ???? -∈63,63y 例5.求函数1 13222++++=x x x x y 的值域。 解析:此题可以转化成例4来求。 1 21)1(2123222222+++=+++++=++++=x x x x x x x x x x x x y (仍然是一次除以二次的情况) 1 22+++=x x x y 当0=x 时2=y 当0≠x 时[)??? ???∈+++=37,22,11112x x y 综上??????∈3 7,1y 说明:分式函数求值域的问题,除了一次除以一次可以口算之外,其余的几种情况基本上都可以转化成对号函数来求。以上几个题目都是我随手编的几个题,只是想给大家展示一下分式求值域通用的规律。后面我会再给大家补充几道涉及到分式求值域的高考题以及高考模拟题。

分式函数求值域

分式型函数求值域的方法探讨 在教学中,笔者常常遇到一类函数求值域问题,此类函数是以分式函数形式出现,有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次,现在对这类问题进行探讨。 一、形如d cx b ax x f ++= )((0,≠≠b o a )(一次式比一次式)在定义域内求值域。 例1:求2 312)(++=x x x f ()32-≠x 的值域。 解:23134)32(3)32(2)(+--++=x x x x f =233132+-x 32233132,02331≠+-∴≠+-x x ∴其值域为}? ??≠32/y y 一般性结论,d cx b ax x f ++=)((0,≠≠b o a )如果定义域为{/x c d x -≠},则值域 }? ??≠c a y y / 例2:求2 312)(++=x x x f ,()2,1∈x 的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:2312)(++=x x x f =233132+-x ,是由x y 31 -=向左平移32,向上平移32得出,通过图像观察,其值域为?? ? ??85,53 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

二、形如求x a x x f + =)(()0≠a 的值域。 分析:此类函数中,当0a 时, 对函数求导,,1)(2'x a x f -=0)('>x f 时,),(a x -∞∈?+∞,a ),0)(',则则函数241t t y t -+=的最小值为_______. 解:41142-+=+-=t t t t t y ,∴>o t 由基本不等式地2-≥y

一次分式函数最值问题

一次分式函数最值问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

高一数学函数解析式的七种求法

高一数学函数解析式的七种求 法(总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b ax x f +=)( )0(≠a ,则 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+x x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 把???-='--='y y x x 64代入得: 整理得672---=x x y

高中数学求值域的10种方法

求函数值域的十种方法 一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。 例1.求函数1y = 的值域。 【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。 【练习】 1.求下列函数的值域: ①32(11)y x x =+-≤≤; ②x x f -+=42)(; ③1 += x x y ; ○ 4()112 --=x y ,{}2,1,0,1-∈x 。 【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞U ;○4{1,0,3}-。 二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。形如 2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 例2.求函数242y x x =-++([1,1]x ∈-)的值域。 【解析】2242(2)6y x x x =-++=--+。 ∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。 ∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。 例3.求函数][)4,0(422∈+--=x x x y 的值域。 【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设: )0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得 ][4,0)(∈x f ,从而得出:]0,2y ?∈?。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为: 0)(≥x f 。 例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

函数值域求法十一种

函数值域求法十一种 尚化春 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0 x 1 ≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤- ≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得:4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数2 2 x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:23y 2 1 ≤ ≤ (2)当y=1时,0x =,而? ?? ???∈23,211

分式函数值域的求法

分 式函数22221121c x b x a c x b x a y ++++=的值域 函数值域是函数三要素之一,求函数值域无定法,且方法灵活,是中学数学的一个难点。今天我们主要讨论分式函数2 2221121c x b x a c x b x a y ++++=的值域求法。 一、若21a a ,同时为零,则函数2 2221121c x b x a c x b x a y ++++=就变为形如2211c x b c x b y ++=(22b b ,不同时为零)的函数,可以用分离常数法或求反函数法来求函数的值域。 例1 求函数3 12+-=x x y 的值域 解法1:(分离常数法) 利用恒等变形可化为:37237)3(2+-=+-+= x x x y 所以,该函数的值域为)2()2(∞+-∞∈,, y : 解法2:(求反函数法) 函数 312+-=x x y 的反函数为132 x y x -=- 所以 原函数值域为{}2≠∈y y y (即反函数定义域为原函数值域)。 二、若21a a ,不同时为零,但分子与分母有公因式子,可先约分再求值域。如果不约分,直接采用下面三的方法,将加大运算量(如例6)。 例2 求函数2 312+--=x x x y 的值域 解:可先将函数变为)2)(1(1)(---= =x x x x f y 。 约分后函数变为2 1)(-= x x g 。 所以 0)(≠x g 约分后函数)(x g 的定义域扩大了(严格来说()g x 与原函数)(x f 不是同一个函数,但在不引起混淆的情况下也可直接约分),)(x g 在1处所对应的函数值1-,也是)(x f 不能取到的值,所以函数2 312+--=x x x y 的值域是)(0,0)1(1),(∞+∞- ,--。 例3求函数2 652-+-=x x x y 的值域

求分式函数值域的几种方法-精品

求分式函数值域的几种方法-精品 2020-12-12 【关键字】情况、方法、条件、领域、问题、难点、良好、沟通、发现、掌握、研究、特点、关键、理想、思想、需要、途径、重点、反映、检验、化解、分析、树立、解决、方向 摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问 题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等. 关键词:分式函数 值域 方法. 1 引言 求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析. 2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域 如果分式函数变形后可以转化为2 122 a y b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域. 例1 求2 1 231 y x x =-+的值域. 解:2 131248y x = ? ?-- ?? ?, 因为2 31248x ? ?-- ?? ?≥18-, 所以函数的值域为:(],8-∞-∪()0,+∞.

例2 求函数221 x x y x x -=-+的值域. 解:2 1 11 y x x -= +-+, 因为2 2112x x x ? ?-+=- ?? ?34+≥34, 所以34- ≤21 01 x x -<-+, 故函数的值域为1,13?? -???? . 先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件. 2.2 利用判别式法求分式函数的值域 我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ?=-≥0常常利用这一结论来求分式函数的值域. 例1 求2234 34 x x y x x -+=++的值域. 解:将函数变形为()()()2133440y x y x y -+++-=①, 当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以?≥0, 即()()()334144y y y +---7507y y =-+-≥0, 解得, 17 ≤ y ≤1或1y <≤7, 又当1y =时,0x =, 故函数的值域为1,77?? ???? . 例2 函数22 21 x bx c y x ++=+的值域为[]1,3,求b ,c 的值. 解:化为()20y x bx y c --+-=, ⑴当2y ≠时()()42x R b y y c ∈??=---≥0, ?()224428y c y c b -++-≥0,

次分式函数值域的求法

次分式函数值域的求法 Last updated on the afternoon of January 3, 2021

二次分式函数值域的求法 甘肃王新宏 一定义域为R 的二次分式函数用“判别式”法 解题步骤:1把函数转化为关于x 的二次方程 2 方程有实根,△≥0 3 求的函数值域 例1:求y=2 2222+++-x x x x 的值域 解:∵x 2+x+2>0恒成立 由y=2 2222+++-x x x x 得, (y-2)x 2+(y+1)x+y-2=0 ①当y-2=0时,即y=2时,方程为x=0∈R ②当y-2≠0时,即y ≠2时, ∵x ∈R ∴方程(y-2)x 2+(y+1)x+y-2=0有实根 ∴△=(y+1)2-(y-2)×(y-2)≥0 ∴3y 2-18y+15≤0 ∴1≤y ≤5 ∴函数值域为[]5,1 练习1:求y=432+x x 的值域 ?? ????-43,43 二分母最高次幂为一次的二次分式函数值域常转化为“√”函数或用“均值不等式”来做。 先来学习“√”函数。

形如y=x+x k (x>0,k>0)的函数,叫“√”函数 图像 单调性:在x ∈[]k ,0时,单调递减。在x ∈[]+∞,k 时,单调递减。 值域:[]+∞,2k 解题步骤:①令分母为t,求出t 的范围 ②把原函数化为关于t 的函数 ③利用“√”函数的单调性或均值不等式来求值域 例2求y=12122-+-x x x (321 ≤

相关文档
相关文档 最新文档