文档库 最新最全的文档下载
当前位置:文档库 › 钢材力学性能

钢材力学性能

钢材力学性能
钢材力学性能

前言

根据金坛市建设工程质量检测中心《质量手册》和《程序文件》要求,为保证本中心检测室检验人员在不同时间检验方法、过程的一致性,实现检验结果的重现性、准确性和可信性,依据现行相关标准制定本检验实施细则。

本细则编制遵照GB/T228-2002(金属拉伸试验方法), GB/T232-1999, (金属弯曲试验方法),JGJ 18-2003(钢筋焊接及验收规程)等标准的规定和本中心的程序文件,仪器操作规程的规定编写。

本室所有检测人员在检验过程中必须严格按照本检验细则执行。

本检测实施细则由李建平负责起草。

本检测实施细则批准人:翁粉明

本检测实施细则自 2009 年 12月首次发布,2009 年12 月修订

1 范围

本细则规定了钢筋、钢筋焊接、钢筋冷挤压接头、钢筋锥螺纹接头的力学检测项目、检测方法、判断依据、仪器设备、检测环境条件、检测程序、原始记录、检测报告等。

2 规范性引用文件

下列文件所包含的条文通过在本细则中引用而构成细则的条文,本细则所列版本均为有效,所有文件都会被修订,使用本细则的人员应及时探讨采用下列文件最新版本的可能性,修订的应按质量手册的控制和维护程序规定进行。

GB/T228-2002 金属材料室温拉伸试验方法

GB/T232-1999 金属弯曲试验方法

GB 238-2002 金属线材反复弯曲试验方法

JGJ 18-2003 钢筋焊接及验收规程

JGJ/T 27-2001 钢筋焊接接头试验方法标准

GB/T700-2006 碳素结构钢

GB/T1591-1994 低合金高强度结构钢

GB/T1499.2-2007钢筋混凝土用钢第二部分:热扎带肋钢筋

GB/T1499.1-2008钢筋混凝土用钢第二部分:热扎光圆钢筋

JC 3046-1998 冷扎扭钢筋

GB 13788-2000 冷扎带肋钢筋

JGJ 107-2003 钢筋机械连接通用技术规程

GB/T17505-1998 钢及钢产品交货一般技术要求

GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备

JGJ 108-96 带肋钢筋套筒挤压连接技术规程

JGJ 109-96 钢筋锥螺纹接头技术规程

GB1250-1989 极限数值的表示方法和判断方法

GB/T 8170-1987 数值修约规则

苏建质(1998)270号《江苏省建设工程质量检测见证取样送检暂行规定》

3 检测项目参数及仪器设备要求(见表1)

4 检测环境条件

4.1 温度控制:试验一般在室温10°C ~ 35°C范围内进行。对温度要求严格的试验,试验温度应为23°C ±5°C;

4.2 相对湿度不大于80%;

4.3 周围无腐蚀性介质;

4.4 电源电压波动不超过额定电压的±10%;

4.5 自然通风良好。

5 接样

5.1 接样

5.1.1 接样人员在送样人员交代委托单及样品时,应核对委托单是否填全信息。

5.1.2委托单信息至少应包括:产品名称、规格、型号、数量、等级、生产日期、执行标准、联系方式、生产(建设单位)。

5.1.3 委托检测按委托协议执行。

5.2 工程上使用的材料,严格按<苏建质(1998)270号>的规定执行。

6 检测前的检查

6.1 检查检测任务单与样品和有关资料是否相符。被检样品数量、尺寸、规格等是否符合检测执行标准的要求。检测人员对不符合要求的样品,有权暂时停止检测,写明原由,上报技术管理部处理。

6.2 检查检测即将使用的计量设备仪器是否在检定的有效期内。

6.3 检查仪器设备运转是否正常,并填写检查记录。

6.4 检查检测环境条件是否符合标准规定的要求,填写检查记录。

7 检测中应注意的安全事项

7.1 所有的用电设备在接通电源之前,应检查机身是否可靠接地,并注意是否有

断路或漏电现象

7.2 经常检查各机械油路的各接头是否漏油,如有漏油及时处理。

7.3 拉力试验要选择合适的档位进行试验,根据材料的估值范围选用适宜的度盘

及换挂相应的挂摆砣,测力范围为所选度盘下限>20%,上限<80%为有效读数。

7.4 装卸夹具和试样要带好防护手套,严格按照操作规程执行。

7.5 在拉力试验过程中,所有人员应离开钳口一定距离,以保护人员和设备的安全。

8 检测步骤

8.1 原材拉伸试验

8.1.1 试验设备:WA-300、WA1000B型液压式万能试验机

8.1.2试样具有恒定截面或是铸造试样,可以不经机加工而进行试验,需机加工

的试样和非机加工的试样都应符合GB/T228-2002中第6款及GB/T2975-1998的相关规定的要求,试样需矫直时,应将试样置于木材、塑料、或铜的平面上,用这些材料制成的锤子轻轻锤直,矫直时试样表面不得有损伤,也不允许受任何扭曲。

8.1.3被测试的样品经核实无误后,根据样品的规格和估值范围确定试验机的量

程和相应的夹具,准备试验。

8.1.4 试件横截面积S0的计算。对于试件的相关标准规定有公称横截面面积的原材,可直接引用;对于试件的相关标准只规定有公称直径而无公称横截面面积,可按公式:S0=πd2/4计算;对于钢板之类需测量原始尺寸的试件,用游标卡尺在标距的两端及中间三处测量宽度和厚度,取用三处测得的最小横截面积,按公式:S0=ab计算。其中:d为试件的公称直径,a、b为试件的宽度和厚度。除试件的相关标准另有规定外,其横截面积S0至少保留4位有效数字。

8.1.5 根据样品的相应标准的规定确定该试件的标距值,一般为公称直径数值的

5倍或10倍,若是钢板之类需测量原始尺寸的试件,原始标距数值L0按公式:

L0=k√S0计算(k为5.65或11.3),用锯尺和适宜的量具刻划该试件的原始标距,并应符合GB/T228-2002中第8款的要求。

8.1.6试验操作规程步骤:

1.原始标距的标记:应用小标记、细划线或细墨线标记原始标距,但不得用引

起过早断裂的缺口作标记。对于比例试样,应将原始标距的计算值修约至最

接近5mm的倍数,中间数值向较大一方修约。原始标距的标记应准确到±

1%。

2.调整试验空间:据试样长短和技术规格表对应调节试验空间,用试样先夹住

上端,然后控制移动横梁进行调节,最终夹牢试样下端

3.选择负荷大小分档

4.拉伸试验:圆柱试样根据试样夹持部分直径大小,选用相应的V形夹头夹

持。扁平试样用平面夹头夹持。在试样夹持时,先将试样一端装夹于钳口

(注意试样位置必须在中心)然后开动油泵使工作活塞开起一小段距离。对

准零点,调整移动横梁至适当位置再夹住试样下端,然后开始试验。作拉伸

试验时,应按夹头上所刻的尺寸范围夹持试样,试样应尽可能的夹住于钳口

的全长上。

(1)上屈服强度和下屈服强度的测定:试验时,读取测力度指针首次回转前指示的最大力和不计初始瞬时效应时屈服阶段中指示的最小力或首

次转动指示的恒定力,将其分别除以试样原始横截面积得到上屈服强

度和下屈服强度

(2)抗拉强度的测定:对于呈现明显屈服(不连续屈服)现象的金属材料,从记录的力-延伸或力-位移曲线图,或从测力度盘,读取过了屈

服阶段之后的最大力,对于呈现无明显屈服(连续屈服)现象的金属

材料,从记录的力-延伸或力-位移曲线图,或从测力度盘,读取试验

过程中的最大力。最大力除以试样原始横截面积得到抗拉强度(3)断后伸长率的测定:为了测定断后伸长率,应将试样断裂的部分仔细地配接在一起使其轴线处于同一直线上,并采取特别措施确保试样断

裂部分适当接触后测量试样断后标距。应使用分辨力优于0.1mm的量

具或测量装置测定断后标距,准确到±0.25mm。原则上只有断裂处与

最接近的标距标记的距离不小于原始标距的三分之一情况方为有效。

5.弯曲试验方法:仍用两支座对称地固定在工作台面上,并用二根螺栓拉紧支

座,以防止二支座向外位移.两支座滚柱间的净距为冲头宽度加上2.1倍试样

的厚度.

6.反复弯曲试验方法:选择圆柱支座半径r,圆柱支座顶部至拨杆底部距离h

以及拨杆孔直径,使弯曲臂处于垂直位置,将试样由拨杆孔插入,试样下端

用夹块夹紧,并使试样垂直于圆柱支座轴线。将试样弯曲90。,再向相反方

向交替进行;将试样自由端弯曲90。,再返回至其实位置作为第一次弯曲。

试样断裂的最后一次弯曲不计入弯曲次数。

8.1.7 试验完毕,关掉电源,填写设备使用记录,整理现场,做好维护保养工作。8.2 焊接材料拉伸试验

8.2.1 试验设备:WA-300、WA1000B型液压式万能试验机

8.2.2所接样品焊点应无裂纹、多孔性缺陷及明显的烧伤现象,不符合时应退回接样室。

8.2.3被测试的样品经核实无误后,根据样品的规格和估值范围确定试验机的量程和相应的夹具,准备试验。

8.2.4 试件横截面积S0的计算。对于试件的相关标准规定有公称横截面面积的原材,可直接引用;对于试件的相关标准只规定有公称直径而无公称横截面面积,可按公式:S0=πd2/4计算;对于钢板之类需测量原始尺寸的试件,用游标卡尺在标距的两端及中间三处测量宽度和厚度,取用三处测得的最小横截面积,按公式:S0=ab计算。其中:d为试件的公称直径,a、b为试件的宽度和厚度。除试件的相关标准另有规定外,其横截面积S0至少保留4位有效数字。

8.2.5 调整缓冲阀使与测力范围相适应,接通电源。打开试验机的电源及油泵钮,关闭回油阀,打开送油阀,使试验机来回运行一次,确定试验机能正常运行后,

将试验台升至约10 mm处的位置,关闭回油阀及送油阀。调整度盘指针至“零”

点,将试件夹于上下钳口中,保持垂直居中及满钳。

8.2.6 初始夹紧力约为极限承载力的2%,在此力作用下停留15~30 s,夹持部分在钳口内不应滑移,若滑移应重新夹紧。

8.2.7打开送油阀,根据样品的材料性质及试验目的确定试验的加荷速率,其控制范围应符合GB/T228-2002中第10.1款的要求,一般情况控制在10~30Mpa/s且保持恒定,当试验力达到材料的极限承载力时,试验机的指针出现回落,试件出现明显颈缩,拉至断裂破坏后,缓慢打开回油阀,并记录下最大力数值和断裂位置及断裂特征(延性断裂或脆性断裂),然后使试验机恢复到初始状态,取下已断裂的试件。

8.2.8 试验完毕,关掉电源,填写设备使用记录,整理现场,做好维护保养工

作。

8.3 钢筋机械连接材料拉伸试验

8.3.1 试验设备:WA-300、WA1000B型液压式万能试验机

8.3.2母材与套筒应一一配备,被测试的样品经核实无误后,根据样品的规格和估值范围确定试验机的量程和相应的夹具,准备试验。

8.3.3 试件横截面积S0的计算。对母材试件进行称重(精确至1g)和测量其长度(精确至1mm),母材和与之配套的套筒试件的面积可按公式:S0=母材试件重量/(母材试件长度X7.85)计算,试件横截面积S0保留4位有效数字。其中7.85为钢材的密度。

8.3.4 调整缓冲阀使与测力范围相适应,接通电源。打开试验机的电源及油泵钮,关闭回油阀,打开送油阀,使试验机来回运行一次,确定试验机能正常运行后,将试验台升至约10 mm处的位置,关闭回油阀及送油阀。调整度盘指针至“零”点,将试件夹于上下钳口中,保持垂直居中及满钳。

8.3.5 初始夹紧力约为极限承载力的2%,在此力作用下停留15~30 s,夹持部分在钳口内不应滑移,若滑移应重新夹紧。

8.3.6打开送油阀,根据样品的材料性质及试验目的确定试验的加荷速率,其控

制范围应符合GB/T228-2002中第10.1款的要求,一般情况控制在10~30Mpa/s ,材料的屈服强度过后,可适当加大速率,但平行长度的应变速率不能超过0.008/s,当试验力达到材料的极限承载力时,试验机的指针出现回落,试件出现明显破坏特征后,缓慢打开回油阀,并记录下母材或机械连接试件的最大抗拉力,然后使试验机恢复到初始状态,取下已破坏的试件。。

8.3.7 记下连接试件的破坏特征:母材断裂、套筒破坏或钢筋从套筒中滑脱。

8.3.8 试验完毕,关掉电源,填写设备使用记录,整理现场,做好维护保养工

作。

8.4 弯曲试验(支辊式弯曲)

8.4.1 试验设备:WA1000B型液压式万能试验机,不同直径的弯曲压头。

8.4.2被测试的样品经核实无误后,根据样品的规格、品种及相关标准确定弯曲压头直径和弯曲角度,准备试验。

8.4.3 调整缓冲阀使与测力范围相适应,接通电源。

8.4.4 打开试验机的电源及油泵钮,关闭回油阀,打开送油阀,使试验机来回运行一次,确定试验机能正常运行后,将试验台升至适当的位置,关闭回油阀及送油阀。

8.4.5调整两支辊间距离为(d+3a)±0.5a,并在试验过程中不允许有变化。其中:d为弯曲压头直径,a为试件的厚度或直径(可参见表2.1、表2.2)。

8.4.6 将试件放于两支承辊上,安放规定的直径的弯曲压头,打开送油阀,控制送油阀的速率,若试件为非焊接试件,使弯曲压头在试件两支点之间施加平稳压力,若试件为焊接试件,使弯曲压头在试件的焊缝处施加平稳压力,且该试件的焊缝处与弯曲压头接触面应打磨至母材平,将试件弯曲到规定角度或出现裂缝、裂纹、断裂为止。

8.4.7 当试件需要弯曲至两臂接触时,首先将试件按上述步骤弯曲至一定角度,

然后放置在两平板之间继续施加压力直至两臂接触为止。

8.4.8试验完毕,关掉电源,填写设备使用记录,整理现场,做好维护保养工

作。

8.5 反复弯曲试验

8.5.1 试验设备:反复弯曲试验机

8.5.2被测试的样品经核实无误后,根据样品的规格、品种和线材的尺寸,按相

应的标准确定试验机的弯曲圆弧半径、弯曲圆弧顶部至拔杆底面的距离及拔杆孔径并调整好,准备试验(可参见表3)。

8.5.3 试样的长度宜为150~250mm,且尽可能是直的,如需矫直,应将试样置于

木材、塑料、或铜的平面上,用这些材料制成的锤子轻轻锤直,矫直时试样表面不得有损伤,也不允许受任何扭曲。

8.5.4 使弯曲臂处于垂直位置,将试样由拔杆孔插入并夹紧其下端,使试样垂直

于两弯曲圆柱轴线所在平面。

8.5.5 为确保试样与弯曲圆弧在试验时有良好的接触,可施加某种形式的拉紧

力,该力不得超过公称抗拉强度的相应拉力负荷的2%。

8.5.6 操作时应平稳无冲击,弯曲速度每秒不超过一次,但要防止温度升高而影

响试验的结果。

8.5.7 将计数器置“零”,将试样从起始位置向右(左)弯曲90o后返回至起始

位置为第一次弯曲,再由起始位置向左(右)弯曲90o,试样再返回至起始位置为第二次弯曲。试样折断时的最后一次弯曲不计,即此时的计数器数值减一次。

8.5.8 记录数据,试验完毕,填写设备使用记录,整理现场,做好维护保养工

作。

9 在检测过程中发生异常现象及意外情况时的处理方法

9.1 异常现象

9.1.1 被检样品在检测过程中,出现与其正常受检特性不符时,应立即停止试

验,检查受检试件是否影响继续检测的准确性,如有影响,需对样品加工或更换后重新检测。

9.1.2 检测过程中,设备仪器量值显示系统出现非材料检测属性的间断、不均匀等异常情况,应停止检测,取下试件,重新核查仪器设备运转,是否正常,待正常后,方能重新开始。

9.1.3当首次测量超差时,应停止检查找原因,如属人为误差,则应重复检测予以消除,如属设备、仪器误差,则应立即调整,检测工作方能重新开始。

9.1.4检测所得结果离散过大或与日常检测相差甚远,应对检测的全过程详细检查,若发现有影响试验结果的因素,消除之后,重新检测,若未发现有影响试验结果

的因素,则检测结果有效。

9.2 意外情况

9.2.1 检测过程中如发生停电或非人为的自然事故而造成试验中断,应保护样

品,待恢复正常后,如对检测工作质量无影响,则试验可继续进行,否则检测工作重新开始。同时也可选择将试件转移至本中心其他分部进行检测。

9.2.2 检测中仪器、设备发生故障或损坏,应终止试验,保护样品,待排除故障

后,方可继续试验,如继续试验影响试验质量及结果,试验工作必须重新开始。同时也可选择将试件转移至本中心其他分部进行检测。

9.2.3 试验出现下列情况之一者,试验结果无效:试样断在机械刻划的标记上或

标距外,造成性能不合格;操作不当;试验记录有误或设备发生故障影响试验结果。

9.2.4 凡检测工作失误或样品本身的原因,而造成样品破坏或试验结果无效,无

法得出完整的检测结论时,所有检测资料应作废,应重新抽(送)样检测,检测原始资料以重新试验的结果为准,不得将两次试验资料拼凑在一起。

10 检测后的检查

10.1 对检测仪器设备的技术状态进行检查并记录。

10.2 试验后试样出现两个或两个以上的缩颈以及显示出肉眼可见的冶金缺陷

(如分层、气泡、夹渣缩孔等)应在试验记录和报告中注明。

10.3 对全部检测资料进行复核,确认无误,方可将做过试验的试件清理作报废处理,将剩余样品和不合格的试件退回样品保管室。

11 原始记录

11.1 原始记录的格式(见表4)。

11.2 原始记录的内容填写完整,不得用铅笔和圆珠笔,统一使用蓝色或黑色钢笔、签字笔填写。

11.3 原始记录如确需更改,作废资料应划一条水平线于该数据中央,将正确数据填在其右上方,并加盖修改人印章。

11.4 原始记录的数据处理应执行GB/T 8170-1987 《数值修约规则》。

12 资料的分析处理及结果评定

12.1 资料的分析处理按GB1250-1989规定进行。

12.2 结果评定按JGJ 18-2003 钢筋焊接及验收规程JGJ/T 27-2001、GB/T700-1988 、GB/T1591-1994 、GB/T701-1997 、GB/T13013-91 、GB/T1499-1998、JC 3046-1998 、GB 13788-2000等相应规定进行。

13 检测报告

13.1 检测报告按检测报告的编制和管理程序规定进行编制。封皮采用中心统一印制的格式,检测报告见表5、表6。检测报告的所有内容不允许涂改。

13.2 全部检测资料应采用法定计量单位,结果判定应执行GB1250-1989 《极限数值的表示方法和判断方法》。

表1检测项目的参数及仪器设备要求

2、HRB335:D=3a(a≤25mm);D=4a(a>25mm)

3、HRB400: D=4a(a≤25mm);D=5a(a>25mm)

4、CRB550: D=3a

5、Q235碳素结构钢:钢板:D=1.5a(a≤60mm);型钢:D=a(a≤60mm)

注:1、R235: D=2a;

2、HRB335: D=4a(a≤25mm);D=5a(a>25mm);

3、HRB400: D=5a(a≤25mm);D=6a(a>25mm);

5、结构钢: Q235:D=2a,支辊距离为4.2a;

Q345:D=3a, 支辊距离为5.2a。

注:应选择适当的拔杆孔径以保证线材在孔内自由运动。较小的孔径用于公称直径较小的线材;较大的孔径用于公称直径较大的线材;对于非圆截面线材应按其截面线材适用的拔杆孔。

表4

钢材力学性能检测原始记录

001-14

表6 钢材焊接性能检测报告

建设单位:生产厂家或产地:施工单位: . 工程名称:工程地点:工程部位: . 钢材品种:级别或牌号:接样日期: . 检测日期:报告编号:委托编号: .

证号:证号:证号:

001-15

表5 钢材力学性能检测报告

建设单位:生产厂家或产地:施工单位: . 工程名称:工程地点:工程部位: . 钢材品种:级别或牌号:接样日期: . 检测日期:报告编号:委托编号: .

证号:证号:证号:

001-16

钢铁的物理力学性能和机械性能表

钢铁的物理力学性能和机械性能表 2007-9-22 11:04 钢铁的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σ b= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维

钢的力学性能

冷轧学习资料(轧机车间) 钢的力学性能 1拉力试验 按标准制备的拉力试样,安装在拉力试验机的夹头内,对试样缓慢施加单轴向拉伸应力,直至试样被拉断为止的试验称作拉力试验。 1.1强度 金属材料在外力作用下,抵抗变形和断裂的能力叫强度。强度指标包括:比例极限、弹性极限、屈服强度、抗拉强度等。 1.2比例极限 对金属施加拉力,金属存在着力与变形成直线比例的阶段,而这个阶段的最大极限负荷Pp除以试样的原横截面积即为比例极限,用σ P表示。 1.3弹性极限 金属受外力作用发生了变形,外力去掉后,能完全恢复原来的形状,这种变形称为弹性变形。金属能保持弹性变形的最大应力称为弹性极限,用σe表示。 1.4抗拉强度 试样拉伸时,在拉断前所承受的最大负荷除以原横截面积所得的应力,称作抗拉强度,用σb表示。当材料所受的外应力大于其抗拉强度时,将会发生断裂。因此σb越高,则表示它能承受愈大的外应力而不致于断裂。 国外标准的结构钢常按抗拉强度来分类,如SS400,其中400即表示σb的最小值为400MPa 超高强度钢是指σb≥1373 Mpa的钢。 1.5屈强比 屈强比即屈服强度与抗拉强度之比值(σS/σb)。屈服比值越高,则该材料的强度愈高,屈强比值愈低则塑性愈佳,冲压成形性愈好。如深冲钢板的屈强比值为≤0.65。 弹簧钢一般均在弹性极限范围内服役,受载荷时不允许产生塑性变形,因此要求弹簧钢经淬火、回火后具有尽可能高的弹性极限和屈强比值(σS/σb≥0.90)此外疲劳寿命与抗拉强度及表面质量往往有很大关连。 1.6塑性 金属材料在受力破坏前可以经受永久变形的性能称为塑性。塑性指标通常伸长率和断面收缩率表示。伸长率与断面收缩率越高,则塑性越好。 8、冲击韧性 用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk表示。 目前常用的10×10×55mm,带2 mm深的V形缺口夏氏冲击试样,标准上直接采用冲击功(J焦耳值)AK,而不是采用αK值。因为单位面积上的冲击功并无实际意义。 冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT(断口面积转化温度)要低于某一温度的技术条件。所谓FATT,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。由于钢板厚度的影响,对厚度≤10mm的钢板,可取得3/4小尺寸冲击试样(7.5×10×55mm)或1/2小尺寸冲击试样(5×10×55mm)。但是一定要注意,同规格及同一温

GB2975钢材力学及工艺性能取样规定

中华人民共和国国家标准UDC669.142620.11 钢材力学及工艺性能取样规定GB2975-82 本标准适用于轧制、锻制、冷拉和挤压钢材的拉力、冲击、弯曲、硬度和顶锻等试验的取样。也可供其它力学及工艺性能试验取样时参考。 如产品标准或双方协议对取祥另有规定时,则按规定执行。 1样坯的切取 1.1样坯应在外观及尺寸合格的钢材上切取。 1.2切取样坯时,应防止因受热、加工硬化及变形而影响其力学及工艺性能。 1.2.1用烧割法切取样坯时,从祥坯切割线至试样边缘必须留有足够的加工余量,一般应不小于钢材的厚度或直径,但最小不得少于20mm。对厚度或直径大于60mm的钢材,其加工余量可根据双方协议适当减小。1.2.2冷剪样坯所留的加工余量可按下表选取: 2样坯切取位置及方向 2.1对截面尺寸〈图1的D和a〉小于或等于6Omm的圆钢、方钢和六角钢,应在中心切取拉力及冲击样坯;截面尺寸大于60mm时,则在直径或对角线距外端四分之一处切取,如图1所示。 2.2样坯不需热处理时,截面尺寸小于或等于40mm的圆钢、方钢和六角钢,应使用全截面进行拉力试验。当试验机条件不能满足要求时,应加工成GB228-76《金属拉力试验法》中相应的圆形比例试样。 2.3样坯需要热处理时,应按有关产品标准规定的尺寸,从圆钢、方钢和六角钢上切取。

2.4应从圆钢和方钢端部沿轧制方向切取弯曲样坯,截面尺寸小于或等于35mm时,应以钢材全截面进行试验。截面尺寸大于35mm时,圆钢应加工成直径25mm的圆形试样,并应保留宽度不大于5mm的表面层,方钢应加工成 厚度为2Omm并保留一个表面层的矩形试样,如图2所示。 度应是钢材厚度,如图3所示。

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

第二节 钢筋的主要力学性能

第二节钢筋的主要力学性能 一、钢筋的品种和级别 (一)钢筋的品种(分类)(有很多种分类形式) 按化学成分分类: 低碳钢 碳素钢中碳钢随含碳量增加,钢筋强度提高, 高碳钢塑性性能降低。 普通低合金钢:除碳素钢已有的成分外,再加入少量的 硅、锰、钛、钒等合金元素。强度显著 提高,塑性性能更好。 光面钢筋——表面光滑,与混凝土粘结力差。 按外形分类变形钢筋——表面带肋,螺旋纹、人字纹、 月牙纹,与混凝土粘结力高。 热轧钢筋用于钢筋混凝土结构 按生产工艺分类预应力钢丝和钢绞线及热处理钢筋 ——用于预应力混凝土结构 冷加工钢筋——用于预应力混凝土结构三种钢筋、生产工艺不同,见书。 (二)钢筋的级别 1、热轧钢筋:由普通(低碳)碳素钢、低合金钢轧 制而成——软钢

常用热轧钢筋的级别、符号、钢种和形状 性能:随着热轧钢筋级别提高,强度提高,塑性降低。 2、预应力钢丝和钢绞线、热处理钢筋 9~4φφ 用于预应力混凝土结构中P439~440 3、冷加工钢筋 冷拉、冷拔 二、钢筋的强度和变形(通过拉伸试验获得的应力应变曲 线来说明) 应力——应变曲线分两类: 有明显的流幅:热轧钢筋(软钢) 无明显的流幅:高碳钢(硬钢)(预应力钢丝、钢 绞线、热处理钢筋) 设计强度取值依据:(应力) 有明显的流幅钢筋,取其屈服点强度作为设计取值依 据。 无明显的流幅钢筋,取b σ85.0(极限抗拉强度)作为条件 屈服点。

三、钢筋的冷加工(对钢筋进行冷加工,可以提高强度) 1、冷拉 对热轧钢筋进行张拉,张拉应力超过原屈服点, 然后放松,再张拉,屈服强度提高了,但塑性 降低。(伸长率降低) 2、冷拔 将8 φ光面钢筋通过强力拔过直径小的钨合 6φ ~ 金拔丝模孔,塑性变形后,——3,4mm钢丝冷拉:提高抗拉强度(不宜作受压钢筋) 冷拔:同时提高抗拉、抗压强度。 四、混凝土结构对钢筋性能的要求 1、强度 2、塑性 3、可焊性 4、耐火性 5、与混凝土的粘结性 第三节钢筋和混凝土的粘结与锚固 一、粘结的作用和分类 钢筋和混凝土之间的粘结,是保证两者共同工作的前提。 钢筋混凝土结构受力后,若钢筋和混凝土有相对变形(滑移)就会在其交界面上产生剪应力τ,这种剪应力τ称为

钢绞线力学性能表

1、钢绞线镀锌力学性能表

钢绞线中镀锌钢丝力学性能表 钢绞线中镀锌钢丝锌层性能表Property of Zinc Coating of Zinc-Plated Steel Wire in Strand

2、无粘结钢绞线 UNBONDED STRAND WIRE 注:(1) 力学性能应符合PC钢绞线标准要求 (2) 根据不同用途,经双方协议,供应其它强度和直径的预应钢绞线。 Note:(1) Mechanical performance should conform to the specification of PCstranded wire (2) According to different uses,we can supply PC stranded wire with the other tensile strength and diameter through negotiation by both parties. 1x7

注:(1) *指屈服负荷是整根钢绞线破断负荷的85% (2) 根据不同用途,经双方协议,供应其它强度和直径的预应力钢材。 Note: (1) *indicating Yielding Load takes 85% of the breaking load of the whole strand wire (2) As agreed by both Parties, supply prestressing steel of other strength and dimension upon its purpose. 3、预应力混凝土用钢绞线 TYRE BEAD WIRE GB/T5224-2003 ASTMA416/A416M-2002 BS5896-1980 适用于由圆形断面钢丝捻成的做预应力混凝土结构、岩土锚固等用途的钢绞线 Steel strand twisted by round steel wire used for prestressed concrete structure,rock or earth enchorage edc. 1×7结构钢绞线尺寸及允许偏差表 钢绞线尺寸及允许偏差表

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

钢材的力学性能

B 钢材的力学性能 含碳2%以下的铁碳合金称为钢。炼钢的主要任务是按所炼钢种的质量要求,调整钢中碳和合金元素含量到规定范围之内,并使P 、S 、H 、O 、N 等杂质的含量降至允许限量之下。炼钢过程实质上是一个氧化过程,炉料中过剩的碳被氧化,燃烧生成CO 气体逸出,其它Si 、P 、Mn 等氧化后进入炉渣中。S 部分进入炼渣中,部分则生成SO 2排出。当钢水成份和温度达到工艺要求后,即可出钢。为了除去钢中过剩的氧及调整化学成份,可以添加脱氧剂和铁合金或合金元素。 1、拉力试验 按标准制备的拉力试样,安装在拉力试验机的夹头内,对试样缓慢施加单轴向拉伸应力,直至试样被拉断为止的试验称作拉力试验。 (1)强度 金属材料在外力作用下,抵抗变形和断 裂的能力叫强度。强度指标包括:比例极限、弹性极限、屈服强度、抗拉强度等。 (2)比例极限 对金属施加拉力,金属存在着力与 变形成直线比例的阶段,而这个阶段的最大极限负荷Pp 除以试样的原横截面积即为比例极限,用σP 表示。 (3)弹性极限 金属受外力作用发生了变形,外力 去掉后,能完全恢复原来的形状,这种变形称为弹性变形。金属能保持弹性变形的最大应力称为弹性极限,用σe 表示。 (4)抗拉强度 试样拉伸时,在拉断前所承受的最大 负荷除以原横截面积所得的应力,称作抗拉强度,用σb 表示。当材料所受的外应力大于其抗拉强度时,将会发生断裂。因此σb 越高,则表示它能承受愈大的外应力而不致于断裂。 国外标准的结构钢常按抗拉强度来分类,如SS400,其中400即表示σb 的最小值为400MPa ,超高强度钢是指σb ≥1373MPa 的钢。 (5)屈强比 屈强比即屈服强度与抗拉强度之比值 (σS /σb )。屈服比值越高,则该材料的强度愈高,屈强比值愈低则塑性愈佳,冲压成形性愈好。如深冲钢板的屈强比值为≤0.65。弹簧钢一般均在弹性极限范围内服役,受载荷时不允许产生塑性变形,因此要求弹簧钢经淬火、回火后具有尽可能高的弹性极限和屈强比值(σS /σb ≥0.90)。此外,疲劳寿命与抗拉强度及表面质 量往往有很大关联。 (6)塑性 金属材料在受力破坏前可以经受永久变 形的性能称为塑性。塑性指标通常用伸长率和断面收缩率表示。伸长率与断面收缩率越高,则塑性越好。 2、冲击韧性 用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk 表示。 目前常用的10mm ×10mm ×55mm 、带2mm 深的V 形缺口夏氏冲击试样,标准上直接采用冲击功AK ,而不是采用αk 值。因为单位面积上的冲击功并无实际意义。 冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT (断口面积转化温度)要低于某一温度的技术条件。所谓FATT ,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。由于钢板厚度的影响,对厚度≤10mm 的钢板,可取得3/4小尺寸冲击试样(7.5mm ×10mm ×55mm )或1/2小尺寸冲击试样(5mm ×10mm ×55mm )。但是一定要注意,同规格及同温度下的冲击功值才可相互比较。只有在标准规定的条件下,才可按标准的换算方法,折算成标准冲击试样的冲击功,再相互比较。 3、硬度试验 金属材料抵抗压头(淬硬的钢球或具有1200圆锥或角锥的金刚石压头)压陷表面的能力称为硬度。根据试验方法和适用范围的不同,硬度可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度以及显微硬度、高温硬度等。冶金产品常用的是布氏硬度和洛氏硬度。 4、宝钢企业标准(Q/BQB ) 宝钢企标中的钢号大致可分为3个来源:即从日本JIS 标准、德国DIN 标准移植及自行开发研制的钢号。从日本JIS 标准中移植来的钢号,一般首位常为S (Steel );从DIN 标准移植来的钢号,一般常以ST 开头(Stahl 德文中的“钢”);宝钢自行开发研制的钢号,一般首位常以宝钢的拼音首位B 开头。(作者单位:辽阳县产品质量监督检验所) □谷迎春王立伟 质量论谈 4

钢筋力学性能和工艺性能试验检验技术措施

钢筋力学性能和工艺性能试验检验技术措施1.工程概况: 1.1.为了保证河津热电厂使用热轧带肋钢筋的质量和为施工提供可靠的技术参数,根据中华人民共和国钢筋砼用热轧带肋钢筋检验标准GB1499-1998,特制定本检验技术措施。 1.2.本检验技术措施适用于钢筋砼热轧带肋钢筋。 2.作业前条件准备: 2.1.作业人员技术要求: 2.1.1.作业人员应工作认真负责,经过技术培训,并取得合格证书。 2.1.2.作业人员应熟知钢筋力学性能试验的取样,试验结果评定等规定。 2.2.试验所需设备仪器 万能试验机1台 游标卡尺或测微仪1把 3.技术要求 热轧带肋钢筋的牌号由HRB和牌号的屈服点最小值构成。H、R、B 分别为热轧(Hotrolled)、带肋(Ribbed)、钢筋(Bars)三个词的英文手写字母。热轧带肋钢筋分为HRB335、HRB400、HRB500、三个牌号。 钢筋的力学性能、工艺性能应符合下表:

钢筋公称直径范围为8-50mm,当钢筋进行冷弯或反向弯曲试验时,受弯部位外表不得产生裂缝。 钢筋表面不得有裂缝、结疤和折叠,钢筋表面允许有凸块,但不得超过横肋的高度,钢筋表面上其他缺陷的深度和高度不得所在部位尺寸的允许偏差。 3.1.每批钢筋的检验项目,取样方法和试验方法应符合表2的规定。表2 3.2.拉伸冷弯,反向弯曲试验不允许进行车削加工,计算钢筋强度用截面面积 采用表3公称横截面积。 表3钢筋公称横截面积与公称重量

3.3.测量钢筋重量偏差时,试样数量不小于10支,试样总长度不小于60cm,长度应逐支测量,精确到10mm,试样总重量不大于100kg时,应精确到0.5kg,试样总重量大于100kg时,应精确到1kg。 当供方能保证钢筋重量偏差符合规定时,试样的数量和长度可不受制上述限制。 3.4.钢筋实际重量与理论重量的偏差按下式计算: (试样实际总重量-(试样总长度×理论重量) 重量偏差(%)= ×100% 试样总长度×理论重量 4.检验规则 4.1.钢筋的检查和验收,按GB/T17505的规定进行。 4.2.组批规则 4.2.1. 钢筋应按批进行检查和验收,每批重量不大于60t。 4.2.2. 每批应由同一牌号、同一规格的钢筋组成,允许由同一牌号、同一冶炼方法、同一浇注方法的不同炉罐号组成混合批,但各炉罐号含碳量之差不大于0.02%,含锰量之差不大于0.15%。 4.3.取样数量 4.3.1. 钢筋各检查项目的取样数量应符合表2的规定

钢材力学性能指标汇总表

钢材力学性能指标汇总表 钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度 σbMpa 伸长率δs% 不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹) 牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径 mm 屈服点σsMpa 抗拉强度σbMpa 伸长率 δs% 冷弯d弯心直径a公称直径 不小于 光 圆Ι R235 8~20 235 370 25

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能 问答题参考答案 1.软钢和硬钢的区别是什么?应力一应变曲线有什么不同?设计时分别采用什么值作为依据? 答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增 f作为钢筋的强度极限。另一个强度指标是加以致无法使用,所以在设计中采用屈服强度 y f,一般用作钢筋的实际破坏强度。 钢筋极限强度 u 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。 设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb,其中σb为无明显流幅钢筋的极限抗拉强度。

图2-2硬钢拉伸试验的应力应变曲线 2. 我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级? 答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 HPB235(Q235,符号Φ,Ⅰ级)、热轧带肋钢筋HRB335(20MnSi ,符号,Ⅱ级)、热轧带肋钢筋HRB400(20MnSiV 、20MnSiNb 、20MnTi ,符号,Ⅲ级)、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3. 钢筋冷加工的目的是什么?冷加工方法有哪几种?简述冷拉方法? 答:钢筋冷加工目的是为了提高钢筋的强度,以节约钢材。除冷拉钢筋仍具有明显的屈服点外,其余冷加工钢筋无屈服点或屈服台阶,冷加工钢筋的设计强度提高,而延性大幅度下降。 冷加工方法有冷拨、冷拉、冷轧、冷扭。 冷拉钢筋由热轧钢筋在常温下经机械拉伸而成,冷拉应力值应超过钢筋的屈服强度。钢筋经冷拉后,屈服强度提高,但塑性降低,这种现象称为冷拉强化。冷拉后,经过一段时间钢筋的屈服点比原来的屈服点有所提高,这种现象称为时效硬化。时效硬化和温度有很大关系,温度过高(450℃以上)强度反而有所降低而塑性性能却有所增加,温度超过700℃,钢材会恢复到冷拉前的力学性能,不会发生时效硬化。为了避免冷拉钢筋在焊接时高温软化,要先焊好后再进行冷拉。钢筋经过冷拉和时效硬化以后,能提高屈服强度、节约钢材,但冷拉后钢筋的塑性(伸长率)有所降低。为了保证钢筋在强度提高的同时又具有一定的塑性,冷拉时应同时控制应力和控制应变。 4. 什么是钢筋的均匀伸长率?均匀伸长率反映了钢筋的什么性质? 答:均匀伸长率δgt 为非颈缩断口区域标距的残余应变与恢复的弹性应变组成。 s b gt E l l l 000'σδ+-= 0l ——不包含颈缩区拉伸前的测量标距;'l ——拉伸断裂后不包含颈缩区的测量标距;0b σ——实测钢筋拉断强度;s E ——钢筋弹性模量。 均匀伸长率δgt 比延伸率更真实反映了钢筋在拉断前的平均(非局部区域)伸长率,客观反映钢筋的变形能力,是比较科学的指标。 5. 什么是钢筋的包兴格效应? 答:钢筋混凝土结构或构件在反复荷载作用下,钢筋的力学性能与单向受拉或受压时的力学性能不同。1887年德国人包兴格对钢材进行拉压试验时发现的,所以将这种当受拉(或受压)超过弹性极限而产生塑性变形后,其反向受压(或受拉)的弹性极限将显著降低的软化现象,称为包兴格效应。 6. 在钢筋混凝土结构中,宜采用哪些钢筋? 答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 7. 试述钢筋混凝土结构对钢筋的性能有哪些要求。 答:(1)对钢筋强度方面的要求 普通钢筋是钢筋混凝土结构中和预应力混凝土结构中的非预应力钢筋,主要是

影响钢材力学性能的因素2

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

钢材力学性能实用实用标准一览表

钢材力学性能指标汇总表钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs%

不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹)牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆ΙR235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999 表一轧扁厚度、节距

材料的常用力学性能有哪些

材料的常用力学性能有哪些 材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。1强度 强度是指材料在外力作用下抵抗塑性变形或断裂的能力。强度用应力表示,其符号是σ,单位为MPa,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测定。 2塑性 塑性是指材料在断裂前产生永久变形而不被破坏的能力。材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测定。 3硬度 硬度是指金属材料抵抗硬物压入其表面的能力。材料的硬度越高,其耐磨性越好。常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。 1)布氏硬度 表示方法:布氏硬度用HBS(W)表示,S表示钢球压头,W表示硬质合金球压头。规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依

次用相应数字注明压头直径(mm)、试验力(N)和保持时间(s)。如120 HBS 10/1000/30。 适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。 根据经验,布氏硬度与抗拉强度之间有一定的近似关系: 对于低碳钢,有σ=0.36HBS; 对于高碳钢:有σ=0.34HBS。 2)洛氏硬度 表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。洛氏硬度的表示方法为:在符号前面写出硬度值。如62HRC。 适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。 4冲击韧性 冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。 5疲劳强度 疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。

钢材力学及工艺性能试验取样规定

钢材力学及工艺性能试验取样规定 GB2975-1982 本标准适用于轧制、锻制、冷拉和挤压钢材的拉力、冲击、弯曲、硬度和顶锻等试验的取样。也可供其它力学及工艺性能试验取样时参考。 如产品标准或双方协议对取样板另有规定时,则按规定执行。 1样坯的切取 1.1样坯应在外观及尺寸合格的钢材上切取。 1.2切取样坯时,应防止因受热、加工硬化及变形而影响其力学及工艺性能。 1.2.1用烧割法切取样坯时,从样坯切割线至试样边缘必须留有足够的加工余量,一般应不小于钢材的厚度或直径,但最小不得少于20mm。对厚度或直径大于60mm的钢材,其加工余量可根据双方协议适当减小。 1.2.2冷剪样坯所留的加工余量可按下表选取:

2样坯切取位置及方向 2.1对截面尺寸〈图1的D和a〉小于或等于6Omm的圆钢、方钢和六角钢,应在中心切取拉力及冲击样坯;截面尺寸大于60mm时,则在直径或对角线距外端四分之一处切取,如图1所示。 2.2样坯不需热处理时,截面尺寸小于或等于40mm的圆钢、方钢和六角钢,应使用全截面进行拉力试验。当试验机条件不能满足要求时,应加工成GB228-76《金属拉力试验法》中相应的圆形比例试样。 2.3样坯需要热处理时,应按有关产品标准规定的尺寸,从圆钢、方钢和六角钢上切取。 2.4应从圆钢和方钢端部沿轧制方向切取弯曲样坯,截面尺寸

小于或等于35mm时,应以钢材全截面进行试验。截面尺寸大于35mm时,圆钢应加工成直径25mm的圆形试样,并应保留宽度不大于5mm的表面层,方钢应加工成厚度为2Omm并保留一个表面层的矩形试样,如图2所示。 2.5应从工字钢和槽钢腰高四分之一处沿轧制方向切取矩形拉力、弯曲和冲击样坯。拉力、弯曲试样的厚度应是钢材厚度,如图3所示。

钢筋的力学性能

.钢筋的应力—应变曲线和力学性能指标 钢筋混凝土及预应力混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋(一般称为软钢)和无明显屈服点的钢筋(一般称为硬钢)。 有明显屈服点的钢筋的应力-应变曲线如图11-30所示。图中,a点以前应力与应变按比例增加,其关系符合虎克定律,这时如卸去荷载,应变将恢复到0,即无残余变形,a点对应的应力称为比例极限;过ad 点后,应变较应力增长为快;到达b点后,应变急剧增加,而应力基本上不变,应力—应变曲线呈现水平段cd,钢筋产生相当大的塑性变形,此阶段称为屈服阶段。b、c两点分别称为上屈服点和下屈服点。由于上屈服点b为开始进入屈服阶段的应力,呈不稳定状态,而下屈服点c比较稳定,因此,将下屈服点c的应力称为“屈服强度”。当钢筋屈服塑流到一定程度,即到达图中的d点,cd段称为屈服台阶,过d点后,应力应变关系又形成上升曲线,但曲线趋平,其最高点为e,de段称为钢筋的“强化阶段”,相应于e点的应力称为钢筋的极限强度,过e点后,钢筋薄弱断面显著缩小,产生“颈缩”现象(图11-31),此时变形迅速增加,应力随之下降,直至到达f点时,钢筋被拉断。

钢筋的力学性能指标有4个,即屈服强度、极限抗拉强度、伸长率和冷弯性能 (1)屈服强度 如上所述,对于软钢,取下屈服点c的应力作为屈服强度。对无明显屈服点的硬钢,设计上通常取残余应变为0.2%时所对应的应力作为假想的屈服点,称为条件屈服强度,用σ0.2来表示。对钢丝和热处理钢筋的0.2,规范统一取0.8倍极限抗拉强度。 (2)极限抗拉强度 对于软钢,取应力-应变曲线中的最高点e为极限抗拉强度;对于硬钢,规范规定,将应力—应变曲线的最高点作为强度标准值的依据。 (3)伸长率 伸长率是衡量钢筋塑性性能的一个指称,用δ表示。δ为钢筋试件拉断后的残余应变,其值为: 式中 l1——钢筋试件受力前的量测标距长度; 12——试件经拉断并重新拼合后的量测得到的标距长度。 应变量测标距按规定有l1=5d(d为试件直径)、10d,和按固定长度100mm三种,相应的伸长率分别为δ5、δ10、δ100,标距越短,平均残余应变越大,因此,一般δ5>δ10>δ100。 伸长率大的钢筋塑性性能好,拉断前有明显的预兆;伸长率小的钢筋塑性性能差,其破坏会突然发生,呈脆性特征,具有明显屈服点的钢筋有较大的伸长率,而无明显屈服点的钢筋伸长率很小。 (4)冷弯试验 冷弯试验是检验钢筋塑性的另一种方法。伸长率一般不能反映钢筋的脆化倾向,而冷弯性能可间接地反映钢筋的塑性性能和内在质量。冷弯试验的两个主要参数是弯心直径D和冷弯角度α。将要试验的钢筋(直径为d)绕某一规定直径的钢辊轴(直径为D)进行弯曲(图11-33)。冷弯试验合格的标准为在规定的D和α下

钢材的主要性能

一、钢材的主要性能 钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。 技术指标:屈服强度、延伸率、强屈比、冷弯性能。 力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。工艺性能包括冷弯性能和可焊性。 (1)抗拉性能:抗拉性能钢材最重要的力学性能。 屈服强度是结构设计中钢材强度的取值依据。 抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。 对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25; 实测屈服响度与理论屈服强度之比不大于1.3; 强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。 钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。钢材的塑性指标通常用伸长率表示。伸长率随钢筋强度的增加而降低。 冷弯也是考核钢筋塑性的基本指标。 (2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。 (3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。 二、钢筋的工艺性能 1、钢材的性能主要有哪些内容 钢材的主要性能包括力学性能和工艺性能。力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。 (1)抗拉性能。表示钢材抗拉性能的指标有屈服强度、抗 拉强度、屈强比、伸长率、断面收缩率。 屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。 抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6~0.65,低合金结构钢为0.65~0.75,合金结构钢为0.84~0.86。

(重)常见材料的力学性能

附录常用材料的力学及其它物理性能 一、玻璃的强度设计值 f g(MPa) JGJ102-2003表5.2.1 二、铝合金型材的强度设计值 (MPa) GB50429-2007表4.3.4 三、钢材的强度设计值(1-热轧钢材) f s(MPa) JGJ102-2003表5.2.3 四、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa) 五、材料的弹性模量E(MPa) JGJ102-2003表5.2.8、JGJ133-2001表5.3.9

六、 材料的泊松比υ JGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7 七、 材料的膨胀系数α(1/℃) JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7 八、 材料的重力密度γg (KN/m ) JGJ102-2003表5.3.1、GB50429-2007表4.3.7 九、 板材单位面积重力标准值(MPa ) JGJ133-2001表5.2.2 十、 螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1

十一、螺栓连接的强度设计值二(MPa) 十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3

十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3 十四、楼层弹性层间位移角限值 GB/T21086-2007表20 十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2

十六、铝塑复合板强度设计值(MPa) JGJ133-2001表5.3.3 十七、蜂窝铝板强度设计值(MPa) JGJ133-2001表5.3.4 十八、不锈钢板强度设计值(MPa) 附录常用材料的力学及其它物理性能十九、玻璃的强度设计值 f g(N/mm2) 二十、铝合金型材的强度设计值 f a(N/mm2)

相关文档