文档库 最新最全的文档下载
当前位置:文档库 › 点火波形分析(图).

点火波形分析(图).

点火波形分析(图).
点火波形分析(图).

点火波形分析(图)

作者:译/朱之亚王鸣鸿日期:2005-12-1 来源:本网

字符大小:【大】【中】【小】

● 文/Bernie C. Thompson

最初的内燃机结构很简单,但为了增加动力和提高效率,人们已对其进行了许多次的改进,结构也就越来越复杂了。当今的内燃机主要有两种,一种是压燃式(柴油机),另一种是点燃式(汽油机)。在此,我们要探究的是汽油机。

要懂得在汽油机中能量是怎样释放出来的,这一点很重要。对于内燃机来说,空气和燃油的混合气被吸入汽缸并在缸内被压缩。当混合气被压缩时,其分子被迫进入一个很小的空间。这就使得分子之间相互碰撞,从而产生了摩擦力和热。燃油分子的分子链是由不同的原子组成的,将这些不同的原子结合在一起就需要能量。为了释放燃油的能量,燃油分子就必须分裂并重新组成一种不同结构的低能量分子。燃油分子一旦分裂,将不同原子结合在一起的能量就不再需要了。这种被释放的能量就为内燃机提供了动力。

对于汽油机来说,单凭压缩还不能提供足够的能量使燃油分子分裂。传入燃油分子的热能使其变得不稳定,但为了分开链接燃油分子的原子还需施加更大的力。要将两个扭打在一起的

人分开是件很不容易的事。要把他们拉开,你所用的力要大于他们扭在一起的力。采用电击枪可以使两个扭打在一起的人分开,因为电击枪放电时电压可达100kV。电击枪的势能大于两个扭打在一起的人所用的能量,因此,那两人就会松手而分开。尽管汽缸压缩产生了热能,但要将燃油的分子分裂并释放能量还需要更大的力。点火系统所产生的高能电火花可以提供这个力。

点燃混合气需要高能量的电火花,为此人们采用了多种不同的点火系统。升压变压器是当今较常用的一种点火系统。这种变压器采用低电压、大电流的电极来产生高电压、小电流的电极。它是由两个不同的线圈组成的。第一个线圈叫初级线圈,第二个线圈叫次级线圈(见图1)。为了增加磁场,初级线圈绕在一个铁芯上。在新式的变压器上这个铁芯是由许多片叠加在一起的黑色金属(通常为软铁)片组成的。相对于整块的铁芯,它的磁增强能力更好。

初级绕组的线较粗、匝数少,这就使得它的电阻值很低。次级绕组的线较细、匝数多,从而电阻值较高。车用点火线圈的匝数比通常约为1:100,也就是说,初级线圈绕1匝,次级线圈就绕100匝。初级线圈的电阻值通常在1~4Ω之间,次级线圈的电阻值通常在8000~16000Ω之间。

初级线圈和次级线圈之间相互绝缘,绝缘的介质为变压器油或环氧树脂。变压器油的耐压值是20~25kV,所以在新式的点火线圈中采用了真空封闭的环氧树脂,其耐压值可达50kV。初级线圈和次级线圈是电磁耦合的,所以,一个线圈受到影响,另一个也会受影响。

点火线圈采用电磁感应的方式来提供所需的点火能量。要了解点火线圈是如何工作的,我们就来看一下它所产生的波形。先从图2中A部分看起,这一部分是开路电压,因为此刻电路还没有闭合,初级线圈中没有电流流动。随后,当驱动电路闭合,电压便突然下降,初级线圈就对地构成了回路(图2中的B部分)。这个电压降会非常接近于零电位。

固有的电压降取决于驱动电路中控制电流用的是三极管还

是场效应管。如果是三极管,它的电压降就是0.7~1V,其原因是三极管的基极存在电阻。场效应管的基极电阻很小,所造成的电压降约为0.1~0.3V。固有的压降是电路中的保持电压,这个保持电压用来克服驱动电路或基极的电阻,从而使电流流动(图2中的C部分)。一旦驱动电路闭合,电流就流过初级线圈的绕阻。当电流流经绕组时,所有的电流都用来在绕组周围建立一个磁场(见图3)。这个磁场的建立叫做电感,它的强度是和电感系数以及电流成正比的。换句话说,就是电流越大,磁感应就越强。

当磁场建立时,磁力线切割初级线圈和次级线圈,使两个线圈产生感应电压,然而这个电压对两个线圈的影响是不同的。随着磁场的建立,磁力线切割次级线圈,次级线圈中就会产生感应电动势(emf)并释放电子。当驱动电路闭合时,可以从

次级电压波形中看到这个感应电动势。线路闭合的初始会产生电压振荡(见图4)。这是由于磁力线切割次级线圈并在次线圈不同的绕阻中产生感应电压。

线圈绕组中存在着电容。当两个导体被空间分割并且电流通过两个导体时就会产生电容。而且,这两个导体之间会产生电位差。导体的尺寸和导体之间的距离决定了电容量。

电能和磁能互相转换时会产生振荡波。线圈充电饱和后,这个振荡波将减弱成一条稳定的弧线,随后再成一直线。线圈充电的饱和点各不相同,主要取决于流过初级线圈的电流、电阻值和线圈的匝数。

磁场建立时,磁力线切割初级线圈,初级线圈中产生的感应电压就会释放电子。可是,由于初级线圈中有电流,这些被释放的电子会阻碍电流的流动。我在以前的文章中,曾以学校的过道挤满了学生为例说明了这个问题。这个例子同样也适用于点火线圈。想象一下,孩子们沿着教室楼的过道飞快地奔跑。然后,更多的孩子们从沿过道的教室里出来,进入过道。离开教室进入过道的孩子们如果不用力推挤在过道里奔跑的孩子们,过道里的孩子们就不会跑得更快。就像进入过道的孩子们一样,这个在初级线圈中产生的感应电压阻碍了初级线圈中电流的流动。这种阻碍,我们称之为反向电动势或反向电压。

每当线路中有电感现象时,电流的变化就会产生一个反向电动势,这个反向电动势会阻碍电流的流动。每当线路中有电阻时,就会产生电压降,电压降的大小与电阻值成正比。从初级波形略为上升的底线(图4中的D部分)就可以看出这个电压降。如果将示波器的电压量程降低,放大初级点火波形的底部,就可以清楚地看见这个压降(图5中上半部的D部分)。

电流流过线圈,遇有电阻便会产生电压降,用电流钳测量初级线圈的电流波形时也能反映出这一现象(见图5下半部)。点火线圈的初级电流一旦饱和(磁场不再运动),次级线圈的周围就充满磁场。点火线圈的电流饱和点取决于流经它的电流,电流越大磁力线的强度就越大,反之,电流越小磁力线的强度也就越小。

线圈充电饱和后,流经初级线圈的电流将受到限制(图2中E部分),但是磁场强度仍处在最大状态。注意,此时电流受到限制,但电压仍然低于开路电压(图2中F部分)。为了限制电流,线路中加了一个电阻,其作用是限制流经初级线圈的电流。如果初级电路中存在额外的电阻,电流限制的时间就会提前。如果线圈短路或阻值低于规定值,电流限制的时间就会滞后。所以,你如果知道电路设计的特点,从电流限制时间的变化就可以判断出故障。

随着发动机转速的提高,各汽缸间的点火间隔时间变短,线圈饱和充电的时间也就随之变短,因此电流限制就会停止(并不是所有的点火系统都有电流限制器)。充电饱和后,动力控制模块(PCM)切断点火系统的驱动电路,初级线圈的电流不再流过初级绕组,这样一来,磁场便穿越次级线圈并消失。当磁场穿越导线或绕组时,导线或绕组中就会产生感应电压。这种感应电压会产生电动势。电动势推动电子沿线路运动,直到

它们返回次级绕组。

电容器的作用是加快磁场消失的速度。直流电不可能通过这种元件接地,但交流电可以,交流电是可以通过电容器的。所以,初级线圈中的电流就可以通过电容器接地。

电容器是连在初级电路中的(见图6)。电流停止时,磁场在初级线圈中收缩使线圈中的电流稳定。初级线圈的电流通过电容器消失得越快,磁场也就消失得越快。快速运动的磁场能提高次级线圈中的感应电压,因而,受到高达50kV电压推动的电流就要寻找通道或出路。次级线圈和火花塞相连,电子运动到火花塞电极的开口处,然而次级线路是一个开路电路。当高压电试图推动电子穿越开路电路时,会首先在火花塞的两个电极之间建立电晕或者说低能量场(图7A)。

这种电晕一旦建立,电离就会开始。电离开始时,所需的电压很高。为了释放电子,电位差必须对原子施加足够的压力(图7B)。失去电子的原子就成了正离子(离子就是带正电或负电的原子,是原子失去或得到一个或多个电子的结果)。这就是击穿电压或者是推动电子克服电阻所需的电压。

在次级线圈中,电阻就是火花塞电极间的间隙(见图2的G 部分)。火花塞的电极间隙越大,电阻就越大,因而所需的击穿电压就越高。击穿电压的读数单位为千伏(kV),它是克服次级线路中全部的电阻所需的能量。电子开始穿越火花塞的两电极时,电离就完成了。

请注意:随着电子流动的开始所出现的振荡波,这个振荡是在击穿电压出现后开始的(图2中的H部分)。这个振荡或脉动是由线圈或绕组间的电容现象引起的。电能与磁能间的转换在变压器中很容易出现。击穿电压所产生的电弧速度非常快,大约为2 ns。这个高速的能量脉冲使得能量在电与磁之间互相

转换。电弧的能量脉冲越强,振荡波出现得就越多。

这些振荡波类似于小孩荡秋千。开始时小孩在秋千上处于静止状态。用力一推,秋千就荡了起来。用的力越大,秋千就荡得越高。随后秋千就会荡来荡去,直到能量消失后才能停下。点火线圈里的电、磁能量转换和磁、电能量转换与荡秋千十分相似。作为一种机械装置,秋千需要推力,以便使其运动,就像点火线圈的放电或“推动力”产生了能量脉冲一样。电子流动开始后,电压就稳定下来,振荡就会减弱成平稳的电压(图2中的I部分)。

电离现象一旦出现,自由电子和正离子就会在火花塞的电极间构成一个通道。这种情况是在电子流动的数量等于正离子流动的数量,并且在火花塞电极间“出现等离子体”时出现的(图7C)。等离子体的电阻大小与气体成份和气体压力有关。等离子体能降低电子流过火花塞电极间所需的电压。

电离转变成等离子体时的电压值是一项用来分析问题的重

要参数。由于击穿电压不稳定,每个点火循环时上下都有波动,所以观察出现等离子体时的电压值尤为重要。出现等离子体时的电压值比击穿电压稳定,因而能看出从击穿电压中看不出的电阻值。电离转变成等离子体时所受的唯一影响就是线路中的电阻值。

图9中的黄色波形线表明次级电路中有20kΩ的额外电阻。红色波形线代表相邻的一个汽缸,其等离子体出现时电压正常。黄色波形线的等离子体出现时的电压比正常值高出了

2.3kV,这就表明线路中有额外的电阻。

在图10中黄色波形线显示的是高压导线和火花塞之间有0.2in.(约5mm)的间隙。红色波形线代表相邻的一个汽缸,其等离子体出现时,电压值正常。在黄线中,等离子体出现时的电压值比正常值高出1.2kV,表明线路中有电阻。

在图11中,一个缸的喷油嘴插头被断开,燃油不进缸。注意,黄色和红色的波形线,它们在电离转变成等离子体时,其电压值没什么差别,这表明线路中的电阻正常。然而,在黄色波形线中,代表等离子体出现的一段波形表明电阻较高,这是

因为等离子体中缺少碳氢化合物。这就使得电压在燃烧时陡然高出10kV。

电子一旦在火花塞的电极之间开始流动就会持续下去,直到次级线圈的能量耗尽。当燃烧时间接近终了、点火线圈的能量将尽时,电压在电火花熄灭前会略有上升(图2中J部分)。这种现象是等离子体的消失所造成的。点火线圈所产生的电子数量减少,使得正离子和电子的数量不等,因而等离子体便消失。由于等离子体所构成的电流通道电阻较小,所以等离子体的消失会使电阻升高,这就使得在燃烧时间接近终了时电压有所升高。

使点火线圈次级绕组产生电能的电感作用是有限的。饱和充电的点火线圈就像盛满水的水桶一样,如果用水泵通过压力将桶里的水抽出并规定水管的直径,那么压力越大,水被抽光的时间就越短。水被抽光后,压力也随之消失。对于次级线圈来

说,推动电子穿越线路中电阻所需的电压或压力越高,电子耗尽的速度就越快。

电子流过火花塞电极间这一阶段叫做燃烧时间(图2中G、J部分)。推动电子在线路中流动所需的电压不同,燃烧时间也不同。电压越低,燃烧时间就越长。反之,电压越高,燃烧时间就越短。

我们用一根绳子来演示一下这一规律。假定绳子的长度是一定的,并将它用来表示击穿电压和燃烧时间的波形部分(见图12)。绳子用在垂直线的部分越长,用在水平线的部分就越短。反之,如果水平的部分变长,垂直的部分就会变短。假如绳子整体短,就像点火线圈的磁场不饱和一样,垂直和水平的部分也会受到影响,这是由于可提供的能量减少所造成的。

击穿电压和燃烧时间受汽缸内的压力以及气体成份的影响。通常进入汽缸里的空气(大约21%的氧气和79%的氮气)以及C4H8碳氢化合物(汽油)。空气和碳氢化合物的混合比例为14.7:1。汽缸里的混合气由原子组成,这些原子能够电离或者说使火花塞的电极间产生电火花。我们知道这些原子会电离,但如果条件变化,电离的性能也会变化。汽缸压力的大小将会改变混合气的密度,而混合气的密度会影响电离的性能。汽缸里的紊流也会改变点火波形的特性曲线。压力、紊流、气体成份、燃油或水蒸汽等都是变量。如果这些变量中的任何一项发生变化,则由电离所形成的等离子体也会发生变化。其结果是点火波形将受到影响。

如果电能不足以维持电子流过火花塞的电极之间,那么电火花就会熄灭(图2中的J部分),点火线圈里剩余的任何能量都将会被绕组吸收。被吸收的能量通过电能和磁能的转换而耗散。这就是点火终了时波形中为什么会出现振荡波的原因(图2中的K部分)。通过这个振荡波可以看出点火线圈放电时有多少能量被利用了或者有多少能量没有被利用。电压变化大、振荡的次数多表明了点火线圈中的剩余能量多,如果没有振荡波,就说明点火线圈的能量完全用尽了。

点火波形是一扇窗,透过这扇窗,技师们可以看见燃烧室所发生的情况。一旦学会了怎样看波形中代表击穿电压和燃烧时间的部分,你就会知道汽缸内所发生的情况。通过点火波形能够看出的问题有:稀空燃比、浓空燃比、早燃、配气相位和气门造成的紊流、排气背压造成的紊流、EGR阀、冷却液漏进汽缸形成水蒸气、火花塞电极烧蚀、积炭、线路中的电阻等。对汽车来说,点火波形所包含的信息比其他任何波形都要多。

汽车发动机点火系统原理及故障分析

河南职业技术学院 毕业设计(论文) 题目汽车发动机点火系统原理及故障分析 系(分院)汽车工程系 学生姓名彭超 学号07183160 专业名称汽车电子技术 指导教师王贤高 2010 年 3 月20 日

河南职业技术学院汽车工程系(分院)毕业设计(论文)任务书

毕业设计(论文)指导教师评阅意见表

汽车发动机点火系统原理及故障分析 彭超 摘要:点火系统在发动机上由于工作环境相对于其它系统很恶劣,所以其状态的好坏直接决定着发动机的性能。本文较为详细的介绍了各种点火系统的组成结构、工作原理和控制内容,并针对常见的点火系统故障作了简要分析。 关键词:点火系统点火正时故障分析 汽油发动机正常工作的三要素:良好的空气----燃油混合气,很高的压缩压力,正确的点火正时及强烈的火花,去点燃空气----燃油混合气,从而实现发动机工作。 一、发动机点火系统必备的条件及组成结构 (一)、点火系统必备的条件 1、强烈电火花 在点火系统中产生的强烈电火花应产生于火花塞电极之间,以便于点燃空气---燃油混合气。因为空气存在空气电阻,这个电阻随空气高度压缩时而增大,所以点火系统必须能产生几万伏的高电压以保证产生强烈火花去点燃空气----燃油混合气。 2、正确的点火正时 点火系统必须始终根据发动机的转速和载荷和变化提供正确的点火正时。 3、持久的耐用性 点火系统必须具备足够的可靠性以经得住发动机产生的振动和高温。 (二)、点火系统的组成:如图-1;直接点火系统组成:如图-2 1、直接点火系统元件构成: (1)曲轴位置传感器:(NE)探测曲轴角度位置(发动机转速)。 (2)凸轮轴位置传感器:(G)辨认气缸和行程,并探测凸轮轴正时。 (3)节气门位置传感器:(VTA)探测节气门的开启角。 (4)空气流量计:(VG/PIM)探测进气量。 (5)水温传感器:(THW)探测发动机冷却液温度。 (6)带点火器的点火线圈:在最佳正时时,接通和切断初级线圈电流。向发动机ECU发送IGF信号。

点火波形分析

点火波形分析及故障波形分析 一、概述 上节课我们学习了示波器的使用,那同学们谁能说一下示波器在汽车上是干什么用的呢? 示波器就是专门用来检测点火波形的,我们上节讲的是普通的数字示波器,可以完成汽车点火波形的检测,但是操作相对比较复杂,效果不太明显,目前汽车上有专门的示波器来检测点火波形 用专门设计的点火探头,能够容易地使汽车示波器去完成通常要用大型昂贵的发动机分析仪才能做到的许多相同的试验和程序,测试例如初级和次级点火阵列波形,单独气缸的初级波形,急加速高压值--至点火系统的输出等等,这些都是示波器容易完成的测试,并且,由于示波器完全是便提式的,所以可以用示波器来进行路试检查,在行驶条件下很有可能发生的点火故障,所以在任何有公路的地方,汽车示波器就像一个公路上的“诊所” 二、点火系统的组成 电子点火系统组成 1 电源(蓄电池、发电机) 2 点火开关 3 点火线圈 4 点火控制器 5 分电器(加点火信号发生器) 6 火花塞 三、点火波形分析 初级波形 1、开路(A-B)此时电路没有闭合,初级线圈没有流过电流,只有开路电压 2、点火线圈充电(B-C)驱动电路闭合,电压会突然下降,初级线圈对地构成回 路,电压降到接近于零电位 3、保持电压(C-D)固有的电压降取决于电路控制电流部分,三极管0.7-1V 场效应管是0.1-0.3V 4、(E-F)线圈充电饱和后流进初级线圈的电流收到限制,但磁场仍处于最大状态,此时电流受到限制,电压仍然低于开路电压,这个电压克服三极管基极电阻,

使电流流动,电流流过初级线圈的绕组,就会产生磁场,电流越大,磁感应越强。 5、开始点火(燃烧电压)(F-G)f点为点火电压,观察G的高度一致性,一个太高的跳火电压(它甚至超过了示波器的显示屏)表明在点火次级电路中存在着高电阻(例如开路或损坏的火花塞、高压线或是火花塞过大时间隙),一个太短的跳火电压线,表明点火次级电路电阻低于正常值(污浊和破裂的火花塞和漏电的火花塞高压线等) 1、闭合段(f - a′):当传统点火系的触点闭合或电子点火系的晶体管导通时,点火线圈初级绕组开始通电。 2、点火线(a - b):点火线的高度代表火花塞击穿电压(点火电压),一般在7~11KV 之间。电子点火的汽车一般在8~16KV之间 3、火花线(c - d):火花击穿后,维持火花放电所需电压; 4、低频振荡段(d - f):火花消失后,点火线圈中仍有一些残余能量继续释放,它使线圈和电路中的分布电容形成低频衰减振荡,直至能量耗尽。 四、故障波形举例 1、击穿电压和火花线太低 原因:火花塞间隙太小或积炭较严重 2、完全没有高压击穿和火花线波形

汽车点火波形分析

汽车点火波形分析 摘要 汽车电子化的发展,应用之广与日俱增,尤其是计算机、网络技术的发展为汽车电子化带来了根本性的变革。因此,当代汽车的维修不是单纯的机械维修,而是机械与电子为一体的维修。由于电子控制元件的维修比较抽象,给汽车维修技术提出了新的挑战,使许多维修人员望而止步,感到神秘莫测。 汽车电控系统技术的发展,使现代的汽车成为了一个高科技的结晶体,这就要求汽车故障诊断技术也向高新技术方向发展。传统的故障诊断方式根本不能适应现代汽车故障诊断的要求,尤其对电控系统故障的诊断,必须采用先进的检测设备,先进的工作模式。 波形分析技术应用于汽车维修业,可以大大提高汽车故障诊断的速度与准确性,利用波形分析检测时,示波器可以显示出电子信号的各种参数,利用这些参数就能够判定这个电子信号的波形是否正常,然后,通过波形分析便可以进一步检查出电路中传感器,执行 器以及电路和控制电脑等各部分的故障,从而进行修理。 本文叙述了汽车点火系统波形连接、检测、分析方法;并结合波形图形象深刻的分析汽车故障类型、位置、原因。使学者有一目了然的深刻视觉感受,发掘学习者的兴趣。 【关键词】:点火系统;点火波形图;波形分析;故障波形分析

目录 第1章绪论 (1) 1.1引言 (1) 1.2 点火系统概述 (1) 第2章点火系统检测连接及点火波形种类、特点 (3) 2.1点火系统检测连接方法 (3) 2.2点火波形种类 (4) 2.3次级点火波形的特点 (5) 第3章点火波形分析 (7) 3.1点火波形分析方法 (7) 3.2各类点火系波形 (8) 3.2.1触点式点火系波形 (8) 3.2.2无触点点火系波形 (9) 3.2.3 无分电器点火系统波形 (9) 3.3次级点火波形可查明的故障 (9) 3.4分析次级点火波形的要点(五常看) (10) 3.5点火系统的加载调试 (12) 第4章故障波形分析 (13) 4.1典型故障波形分析 (13) 4.1.1初级电压分析 (14) 4.1.2次级电压波形分析 (15) 4.2次级点火故障波形分析 (16) 4.3点火波形分析举例 (17) 结论 (20) 参考文献 (21) 致谢 (22) 2

发动机点火波形分析

点火波形分析(图) 作者:译/朱之亚王鸣鸿日期:2005-12-1 来源:本网 字符大小:【大】【中】【小】 ● 文/Bernie C. Thompson 最初的内燃机结构很简单,但为了增加动力和提高效率,人们已对其进行了许多次的改进,结构也就越来越复杂了。当今的内燃机主要有两种,一种是压燃式(柴油机),另一种是点燃式(汽油机)。在此,我们要探究的是汽油机。 要懂得在汽油机中能量是怎样释放出来的,这一点很重要。对于内燃机来说,空气和燃油的混合气被吸入汽缸并在缸内被压缩。当混合气被压缩时,其分子被迫进入一个很小的空间。这就使得分子之间相互碰撞,从而产生了摩擦力和热。燃油分子的分子链是由不同的原子组成的,将这些不同的原子结合在一起就需要能量。为了释放燃油的能量,燃油分子就必须分裂并重新组成一种不同结构的低能量分子。燃油分子一旦分裂,将不同原子结合在一起的能量就不再需要了。这种被释放的能量就为内燃机提供了动力。 对于汽油机来说,单凭压缩还不能提供足够的能量使燃油分子分裂。传入燃油分子的热能使其变得不稳定,但为了分开链接燃油分子的原子还需施加更大的力。要将两个扭打在一起的人分开是件很不容易的事。要把他们拉开,你所用的力要大于他们扭在一起的力。采用电击枪可以使两个扭打在一起的人分开,因为电击枪放电时电压可达100kV。电击枪的势能大于两个扭打在一起的人所用的能量,因此,那两人就会松手而分开。尽管汽缸压缩产生了热能,但要将燃油的分子分裂并释放能量还需要更大的力。点火系统所产生的高能电火花可以提供这个力。 点燃混合气需要高能量的电火花,为此人们采用了多种不同的点火系统。升压变压器是当今较常用的一种点火系统。这种变压器采用低电压、大电流的电极来产生高电压、小电流的电极。它是由两个不同的线圈组成的。第一个线圈叫初级线圈,第二个线圈叫次级线圈(见图1)。为了增加磁场,初级线圈绕在一个铁芯上。在新式的变压器上这个铁芯是由许多片叠加在一起的黑色金属(通常为软铁)片组成的。相对于整块的铁芯,它的磁增强能力更好。 初级绕组的线较粗、匝数少,这就使得它的电阻值很低。次级绕组的线较细、匝数多,从而电

(汽车行业)汽车点火系统波形分析

(汽车行业)汽车点火系统 波形分析

汽车点火系统分析 现代汽车采用了大量的电子控制系统,以往常规的检测方式已无法适应现代汽车的要求。特别是在直接点火系统的检查中,常规的断缸测试已经无法精确判断系统是否正常,而示波器由于其具有实时性、不间断性、直观性,越来越得到广泛的应用。 由于点火次级波形受到各种不同的发动机、燃油系统和点火条件的影响,所以示波器能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件的故障。而且壹个波形的不同部分仍能够分别指明在汽缸中的哪个部件或哪个系统有故障。点火次级单缸波形测试主要用途有: 1.分析单缸的点火闭合角(点火线圈充电时间分析); 2.分析点火线圈和次级高压电路性能(燃烧线或点火击穿电压分析); 3.检查单缸混合气空燃比是否正常(燃烧线分析); 4.分析电容性能(白金或点火系统分析); 5.查出造成汽缸断火的原因(燃烧线分析,如污染或破裂的火花塞)。 分电器点火次级标准波形如图1所示。通过观察该波形,能够得到击穿电压、燃烧电压、燃烧时间以及点火闭合角等信息。 由于点火次级波形受到发动机、燃油系统和点火条件的影响,所以它对检测发动机机械部分和燃油系统部件及点火系统相关部件的故障非常有用。同时每个点火波形的不同部分仍能分别表明其相应汽缸点火系统的相应部件和系统的故障。对应于每壹部分,能够通过参照波形图的指示点及观见波形特定段相应的变化来判定。 壹、分电器点火次级波形分析 1.充磁开始:点火线圈在开始充电时,应保持相对壹致的波形下降沿,这表明各缸闭合角相同而且点火正时准确。 2.点火线:观察击穿电压高度的壹致性,如果击穿电压太高(甚至超过了示波器的显示屏),表明在点火次级电压电路中电阻值过高(如断路或损坏的火花塞、高压线或是火花塞间隙过大);如果击穿电压太低,表明点火次级电路电阻低于正常值(污浊和破裂的火花塞或漏电的高压线等)。 3.跳火或燃烧电压;跳火或燃烧电压的相应壹致性,它说明火花塞工作各缸空燃比正常和否。如果混合气太稀,燃烧电压就比正常值低壹些。 4.燃烧线:跳火或燃烧线应十分“干净”,即燃烧线上应没有过多的杂波。过多的杂波表明汽缸点火不良,这是由于点火过早、喷油器损坏、污浊的火花塞等原因造成的。燃烧线的持续时间长度和汽缸内混合气浓或稀有关。燃烧线太长(通常超过2ms)表示混合气过浓,燃烧线太短(通常少于0.75ms)表示混合气过稀。 5.点火线圈振荡观察在燃烧线后面最少有2个(壹般多于3个)振荡波,这表明点火线圈和电容器(在白金点火系统中)是正常的。 二、电子点火次级单缸急加速波形 电子点火次级单缸急加速波形测试用于确定最大击穿电压或指定汽缸燃烧峰值电压和其他缸峰值电压的关系。这个测试是用来诊断当大负荷或急加速时是否出现断火现象。 1.试验方法:在加速或高负荷下检查对应特定部件的波形部分的故障。 2.波形分析:观察各缸击穿电压高度是否壹致。在急加速或高负荷时,由于燃烧压力的增加,其峰值电压将随之增高。当和其他缸信号峰值高度出现偏差时,意味着此缸相应系统存在故障。过高的峰值电压表明在该缸点火次级电路中存在高电阻,它意味着电路断路、高压线电阻过高、火花塞间隙过大。如果峰值电压过低,表明点火高压线短路、火花塞间隙过小、火花塞破裂和火花塞有油污。出现有负荷时断火或急加速时所有汽缸的点火峰值都低的情况,意味着点火线圈不良。

发动机点火系点火波形测试分析

毕业论文题目 赣西科技职业学院 毕业论文(设计) 题目:发动机点火系点火波形测试分析学号:056810302327 姓名:宋移鸿 年级:2009级 系别:汽车工程系 专业:汽车检测与维修 指导教师:余立祥 完成日期:2011年10月18日

汽车检测与维修毕业论文课题:发动机点火系点火波形测试分析院系:汽车工程系 专业:汽车检测与维修 学生姓名:宋移鸿 班级:09自考汽修(4)班 指导老师:余之祥 2011年10月20 日

1.绪论...................................................................................................................................... - 2 - 2. 点火系的结构与原理............................................................................................................ - 3 - 2.1 概述 ........................................................................................................................... - 3 - 2.1.1 点火系的类型................................................................................................... - 3 - 2.1.2 对点火系统的基本要求..................................................................................... - 3 - 2.2 点火系的结构与工作原理 .......................................................................................... - 3 - 2.2.1 传统点火系统的组成结构及工作原理................................................................ - 3 - 2.2.2 电控点火系统的结构及工作原理....................................................................... - 4 - 3. 标准波形分析及故障反映区.................................................................................................. - 4 - 3.1 单缸标准次级波形..................................................................................................... - 4 - 3.2 多缸平列波................................................................................................................. - 5 - 3.3 多缸并列波................................................................................................................. - 5 - 3.4 多缸重叠波................................................................................................................. - 5 - 3.5 波形故障反映区.......................................................................................................... - 6 - 4. 实验测试分析 ...................................................................................................................... - 6 - 4.1 实验设备与器材.......................................................................................................... - 7 - 4.2 实验操作方法步骤 ...................................................................................................... - 8 - 4.3 实验波形与分析........................................................................................................ - 10 - 4.3.1 实验测得波形图 ............................................................................................. - 10 - 4.3.2 实验波形诊断分析............................................................................................ - 10 - 5.总结.................................................................................................................................... - 11 - 6.谢辞………………………………………………………………-10 1.绪论 随着微电子技术、计算机控制技术的迅猛发展,利用电子控制技术来提升汽车发动机的性能、节约能源和降低废气污染已经成为汽车电子技术的发展趋势。动力性与排放是改善整车性能的核心问题之一,而发动机点火系点火控制系统是决定排放和动力性的关键装置。如果汽油机点火系技术状况不佳,甚至出现了故障,不但严重影响发动机的动力性,燃油经济性,排气净化性,而且无法正常工作。实践证明点火系是故障频率最高的部位之一。过去,人们常用拔掉高压线试火等方法查找点火系统故障原因。随着电子产品在汽车上的普及,这些传统的诊断方法不仅显得效率低,而且还可能会损坏电子元件,现已逐渐被淘汰。如今,使用汽车专用示波器绘出点火系统初级电路和次级电路在点火周期内的电压随时间变化的关系曲线。通过分析了点火波形的形成过程以及波形形状,可以方便,快捷的得出结论,从而找出故障原因并及时排除。

汽车点火系统波形分析报告

汽车点火系统分析 现代汽车采用了大量的电子控制系统,以往常规的检测方式已无法适应现代汽车的要求。特别是在直接点火系统的检查中,常规的断缸测试已经无法精确判断系统是否正常,而示波器由于其具有实时性、不间断性、直观性,越来越得到广泛的应用。 由于点火次级波形受到各种不同的发动机、燃油系统和点火条件的影响,所以示波器能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件的故障。而且一个波形的不同部分还能够分别指明在汽缸中的哪个部件或哪个系统有故障。点火次级单缸波形测试主要用途有: 1.分析单缸的点火闭合角(点火线圈充电时间分析); 2.分析点火线圈和次级高压电路性能(燃烧线或点火击穿电压分析); 3.检查单缸混合气空燃比是否正常(燃烧线分析); 4.分析电容性能(白金或点火系统分析); 5.查出造成汽缸断火的原因(燃烧线分析,如污染或破裂的火花塞)。 分电器点火次级标准波形如图1所示。通过观察该波形,可以得到击穿电压、燃烧电压、燃烧时间以及点火闭合角等信息。

由于点火次级波形受到发动机、燃油系统和点火条件的影响,所以它对检测发动机机械部分和燃油系统部件及点火系统相关部件的故障非常有用。同时每个点火波形的不同部分还能分别表明其相应汽缸点火系统的相应部件和系统的故障。对应于每一部分,可以通过参照波形图的指示点及观看波形特定段相应的变化来判定。 一、分电器点火次级波形分析 1.充磁开始:点火线圈在开始充电时,应保持相对一致的波形下降沿,这表明各缸闭合角相同而且点火正时准确。 2.点火线:观察击穿电压高度的一致性,如果击穿电压太高(甚至超过了示波器的显示屏),表明在点火次级电压电路中电阻值过高(如断路或损坏的火花塞、高压线或是火花塞间隙过大);如果击穿电压太低,表明点火次级电路电阻低于正常值(污浊和破裂的火花塞或漏电的高压线等)。

点火系统波形分析

点火系统波形分析 1.点火次级波形 你如同大多数技术人员一样,或许已熟悉了一种类型的示波器,例如在车间使用发动机分析仪里的示波器,正如现在已经知道的发动机分析仪中的示波器是专用的,它被设计成用来测量一个特殊系统--点火系统。在大多数情况下,发动机分析仪不能提供足够的功能用以诊断当今轿车的所有电气系统。 因为汽车示波器具备测试当今轿车所有必要的功能--包括点火系统,所以这是它胜过发动机分析仪的地方。 用专门设计的点火探头,能够容易地使用汽车示波器去完成通常要用大型昂贵的发动机分析仪才能做到的许多相同的试验和程序,测试例如初级和次级点火阵列波形,单独气缸的初级波形,急加速高压值--至点火系统的输出等等,这些都是汽车示波器容易完成的测试,并且,由于汽车示波器完全是便提式的,所以可以用汽车示波器来进行路试检查在行驶条件下很有可能发生的点火故障,所以在任何有公路的地方,汽车示波器就像一个公路上的“诊所”。 在这一部分中,将看到为测试典型点火系统而设置在汽车示波器中的测试程序一部分,还将学会用它独特的性能去诊断当今汽车的点火系统故障。 ①分电器点火次级阵列波形,参见图7。

用点火次级阵列波形显示测试作为有效的行驶能力检查,已有三十年的历史了。点火的次级阵列波形主要被用来检查短路或开路的火花塞高压线,或引起点火不良的污损火花塞。这个试验可以为提供一个关于各个气缸燃烧质量情况有价值的资料。由于点火二次波形明显地受到各种不同的发动机、燃油系统和点火条件的影响,所以它能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件,故障波形的不同部分能够指明在任何气缸中的某一部件或系统的故障。 试验方法: 起动发动机或驾驶汽车使行驶性能故障或点火不良等情况出现,调整触发电平直到波形稳定和发动机转速可以清楚的在显示屏上显示出来。 波形结果: 确认幅值、频率、形状和脉冲宽度等判定性尺度,在各缸上都是一致的,各缸的点火峰值电压高度应该相对一致、基本相等,任何峰值高度相互之间的差到都表明有故障,一个相比高出很多的峰值,指示在该气缸点火二次系统中存在着高的电阻,这可能意味着点火高压开路或电阻太大,一个相比低出很多的峰值指示出点火高压线短路或火花塞间隙过小,火花塞污损或破裂。

点火波形分析

D I A G N O S I S & INSPECTION 检测技术最初的内燃机结构很简单,但为了增加动力和提高效率,人们已对其进行了许多次的改进,结构也就越来越复杂了。当今的内燃机主要有两种,一种是压燃式(柴油机),另一种是点燃式(汽油机)。在此,我们要探究的是汽油机。 要懂得在汽油机中能量是怎样释放出来的,这一点很重要。对于内燃机来说,空气和燃油的混合气被吸入汽缸并在缸内被压缩。当混合气被压缩时,其分子被迫进入一个很小的空间。这就使得分子之间相互碰撞,从而产生了摩擦力和热。燃油分子的分子链是由不同的原子组成的,将这些不同的原子结合在一起就需要能量。为了释放燃油的能量,燃油分子就必须分裂并重新组成一种不同结构的低能量分子。燃油分子一旦分裂,将不同原子结合在一起的能量就不再需要了。这种被释放的能量就为内燃机提供了动力。 ● 文/Bernie C. Thompson 译/朱之亚 王鸣鸿 对于汽油机来说,单凭压缩还不能提供足够的能量使燃油分子分裂。传入燃油分子的热能使其变得不稳定,但为了分开链接燃油分子的原子还需施加更大的力。要将两个扭打在一起的人分开是件很不容易的事。要把他们拉开,你所用的力要大于他们扭在一起的力。采用电击枪可以使两个扭打在一起的人分开,因为电击枪放电时电压可达100kV。电击枪的势能大于两个扭打在一起的人所 用的能量,因此,那两人就会松手而分开。尽管汽缸压缩产生了热能,但要将燃油的分子分裂并释放能量还需要更大的力。点火系统所产生的高能电火花可以提供这个力。 点燃混合气需要高能量的电火花,为此人们采用了 多种不同的点火系统。升压 变压器是当今较常用的一种点火系统。这种变压器采用低电压、大电流的电极来产生高电压、小电流的电极。它是由两个不同的线圈组成的。第一个线圈叫初级线圈,第二个线圈叫次级线圈(见图1)。为了增加磁场,初级线圈绕在一个铁芯上。在新式的变压器上这个铁芯是由许多片叠加在一起的黑色金属(通常为软铁)片组成的。相对于整块的铁芯,它的磁增强能力更好。 初级绕组的线较粗、匝数少,这就使得它的电阻值很低。次级绕组的线较细、匝数多,从而电阻值较高。车用点火线圈的匝数比通常约为1:100,也就是说,初级线圈绕1匝,次级线圈就绕100匝。初级线圈的电阻值通常在1~4Ω之间,次级线圈的电阻值通常在8000~16000Ω之间。 初级线圈和次级线圈之间相互绝缘,绝缘的介质为变压器油或环氧树脂。变 图1   点火波

汽油机点火波形分析

汽油机点火波形分析 现代内燃机主要有两种,一种是压燃式(柴油机),另一种是点燃式(汽油机)。这里我们要说的是汽油机。 对于内燃机来说,空气和燃油的混合气被吸入汽缸并在缸内被压缩。当混合气被压缩时,其分子被迫进入一个很小的空间。这就使得分子之间相互碰撞,从而产生了摩擦力和热。燃油分子的分子链是由不同的原子组成的,将这些不同的原子结合在一起就需要能量。为了释放燃油的能量,燃油分子就必须分裂并重新组成一种不同结构的低能量分子。燃油分子一旦分裂,将不同原子结合在一起的能量就不再需要了。这种被释放的能量就为内燃机提供了动力。 对于汽油机来说,单凭压缩还不能提供足够的能量使燃油分子分裂。传入燃油分子的热能使其变得不稳定,但为了分开链接燃油分子的原子还需施加更大的力。要将两个扭打在一起的人分开是件很不容易的事。要把他们拉开,你所用的力要大于他们扭在一起的力。采用电击枪可以使两个扭打在一起的人分开,因为电击枪放电时电压可达100kv。电击枪的势能大于两个扭打在一起的人所用的能量,因此,那两人就会松手而分开。尽管汽缸压缩产生了热能,但要将燃油的分子分裂并释放能量还需要更大的力。点火系统所产生的高能电火花可以提供这个力。 点燃混合气需要高能量的电火花,为此人们采用了多种不同的点火系统。升压变压器是当今较常用的一种点火系统。这种变压器采用低电压、大电流的电极来产生高电压、小电流的电极。它是由两个不同的线圈组成的。第一个线圈叫初级线圈,第二个线圈叫次级线圈(见图1)。为了增加磁场,初级线圈绕在一个铁芯上。在新式的变压器上这个铁芯是由许多片叠加在一起的黑色金属(通常为软铁)片组成的。相对于整块的铁芯,它的磁增强能力更好。

利用示波器进行点火系统波形分析

利用示波器进行点火系统波形分析 2007年04月11日星期三 10:21 现代汽车采用了大量的电子控制系统,以往常规的检测方式已无法适应现代汽车的要求。特别是在直接点火系统的检查中,常规的断缸测试已经无法精确判断系统是否正常,而示波器由于其具有实时性、不间断性、直观性,越来越得到广泛的应用。 由于点火次级波形受到各种不同的发动机、燃油系统和点火条件的影响,所以示波器能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件的故障。而且一个波形的不同部分还能够分别指明在汽缸中的哪个部件或哪个系统有故障。点火次级单缸波形测试主要用途有: 1.分析单缸的点火闭合角(点火线圈充电时间分析); 2.分析点火线圈和次级高压电路性能(燃烧线或点火击穿电压分析); 3.检查单缸混合气空燃比是否正常(燃烧线分析); 4.分析电容性能(白金或点火系统分析); 5.查出造成汽缸断火的原因(燃烧线分析,如污染或破裂的火花塞)。 分电器点火次级标准波形如图1所示。通过观察该波形,可以得到击穿电压、燃烧电压、燃烧时间以及点火闭合角等信息。由于点火次级波形受到发动机、燃油系统和点火条件的影响,所以它对检测发动机机械部分和燃油系统部件及点火系统相关部件的故障非常有用。同时每个点火波形的不同部分还能分别表明其相应汽缸点火系统的相应部件和系统的故障。对应于每一部分,可以通过参照波形图的指示点及观看波形特定段相应的变化来判定。 一、分电器点火次级波形分析 1.充磁开始:点火线圈在开始充电时,应保持相对一致的波形下降沿,这表明各缸闭合角相同而且点火正时准确。 2.点火线:观察击穿电压高度的一致性,如果击穿电压太高(甚至超过了示波器的显示屏),表明在点火次级电压电路中电阻值过高(如断路或损坏的火花塞、高压线或是火花塞间隙过大);如果击穿电压太低,表明点火次级电路电阻低于正常值(污浊和破裂的火花塞或漏电的高压线等)。 3.跳火或燃烧电压:跳火或燃烧电压的相应一致性,它说明火花塞工作各缸空燃比正常与否。如果混合气太稀,燃烧电压就比正常值低一些。 4.燃烧线:跳火或燃烧线应十分“干净”,即燃烧线上应没有过多的杂波。过多的杂波表明汽缸点火不良,这是由于点火过早、喷油器损坏、污浊的火花塞等原因造成的。燃烧线的持续时间长度与汽缸内混合气浓或稀有关。燃烧线太长(通常超过2ms)表示混合气过浓,燃烧线太短(通常少于0.75ms)表示混合气过稀。 5.点火线圈振荡:观察在燃烧线后面最少有2个(一般多于3个)振荡波,这表明点火线圈和电容器(在白金点火系统中)是正常的。

汽车点火系统检测与波形分析报告

点火系统检测与波形分析 一、点火系检测 在汽油机各系统中点火系对发动机的性能影响最大,统计数字表明有将近一半的故障是因为电气系统工作不良而引起的,因此发动机性能检测往往从点火系统开始。 N7l r3x f'y!M4} F X 首先使用先进电子技术的当属点火系统,而形式结构和工作原理更新最快的也非点火系统莫属。现用点火系统大体分为以下4类;它们在检测时的接线有所不同,必须区别对待: 1、由电磁、红外或霍尔元器件构成的非接触式断电器组成的点火系统称为无触点点火器,其放大电路又分晶体管电路和电容放电电路两种。 2、ECU(Electronic Control Unit)控制的点火系由ECU中的微处理器根据曲轴转角传感器的信号确定点火时刻,因而它没有断电器,只有分电器,根据ECU送来的信号直接控制点火线圈初级电路的通断。 3、无分电器点火系统(Distributor-Less Ignition)是当前最先进的点火系统,曲轴传感器送来的不仅有点火时刻信号,而且还有气缸识别信号,从而使点火系统能向指定的汽缸在指定的时刻送去点火信号,这就要求每缸配有独立的点火线圈,但如果是六缸机则1,6缸、2,5缸和3,4缸分别共用一个点火线圈,即共有三个点火线圈,显然每一个点火线圈点火时,总有一个缸是空点火,检测时应注意到这一点。 无触点点火系统能使用低阻抗电感线圈,从而大幅度提高初级电流,使次级电压高达 30kV以上,增强点火能量以提高点燃稀混合气的能力,在改善燃料经济性的同时也降低排气污染。无分电器点火系统完全是电子器件而无机械运动部件,彻底解决了凸轮和轴承磨损以及触点烧蚀间隙失调而引起的一系列故障。 检测点火系首先将信号提取系统连接到发动机电路上,图 7是机械点火系统和晶体管点火系统信号提取接头的连接方法,图 8是电容放电式点火系统的信号提取接头连接方法。

点火波形分析教学版(图)

点火波形分析(图) 最初的内燃机结构很简单,但为了增加动力和提高效率,人们已对其进行了许多次的改进,结构也就越来越复杂了。当今的内燃机主要有两种,一种是压燃式(柴油机),另一种是点燃式(汽油机)。在此,我们要探究的是汽油机。 要懂得在汽油机中能量是怎样释放出来的,这一点很重要。对于内燃机来说,空气和燃油的混合气被吸入汽缸并在缸内被压缩。当混合气被压缩时,其分子被迫进入一个很小的空间。这就使得分子之间相互碰撞,从而产生了摩擦力和热。燃油分子的分子链是由不同的原子组成的,将这些不同的原子结合在一起就需要能量。为了释放燃油的能量,燃油分子就必须分裂并重新组成一种不同结构的低能量分子。燃油分子一旦分裂,将不同原子结合在一起的能量就不再需要了。这种被释放的能量就为内燃机提供了动力。 对于汽油机来说,单凭压缩还不能提供足够的能量使燃油分子分裂。传入燃油分子的热能使其变得不稳定,但为了分开链接燃油分子的原子还需施加更大的力。要将两个扭打在一起的人分开是件很不容易的事。要把他们拉开,你所用的力要大于他们扭在一起的力。采用电击枪可以使两个扭打在一起的人分开,因为电击枪放电时电压可达100kV。电击枪的势能大于两个扭打在一起的人所用的能量,因此,那两人就会松手而分开。尽管汽缸压缩产生了热能,但要将燃油的分子分裂并释放能量还需要更大的力。点火系统所产生的高能电火花可以提供这个力。 点燃混合气需要高能量的电火花,为此人们采用了多种不同的点火系统。升压变压器是当今较常用的一种点火系统。这种变压器采用低电压、大电流的电极来产生高电压、小电流的电极。它是由两个不同的线圈组成的。第一个线圈叫初级线圈,第二个线圈叫次级线圈(见图1)。为了增加磁场,初级线圈绕在一个铁芯上。在新式的变压器上这个铁芯是由许多片叠加在一起的黑色金属(通常为软铁)片组成的。相对于整块的铁芯,它的磁增强能力更好。 初级绕组的线较粗、匝数少,这就使得它的电阻值很低。次级绕组的线较细、匝数多,从而

最新传感器执行器点火器波形分析1

传感器执行器点火器波形分析1

发动机电控系统传感器、执行器、点火器波形分析 第一部分:实验预习报告 一.试验目的、意义(同学们按自己的思路叙述) 1.通过对富康TU-5发动机电子控制系统中有关传感器、执行器及点火系统的波形测量,了解发动机电控系统的构造以及工作原理以及发动机分 析仪的使用方法。 2.使用示波器测量发动机在不同工况时“ECU”输入、输出信号的变化规律。 3.测量双极性点火系统各缸点火波形。了解无分电器(双极性)点火系统的工作原理。 二.实验基本原理与方法(同学们按自己的思路叙述) 汽车发动机电子控制系统由传感器、电子控制单元(ECU)、执行器等组成。ECU根据各传感器的实时输入信号,修正且控制发动机的进气量、供油量及点火提前角等控制参数。保障发动机处于最佳的工作状态。发动机工作时,各传感器输出信号的准确性、稳定性以及执行器的工作状态将直接影响发动机的工作状态。 本实验的基本方法是在发动机处于不同工况时,测量且记录相关传感器以及执行器的工作波形。从而了解电控系统的工作原理。同时,通过对传感器、执行器工作波形的观察与分析。掌握有关传感器输入到ECU的信号类型以及ECU对执行器发出的控制信号形式。 三.主要仪器设备及耗材 1.泰克TD210数字式示波器

2.富康TU5发动机实验台架 3.万用表、跨接导线、常用工具、打印纸等 四.实验方案与技术路线(包括实验方案设计、实验手段的确定、实验步骤等) 1.了解富康TU-5发动机控制系统中使用的有关传感器及执行器的 安装位置。 (主要有曲轴位置传感器,怠速空气控制阀,喷油咀,各点火线圈等)2.测量发动机怠速运转时,下列传感器、执行器的工作波形。 1)、曲轴位置传感器信号波形; 2)、喷油咀控制信号波形; 3)、氧传感器信号波形; 3.测量不同的水温情况下,怠速控制阀的控制波形(按附表1)。. 4.分别测量发动机基本怠速运转及3000rpm转速时,第一组点火线圈的初级波形(按附表2)。 5.测量发动机以不同转速运行时,点火线圈初级波形(按附表3)。 6.对各测量波形进行分析。(以上内容请同学们按自己的思路叙述) 第二部分:实验过程记录 一.实验原始记录(同学们按自己的实验记录叙述) 附实验波形图(氧传感器、喷油器、曲轴位置传感器、怠速控制阀、点火线圈初级)以及发动机不同转速情况下ECU有关输入波形及控制波形测量值列表。 二.实验结果分析

波形的检测与分析实训方案

汽油发动机点火波形检测与分析方案班级代码:0741001 班级人数:10 人课程名称:汽车波形分析 任课老师:胡书文时间:2012 年月日场地:实训中心 一、目的与要求 1、掌握利用真空表检测发动机故障的方法及原理; 2、根据真空表显示的异常指示找出发动机故障的原因。 二、课时 2学时 三、设备及器材 1、常用工具1套 2、发动机综合测试仪(或汽车专用示波器)1台 3、技术状况良好的发动机总成1台 四、内容及步骤 使用发动机综合测试仪的示波器功能或汽车专业示波器检测点火波形,可用来判断点火系各部件的故障。 1、发动机综合测试仪与发动机的线路连接 (1)将发动机综合测试仪的蓄电池电压拾取器的红、黑夹分别夹在蓄电池的正、负极上。 (2)将红色次级信号夹夹在中央高压线上(从适配器1280408的红色BNC头引入设备),一缸信号钳夹在一缸高压线上,如图1所示。

图1 发动机综合测试仪与发动机的连接 (3)起动发动机至正常工作温度,并怠速运转。 (4)启动发动机综合测试仪,在“汽油机检测”菜单下用鼠标左键点击“次级信号”图标即进入次级信号测试界面,即可测到次级平列波、并列波、重叠波等波形。 2、标准波形分析 (1)单缸波形 如图2所示为发动机1500r/min时的单缸标准次级波形图。它反映了单缸点火的工作情况。当点火装置出现故障时,次级电压的波形就会发生变化,因此根据波形的变化可初步判断故障所在。

图2 单缸标准次级波形图 图中波形上各点的含义如下: a为断电器触点打开,次级电压急剧上升; ab为击穿电压; bc为电容放电; cd为电感放电,称为火花线; de为火花消失后,剩余磁场能维持的衰减震荡; e点为断电器触点闭合; ef为触点闭合导致的负电压,并引起闭合震荡; ae为触点打开的全部时间; ea为触点闭合的全部时间。如果时间用分电器凸轮轴转角表示,则ae为断电器触点张开角;ea为断电器触点闭合角。 (2)多缸重叠波形 多缸重叠波形时将各单缸波形之首对齐并重叠在一起的排列方式。6缸发动机的标准次级重叠波形如图3所示。 图3 标准次级重叠波形

点火系统检测与波形分析

点火系统检测与波形分析 2.3.4.1 点火系检测 在汽油机各系统中点火系对发动机性能影响最大,统计数值表明有将近一半的故障是因为电器系统工作不良而引起的,因此发动机性能检测往往从点火系统开始。 首先,使用先进电子技术的当属点火系统。形式结构和工作原理更新最快的非点火系统莫属。现用点火系统大体分为以下四类;它们在检测时的接线有所不同,必须区别对待: (1)由电磁、红外或霍尔元器件构成的非接触式断电器组成的点火系统称为无触点点火器,其放大电路又分为晶体管电路和电容放电电路两种。 (2)ECU(Electronic Control Unit)控制的点火系,ECD中的微处理器根据曲轴转角传感器的信号确定点火时刻,因而它没有断电器,只有分电器,根据ECD送来的信号直接控制点火线圈初级电路的通断。 (3)无分电器点火系统(Distributor-Less Ignite)是当前最先进的点火系统,曲轴传感器送来的不仅有点火时刻信号,而且还有气缸识别信号,从而使点火系统能向指定的气缸在指定的时刻送去点火信号,这就要求每缸配有独立的点火线圈,但如果是六缸机则1,6缸、2,5缸和3,4缸分别共用一个点火线圈,即共有三个点火线圈,显然每一个点火线圈点火时,总有一个缸是空点火,检测时应注意到这一点。 无触点点火系统能使用低阻抗电感线圈,从而大幅度提高初级电流,使次级电压高达30kv以上,增强点火能量以提高点燃稀混合气的能力,在改善燃油

经济性的同时也降低排气污染。无分电器点火系统完全是电子器件无机械运动部件,彻底解决了凸轮和轴承磨损以及点接触烧蚀间隙失调而引起的一系列故障。 图2-29 机械点火系和晶体管点火系信号提取接头的连接方法 检测点火系首先将信号提取系统连接到发动机线路上,图2-29是机械点火系和晶体管点火系信号提取接头的连接方法,图2-30是电容放电式点火系统的信号提取接头连接方法。 图2-30 电容放电式点火系统的信号提取接头连接方法

点火波形分析

3.点火波形分析 无论就是传统点火系统还就是电子点火系统或计算机控制得点火系统,都就是由点火线圈通过互感作用把低压电转变为高压电,通过火花塞跳火点燃混合气做功得。点火系统低压、高压得变化过程就是有规律得,它可通过其点火波形予以反映。点火系统正常工作时得点火线圈初、次级得电压波形,称为标准点火波形,它就是点火系统得诊断标准。 (1)传统点火波形图3—17所示就是传统点火系统单缸初、次级电压标准波形。图中张开时间就是初级线圈断电时间,它对应于次级线圈得点火、放电及振荡阶段;闭合时间就是初级线圈通电时间,它对应于点火线圈得储能阶段,这两个阶段组成了一个完整得点火循环。图中波形反映了从断电器触点张开、闭合、再张开得整个点火过程中,初、次级电压随时间变化得规律. 1)初级电压波形.图3-17a就是单缸初级电压标准波形。当断电器触点张开时,初级电压迅速提高(约为100~300V),从而导致次级电压急剧上升击穿火花塞间隙。当火花塞两极火花放电时,由于初、次级间得变压器效应,初级电压下降且出现高频振荡。火花放电完毕后,由于点火线圈与电容器中残余能量得释放,又出现低频振荡波,其波幅迅速衰减直至初级电压趋向于蓄电池电压。当断电器触点闭合后,初级电压几乎为零,成一直线一直延续 到触点得下一次张开.当下一缸点火时,点火循环又将复现.示波器上张开时间、闭合时问,通常用毫秒(ms)表示,也可用分电器凸轮轴转角表示,此时其张开时间、闭合时间则分别用张开角与闭合角表示。 2)次级电压波形。因点火线圈初、次级间得变压器效应,其次级电压波形与初级电压波形具有一定得对应关系,图3-17b就是单缸次级电压标准波形.有关次级电压波形点线得含义说明如下。 ①A点:断电器触点张开,点火线圈初级绕组突然断电,导致次级电压急剧上升。 ②AB线:称为点火线,其幅值为火花塞击穿电压即点火电压。击穿电压约为8~20kV,

相关文档
相关文档 最新文档