文档库 最新最全的文档下载
当前位置:文档库 › 伯努利方程的应用

伯努利方程的应用

伯努利方程的应用
伯努利方程的应用

伯努利方程的应用

学号:PB05000606 姓名:赵志飞

在我们学习流体力学是我们提到一个非常重要的方程,他就是伯努利方程。伯努利方程在许多方面有着非常广泛的应用,现在我们就其中的某些方面做一些粗浅的介绍。 伯努利方程

常量=++p gz v ρρ221 左式称为伯努利方程,由瑞士科学家伯努利(D.Bernoulli,1700-1782)于1738年首先导出。它实际上是流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差所做的功。必须指出,伯努利方程右边的常量,对于不同的流管,其值不一定相同。

相关应用

(1) 等高流管中流速与压强的关系

根据伯努利方程在水平流管中有

常量=+p v 22

1ρ 故流速v 大的地方压强p 小,反之,流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,管粗处流速小,所以管细处压强小,管粗处压强大。从动力学角度分析,当流体沿水平管道运动时,其质元从管粗处流向管细处将加速,使质元加速的作用力来源于压强差。水流抽气机和喷雾器就是基于这一原理制

成的。下面是一些实例:

水翼艇

水翼艇是一种在艇体装有水翼的高速舰艇.在通常情况下水翼艇能以93千米/小时的速度持续航行,最高航速可达110千米/小时.水翼艇之所以速度么快,关键是能在水上飞行.它的飞行,全靠它那副特有的水翼.

水翼的上下表面水流速不同,这就在水翼的表面造成了上下的压强差,于是在水翼上就产生了一个向上的举力.当水翼艇开足马力到达一定的速度时,水翼产生的举力开始大于艇体的重力,把艇体托出水面,使艇体与水面保持一定的距离,减小了舰艇在水中的航行阻力.

水流抽气机

典型的水流抽气机的外观.

它的上端较粗的口径处和水龙头的出水口相接.其直下方的开口则为水流出口.在它的侧方的连通管则连接到欲抽气的容器上.当使用时,则为如下图的情形.

水流抽气机和水龙头以橡皮管连接,相接处皆以管束栓紧.(下图是管束图片)

右侧的连通管亦以管束栓紧橡皮管后再连接到吸滤瓶上.当水管中的水向下流出进入水流抽气机时,因水流抽气机的内部有导流的构造,可使水流经由一较小的通道冲下,造成水流加速的效应.当水的流速加快时,在其近旁的空气分子的运动速率也会加快;由伯努利原理可知:在其侧管内靠近水流的气体压力应较其外侧的气体压力低.因此使得侧管的气体不断地向水流处移动,而产生了抽取其它容器中气体的功能.

例:在稳定的流体系统中,谁连续从粗管流入细管。粗管内径10cm,细管内径5cm,当流量为0.004m3/s,求粗管和细管内流速

(2) 汾丘里流量计

如图1所示为汾

丘里流量计原理图。流体

在水平的流管中做稳定

流动时,流管中心的那一

条流线在过截面S 1点的

压强11gH p ρ=,过截面S 2点的压强22gH p ρ=;

取通过那一条流线的水平面为高度参考面,则h 1=0,h 2=0。从伯努力方程中可得

2221212

121gH V gH v ρρρρ+=+ 2221212121gH V gH v +=+

设在t 时间内通过流管的流体体积为V ,测流量t V Q =,而

11S Q v =,2

2S Q

v =

例: 如附图所示,用虹吸管从高位槽向反应器加料,高位槽与反应器均与大气相通,且高位槽中液面恒定。现要求料液以1m/s 的流速在管内流动,设料液在管内流动时的能量损失为20J/kg (不包括出口),试确定高位槽中的液面应比虹吸管的出口高出的距离。

题13 附图

以上只是一部分应用,无力世界中的每一部分都有着这样那样的应用,数不胜数。

这就是“千奇百怪”的物理世界。

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 xx方程 p+ρρv 2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据xx方程在水平流管中有 ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 4.球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

伯努利方程应用测试题

1.有外加能量时以单位体积流体为基准的实际流体柏努利方程为,各项单位。 2.气体的粘度随温度升高而,水的粘度随温度升高而。 3.流体流动的连续性方程是;适用于圆形直管的不可压缩流体流动的连续性方程为。 4.当地大气压为745mmHg测得一容器内的绝对压强为350mmHg,则真空度为。测得另一容器内的表压强为1360 mmHg,则其绝对压强为。 5.20℃的空气在直径为800mm的水平管流过,现于管路中接一文丘里管,如本题附图所示,文丘里管的上游接一水银U管压差计,在直径为20mm的喉径处接一细管,其下部插入水槽中。空气流入文丘里管的能量损失可忽略不计,当U管压差计读数R=25mm,h=0.5m时,试求此时空气的流量为多少m3/h? 当地大气压强为101.33×103Pa。

6.如图所示,用泵将河水打入洗涤塔中,喷淋下来后流入下水道,已知道管道内径均为0.1m,流量为84.82m3/h,水在塔前管路中流动的总摩擦损失(从管子口至喷头进入管子的阻力忽略不计)为10J/kg,喷头处的压强较塔内压强高0.02MPa,水从塔中流到下水道的阻 力损失可忽略不计,泵的效率为65%,求泵所需的功率。

7.如图,一管路由两部分组成,一部分管内径为40mm,另一部分管内径为80mm,流体为水。在管路中的流量为13.57m3/h,两部分管上均有一测压点,测压管之间连一个倒U型管压差计,其间充以一定量的空气。若两测压点所在截面间的摩擦损失为260mm水柱。求 倒U型管压差计中水柱的高度R为多少为mm?

8、在φ45×3mm的管路上装一文丘里管,文丘里管上游接一压强表,其读数为137.5kPa,管内水的流速u1=1.3m/s,文丘里管的喉径为10mm,文丘里管喉部一内径为15mm的玻璃管,玻璃管下端插入水池中,池内水面到管中心线的垂直距离为3m,若将水视为理想流体, 试判断池中水能否被吸入管中?若能吸入,再求每小时吸入的水量为多少m3/h?

伯努利方程实验 答案

伯努利方程实验 一、实验目的 1、观察流体流经伯努利方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对伯努利方程的理解; 2、掌握一种测量流体流速的原理; 3、验证静压原理。 二、实验仪器 装置如图1所示 图1 伯努利方程仪 1.水箱及潜水泵 2.上水管 3.溢流管 4.整流栅 5.溢流板 6.定压水箱 7.实验细管 8. 实验粗管 9.测压管10. 调节阀11.接水箱12.量杯13.回水管14.实验桌 三、实验步骤 1、关闭调节阀,打开进水阀门,启动水泵,待定压水箱接近放满时,适度打开调节阀,排净管路和测压管中的空气; 2、关闭调节阀,调节进水阀门,使定压水箱溢流板有一定溢流; 3、测出位置水头,并记录位置水头和试验管测试截面的内径; 4、打开调节阀至一定开度,待液流稳定,且检查定压水箱的水位恒定后,测读伯努利方程试验管四个截面上测压管的液柱高度; 5、改变调节阀的开度,在新工况下重复步骤4; 6、关闭调节阀,测读伯努利方程试验管上各个测压管的液柱高度,记下数据。可以观察到各测压管中的水面与定压水箱的水面相平,以此验证静压原理; 7、实验结束,关闭水泵。 四、数据处理 实验数据填入表1

1、计算出伯努利方程试验管各测试截面的相应能量损失水头和压强水头,填写在表中。 速度水头: 2 2g V =总水头-测压管水头 压强水头:P γ =测压管水头-位置水头 能量损失水头: w h=静水头-总水头 图2 伯努利方程试验管水头线图 五、思考题 1、为什么能量损失是沿着流动的方向增大的? 2、为什么在实验过程中要保持定压水箱中有溢流? 3、测压管工作前为什么要排尽管路中的空气?其测量的是绝对压力还是表压力? 1、沿着流动方向,阻力损失有沿程阻力损失和局部阻力损失,故沿着流动方向能量损失是增大的。 2、当流体高度差为溢流板高度时,水会流到水箱中,溢流板作用是保持水箱中水位恒定,从而保持压力恒定,压力恒定,则流体流进伯努利试验管时未稳定流动。 3如果不排尽气泡会臧成读取压力值不准确,测得压力为表压力。

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程发展和原理应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z1++=z2+++h w

总流伯努利方程的物理意义和几何意义: Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; ----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:

化工原理伯努利方程练习题

第一章 流体流动 【例1-1】 已知硫酸与水的密度分别为1830kg/m 3与998kg/m 3,试求含硫酸为60%(质量)的硫酸水溶液的密度为若干。 解:根据式1-4 9984.018306.01+= m ρ =(3.28+4.01)10-4=7.29×10-4 ρm =1372kg/m 3 【例1-2】 已知干空气的组成为:O 221%、N 278%和Ar1%(均为体积%),试求干空气在压力为9.81×104Pa 及温度为100℃时的密度。 解:首先将摄氏度换算成开尔文 100℃=273+100=373K 再求干空气的平均摩尔质量 M m =32×0.21+28×0.78+39.9×0.01 =28.96kg/m 3 根据式1-3a 气体的平均密度为: 3k g /m 916.0373314.896.281081.9=???=m ρ 【例1-3 】 本题附图所示的开口容器内盛有油和水。油层高度h 1=0.7m 、密度ρ1=800kg/m 3,水层高度h 2=0.6m 、密度ρ2=1000kg/m 3。 (1)判断下列两关系是否成立,即 p A =p'A p B =p'B (2)计算水在玻璃管内的高度h 。 解:(1)判断题给两关系式是否成立 p A =p'A 的关系成立。因A 与A '两点在静止的连通着的同一流体内,并在同一水平面上。所以截面A-A'称为等压面。 p B =p'B 的关系不能成立。因B 及B '两点虽在静止流体的同一水平面上,但不是连通着的同一种流体,即截面B-B '不是等压面。 (2)计算玻璃管内水的高度h 由上面讨论知,p A =p'A ,而p A =p'A 都可以用流体静力学基本方程式计算,即 p A =p a +ρ1gh 1+ρ2gh 2 p A '=p a +ρ2gh 于是 p a +ρ1gh 1+ρ2gh 2=p a +ρ2gh 简化上式并将已知值代入,得 800×0.7+1000×0.6=1000h 解得 h =1.16m 【例1-4】 如本题附图所示,在异径水平管段两截面(1-1'、2-2’)连一倒置U 管压差计,

浅谈伯努利方程的几种解法及应用

本科毕业论文 题目:浅谈伯努利方程的几种解法与应用 学院:数学与计算机科学学院 班级:数学与应用数学2011级专升本班 姓名:张丽传 指导教师:王通职称:副教授 完成日期: 2013 年 5 月25 日

浅谈伯努利方程的几种解法与应用 摘要: 本文在研究已经公认的多种伯努利方程解法的前提下,把这些方法进行整合.首先,将各种解法进行分析归类,并总结出几种常见的求解伯努利方程的方法;其次,比较各种解法的优缺点;再次,利用一题多解来巩固文中所介绍的各种解法;最后,略谈伯努利方程在求解里卡蒂方程中的重要应用. 关键词: 伯努利方程;变量代换法;常数变易法;积分因子法

目 录 引言 ....................................................................................................................................... 1 1 伯努利方程的解法 ........................................................................................................... 1 1.1 代换法 ....................................................................................................................... 1 1.1.1 变量代换法、常数变易法的混合运用 ........................................................... 1 1.1.2 函数代换法 ....................................................................................................... 2 1.1.3 求导法 ............................................................................................................... 3 1.1.4 恰当导数法 ....................................................................................................... 3 1.2 直接常数变易法 . (4) 1.2.1 对0)(=+y x P dx dy 的通解中c 的常数进行常数变易 .................................... 4 1.2.2 对n y x Q dx dy )(=通解中的常数c 进行常数变易 ............................................ 4 1.3 积分因子法 ............................................................................................................... 5 1.4 各种方法的比较 ....................................................................................................... 6 1.5 解法举例 ................................................................................................................... 6 2 伯努利方程在里卡蒂方程中的应用 ............................................................................. 10 3 总结 ................................................................................................................................. 11 参考文献 .. (12)

伯努利方程的应用

伯努利方程的应用 学号:PB05000606 姓名:赵志飞 在我们学习流体力学是我们提到一个非常重要的方程,他就是伯努利方程。伯努利方程在许多方面有着非常广泛的应用,现在我们就其中的某些方面做一些粗浅的介绍。 伯努利方程 常量=++p gz v ρρ221 左式称为伯努利方程,由瑞士科学家伯努利(D.Bernoulli,1700-1782)于1738年首先导出。它实际上是流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差所做的功。必须指出,伯努利方程右边的常量,对于不同的流管,其值不一定相同。 相关应用 (1) 等高流管中流速与压强的关系 根据伯努利方程在水平流管中有 常量=+p v 22 1ρ 故流速v 大的地方压强p 小,反之,流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,管粗处流速小,所以管细处压强小,管粗处压强大。从动力学角度分析,当流体沿水平管道运动时,其质元从管粗处流向管细处将加速,使质元加速的作用力来源于压强差。水流抽气机和喷雾器就是基于这一原理制

成的。下面是一些实例: 水翼艇 水翼艇是一种在艇体装有水翼的高速舰艇.在通常情况下水翼艇能以93千米/小时的速度持续航行,最高航速可达110千米/小时.水翼艇之所以速度么快,关键是能在水上飞行.它的飞行,全靠它那副特有的水翼. 水翼的上下表面水流速不同,这就在水翼的表面造成了上下的压强差,于是在水翼上就产生了一个向上的举力.当水翼艇开足马力到达一定的速度时,水翼产生的举力开始大于艇体的重力,把艇体托出水面,使艇体与水面保持一定的距离,减小了舰艇在水中的航行阻力. 水流抽气机 典型的水流抽气机的外观.

伯努利方程原理以及在实际生活中的运用

伯努利方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 伯努利方程 p+ρgh+(1/2)*ρv2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据伯努利方程在水平流管中有 p+(1/2)*ρv2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

伯努利原理的应用

应用举例⒈ 飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 应用举例⒉ 喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。 应用举例⒊ 汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 应用举例⒋ 球类比赛中的"旋转球"具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。 应用举例⒌ 表示乒乓球的上旋球,转动轴垂直于球飞行的方向且与台面平行,球向逆时针方向旋转。在相同的条件下,上旋球比不转球的飞行弧度要低下旋球正好相反,球要向反方向旋转,受到向上的力,比不转球的飞行弧度要高。 应用举例6. 环保空调就是这个原理,一面进风,一面进水,来保持室内的温度的,环保空调又叫“水帘空调”. 应用举例7. 列车候车为啥要设定等候限距线? 列车进站的时候速度很快,车厢附近的空气被带着也会快起来,越靠近车厢的空气流速越快,越远的地方空气流速越慢。还是根据伯努利原理,靠近车厢的地方压力小,远离车厢的地方压力大,二者之间有压力差,因此,在站台上候车,如果你靠轨道太近,就会感觉后面好像有人推你往前,很可能造成事故,其实是因

伯努利原理及其应用

通俗讲解伯努利原理及其应用 当年的流体力学是那么的难学,如果有人这么给我们解释,我相信,我肯定能通过考试的。现在想起来,都是满满的回忆呀。本文从实例篇、理论篇、应用篇三个方面展开,肯定让您不虚此行。 天才/学霸/大神——伯努利 伯努利 (Daniel Bernouli,1700~1782) 伯努利,瑞士物理学家、数学家、医学家。他是伯努利这个数学家族(4代10人)中最杰出的代表,16岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位,17~20岁又学习医学,于1721年获医学硕士学位,成为外科名医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。伯努利成功的领域很广,除流体动力学这一主要领域外,还有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。 实例篇——伯努利原理 丹尼尔·伯努利在1726年首先提出:“在水流或气流里,如果速度小,压强就大;如果速度大,压强就小”。我们称之为“伯努利原理”。 我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向外飘去,反而会被一种力挤压在了一起。因为两张纸中间的空气被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有流动,压力就大,所以外面力量大的空气就把两张纸“压”在了一起。这就是“伯努利原理”原理的简单示范。

列车(地铁)站台的安全线 在列车(地铁)站台上都划有黄色安全线。这是因为列车高速驶来时,靠近列车车厢的空气被带动而快速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身体前后会出现明显的压强差,身体后面较大的压力将把旅客推向列车而受到伤害。 所以,在火车(或者是大货车、大巴士)飞速而来时,你绝对不可以站在离路轨(道路)很近的地方,因为疾驶而过的火车(汽车)对站在它旁边的人有一股很大的吸引力。有人测定过,在火车以每小时50公里的速度前进时,竟有8公斤左右的力从身后把人推向火车。 看懂“伯努利”原理后,等地铁再也不敢跨过那条黄线了吧(分享给身边的人哦~~) 2

常微分方程期末考试练习题及答案.

常微分方程期末考试练习题及答案.

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

流体力学【依据伯努利方程的应用】

工程流体力学 综合报告 学院:机械工程学院专业:机械工程 班级: 学号: 学生姓名: 任课老师: 提交日期:2017年12月27 日

关于伯努利方程的应用 摘要 “伯努利原理“是著名的瑞士科学家丹尼尔·伯努利在1726年提出的。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程公式及原理应用流体力学 1 伯努利方程 伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。 需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体 1.1 流线上的伯努利方程 流线上的伯努利方程:

适于理想流体(不存在摩擦阻力)。式中各项分别表示单位流体的动能、位能、静压能之差。如果流动速度为0,则由伯努利方程可得平衡流体的流体静力学基本公式(C g p z =+ρ )。 1.2 总流的伯努利方程 总流是无数元流的总和,将元流伯努利方程沿总流过流断面积分,即可推导出总流的伯努利方程,也即总流能量方程。 动能修正系数α为实际动能与按平均速度计算的动能的比值,α值反映了断面速度分布的不均匀程度。由于气体的动力黏度值较小,过流断面速度梯度小,实际的气流运动的速度分布比较均匀,接近于断面平均流速。所以,气体运动中的动能修正系数常常取1.0。管中水流多数也属于这种情况,此时总流与流线上的伯努利方程形式上无区别。 g V g p z g V g p z 222222221111αραρ++=++g V g p z g V g p z C g v g p z 222222221112++=++=++ρρρ

流体力学题库及答案期末考试题..

1、作用在流体的质量力包括(D ) A压力B摩擦力C表面张力D惯性力 2、层流与紊流的本质区别是:( D ) A. 紊流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<紊流的雷诺数; D. 层流无径向脉动,而紊流有径向脉动 3、已知水流的沿程水力摩擦系数 只与边界粗糙度有关,可判断该水流属于( D ) A 层流区; B 紊流光滑区; C 紊流过渡粗糙区; D 紊流粗糙区。 4、一个工程大气压等于( B )Pa; ( C )Kgf.cm-2。 A 1.013×105B9.8×104 C 1 D 1.5 5、长管的总水头线与测压管水头线( A ) A相重合;B相平行,呈直线; C相平行,呈阶梯状;D以上答案都不对。 6、绝对压强p abs、相对压强p 、真空值p v、当地大气压强p a之间的关系是( C ) A p abs=p+p v B p=p abs+p a C p v=p a-p abs D p=p abs-p V 7、将管路上的阀门关小时,其阻力系数( C ) A. 变小 B. 变大 C. 不变 8、如果忽略流体的重力效应,则不需要考虑哪一个相似性参数? ( B ) A弗劳德数B雷诺数 C.欧拉数D马赫数 9、水泵的扬程是指( C ) A 水泵提水高度; B 水泵提水高度+吸水管的水头损失; C 水泵提水高度+ 吸水管与压水管的水头损失。 10、紊流粗糙区的水头损失与流速成( B ) A 一次方关系; B 二次方关系; C 1.75~2.0次方关系。 11、雷诺数是判别下列哪种流态的重要的无量纲数( C ) A 急流和缓流; B 均匀流和非均匀流; C 层流和紊流; D 恒定流和非恒定流。 12、离心泵的性能曲线中的H-Q线是在( B )情况下测定的。 A. 效率一定; B. 功率一定; C. 转速一定; D. 管路(l+∑le)一定。 13.离心泵并联操作的目的是( C ). A. 增大位能 B. 增大扬程 C. 增大流量 14.离心泵最常用的调节方法是( B ) A. 改变吸入管路中阀门开度 B. 改变压出管路中阀门的开度 C. 安置回流支路,改变循环量的大小 D. 车削离心泵的叶轮 15并联管路问题中,有( C ) A.流经每一管路的水头损失相加得总水头损失 B.流经所有管路的流量相同 C.并联的任一管路的水头损失相同 D.当总流量已知时,可直接解得各管的流量 16作用水头相同时,孔口的过流量要比相同直径的管咀过流量( B ) (A)大; (B)小;(C)相同;(D)无法确定。 17根据静水压强的特性,静止液体中同一点各方向的压强( A ) (A) 数值相等; (B) 数值不等

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程 发展和原理 应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z 1+g p ρ1+g v 2121α=z 2+g p ρ2+g v 2222α+h w 总 流 伯 努 利 方 程 的 物 理 意 义 和 几 何 意 义 :

Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; g p ρ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; g 2v 2 α----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。 (6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。 (7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子: ※文丘里管:文丘里管一般用来测量流体通过管道时的流量。新一代差压式流量测量仪表,其基本测量原理是以能量守恒定律——伯努力方程和流动连续性方程为基础的流量测量方法。内文丘里管由一圆形测量管和置入测量管内并与测量管同轴的特型芯体所构成。特型芯体的径向外表面具有与经典文丘里管内表面相似的几何廓形,并与测量管内表面之间构成一个异径环形过流缝隙。流体流经内文丘里管的节流过程同流体流经经典文丘里管、环形孔板的节流过程基本相似。内文丘里管的这种结构特点,使之在使用过程中不存在类似孔板节流件的锐缘磨蚀与积污问题,并能对节流前管内流体速度分布梯度及可能存在的各种非轴对

伯努力方程练习题

伯努力方程(Bernoulli’s Equation)是流体力学中描述理想流体(ideal fluid)能量守恒的方程式。理想流体满足以下4个条件:1. 流体是非粘性的(nonviscous),在相邻流层之间无内摩擦力;2. 流体不可压缩(incompressible),因此密度恒定; 3. 流体运动是稳态的(steady),即流体中每一点的运动速度、密度和压力不随时间改变; 4. 流体运动不存在湍流(turbulence),意味着每个流体单元相对于中心的角速度为零,因此在该运动的流体中无任何涡流(eddy current)。 由于质量守恒及液体的流动处于稳态,因此有连续性方程(Equation of Continuity): 根据能量守恒,可推导出理想流体的伯努力方程: 通常表示为: 伯努力方程中的每一项都是压力单位,在SI单位制中是Pa或N/m2。由于1J=1N·m,所以1Pa=1J/m3。每一项的物理意义是单位体积的能或做功,压力表 ρv2为单位体积具有的动能,ρgy为单示单位体积的流体对前方流体所做的功。1 2 位体积具有的重力势能。 伯努力方程有两个特殊情况:1. 水平流动的液体y1=y2;2. 静止的液体v1=v2=0,则得到流体静力学方程:

伯努力方程将理想流体不同两点的流速、压力和高度联系了起来,在应用该方程计算过程中先要分别写出每点各自的3个参数。需要考虑几个要点: 1.是否是以上2个特例; 2.如果不是特例1,选择参考水平面,一般选择2个中较低的点作为参考 比较简单; 3.如果给出两处流体截面的半径或面积,则可根据连续性方程确定它们的 流速关系; 4.如果一个截面面积远远大于另一个截面(比如水桶里的水面和水桶下方 的小孔),则截面大的流速v≈0; 5.和大气相通则压力等于大气压(或表压为零)。 [例题一] 一个装满水的桶在水面以下0.80m处有一个开孔。(a)当出口是水平开放的,水流出的速度是多少?(b)如果开口末端是竖直向上的,则形成的“喷泉”能达到多高? 解:(a) 由于P1=P2,则伯努力方程为 点1比点2高0.80m,即 根据连续性方程 A1》A2,v1相对于v2可忽略不计,故v1≈0。伯努力方程简化为 各项同除以ρ,解出v2:

伯努利方程的应用

,伯努利方程及其应用 伯努利,1738,瑞士。动能与压强势能相互转换。 沿流线的伯努利方程 将牛顿第二定律应用于控制体内的流体元,沿流线切线方向 ()dt t a dv s A A s s p p A p s A g ,cos δρδδδδθδδρ=??? ? ? ??+-+- 整理后 ()dt t a dv s p g ,1cos =??--ρθ 因为 s z ??= θcos

将流体元的加速度转换成欧拉形式的加速度,沿流线的质点导数为 ()s v v t v Dt t s Dv dt t a dv ??+??==),(, 则导出 s v v t v s p s z g ??+??=??-??-ρ1 此式为一维欧拉方程,使用下述关系将方程沿流线积分。两边乘以ds dv s v dp ds s p dz ds s z =??=??=??,, 得: 1 =+++??dp gdz vdv ds t v ρ 沿流线积分 ??=+++??常数ρ dp gz ds t v v 22 此式为欧拉方程的积分式,适合于可压、无粘不定常运动。 对于不可压定常流动,则可简化为 常数 =+ +ρ p gz v 2 2 此式为伯努利方程,三项分别表示单位质量流体具有

的动能、位置势能和压强势能。即总机械能守恒。 应用伯努利方程时常采用沿流线上任两点的总机械能值相等的形式。 ρ ρ 2 222 1 12 1 2 2 p gz p gz v v + += + + 伯努利方程使用的限制条件(1)无粘性流体,(2)不可压流体(3)定常流(4)沿流线。 加入能量损失就可适应粘性流体。 皮托(pitot )测速管:总压强与动压强 皮托测速管又称为皮托-静压管,简称皮托管,为纪念法国人皮托命名。皮托测速管由粗细两根同轴的圆管组成,细管(直径约为1.5 mm )前端开孔(O 点),粗管(直径约为6mm )在距前端适当长距离处的侧壁上开数个小孔(B 点),在孔后足够长距离处两管弯0 90 成柄状.测速时管轴线沿来流方向放置.设正前方的流速保持为v ,静压强为p ,流体密度为ρ。粗细两管中的压强被引入U形测压计中,U形管中液体密度 m ρ。试求用U形管液位差h ? 表示流速v 的关系式。

相关文档