文档库 最新最全的文档下载
当前位置:文档库 › 无人机遥测数传通信链路

无人机遥测数传通信链路

无人机遥测数传通信链路
无人机遥测数传通信链路

无人机数传模块简介

在多旋翼无人机上常常会用到的433MHZ/915MHZ数传模块,也常被叫做“数传电台”、“无线数传模块”、“无线电遥测”等。它是利用数字信号处理技术(Digital Signal Processing,简称DSP)和无线电技术(Radio Engineering)来实现稳定可靠的数据传输功能。

由于采用了DSP技术,使得数传这种通讯媒介具有很优异的性能以及备广泛应用于各个行业。数传抗干扰能力强,受噪声影响小且可以通过校验等方式滤除干扰信息,对器件和电路的差异不敏感,最大的特点是可以多次再

生恢复而不降低质量,还具有易于处理、调度灵活、高质量、高可靠性、维护方便等特点。

数传作为和飞控的无线数据交互工具,可以把无人机的实时状态信息传回到地面接收装置,如电机转速、电池电压、实时高度、GPS位置、姿态角度等,这些信息可以供爱好者或开发者更好的对无人机进行各方面的优化工作。

数传在其他领域也有很广泛的应用:如电力电气SCADA(Supervisory Control And Data Acquisition)系统,点多而分散的配变站十分适宜数传的使用;油田、煤矿、水文、气象等地理环境复杂数据采集工作;城市水处理、集中供热等市政工程无人值守化的推进数传也在大展身手等等。

调制方式的划分

数字信号的调制方式有MSK (Minimum Shift Keying)、GFSK(Gaussian Frequency Shift Keying)、QPSK(Quadrature Phase Shift Keyin)、QAM (Quadrature Amplitude Modulation)、CPFSK(Continuous-phase frequency-shift keying)、GMSK(Gaussian Filtered Minimum Shift Keying)等等,它们都是根据ASK、FSK和PSK(调幅、调频和调相)的组合或改进而得来的。下面对常见的数字调制方法ASK、FSK、MSK、GFSK、GMSK进行原理的简单介绍:

传输距离及其影响因素

市面上常见的航模数传都是采用3DR方案的数传模块,分为100MW和

500MW两个版本,100MW的传输距离为500-1000米左右,500MW的传输距离为3000-5000米左右,(此为实际传输距离,非理论值)。对于数传来讲,传输距离的影响因素很多,如发射机功率,接收机灵敏度,天线的增益,有无遮挡等等。除了常用的以外也有基于3G或4G网络的图传数传一体设备,这样基本不受距离的限制。但是由于多轴的续航大部分在20分钟左右,使得超远距离的数传对于飞行的实际意义不大,通常采用1KM-5KM左右的数传基本可以达到使用要求。

数传接收机的灵敏度一般都在-100dbm到-120dBm左右,一般也就只有改变发射机的功率来增加传输距离;也可以通过天线来增加通信距离,一般来讲,天线的增益越高,可以提供的通信距离越远,大的多轴可以采用定向天线来获得更远的传输距离;遮挡也会对传输信号的产生影响,所以尽量在空旷的地方飞行;此外还有传播衰耗,此种衰耗可以理解为是由于辐射能量的扩散引起的衰耗等。

ST微控制器的串口通讯

任何 UART 双向通信均需要至少两个引脚:接收数据输入引脚(RX)和发送数据输出引脚(TX)。

?RX:接收数据输入引脚就是串行数据输入引脚。过采样技术可区分有效

输入数据和噪声,从而用于恢复数据。

?TX:发送数据输出引脚。如果关闭发送器,该输出引脚模式由其 I/O 端口配置决定。如果使能了发送器但没有待发送的数据,则 TX 引脚处于

高电平。在单线和智能卡模式下,该 I/O 用于发送和接收数据(USART 电平下,随后在 SW_RX 上接收数据)。

在同步模式下连接时需要以下引脚:

?SCLK:发送器时钟输出。该引脚用于输出发送器数据时钟,以便按照SPI 主模式进行同步发送(起始位和结束位上无时钟脉冲,可通过软件

向最后一个数据位发送时钟脉冲)。RX 上可同步接收并行数据。这一点

可用于控制带移位寄存器的外设(如 LCD 驱动器)。时钟相位和极性可

通过软件编程。在智能卡模式下,SCLK 可向智能卡提供时钟。

?在硬件流控制模式下需要以下引脚:

?nCTS:“清除以发送”用于在当前传输结束时阻止数据发送(高电平时)。

?nRTS:“请求以发送”用于指示 USART 已准备好接收数据(低电平时)。数传模块的硬件接口

我们通常用到的数传接口有USB接口,mini USB接口以及4?6Pin的1.27MM 小白座等。

USB接口:

USB接口是英文Universal Serial Bus的缩写,中文含义是“通用串行总线”。它是一种应用在PC端的接口技术。早在1995年,就已经有了PC机带了USB接口,但由于缺乏软件和硬件设备的支持,这些PC机的接口都闲置未用。1998年后,随着微软在Windows98中内置了对USB的支持模块,加上USB设备日益增多,USB接口才逐步走进了实际应用阶段。

USB设备之所以会被大量应用,主要具有以下优点:

?可以热插拔。也就是用户在外接设备时不用开关机这样的动作,而是直接在PC机开机状态下插上USB就可以用了。

?携带方便。USB设备大多小而轻,方便用户在任意场合随时使用。

?标准统一。早年,大家常见的是IDE接口的硬盘,串口的鼠标键盘,并口的打印机等,但是在有了USB之后,这些外用设备统统可以用同样的

标准与PC机进行连接。

?可以连接多个设备。USB在PC机上往往具有多个接口,可以同时连接多个设备。

Mini USB接口:

MiniUSB,又称迷你USB,是一种USB接口标准,MiniUSB体积小,适用于移动设备等小型电子设备。Mini USB分为A型,B型和AB型。MiniB型5Pin这种接口可以说是最常见的一种接口了,这种接口由于防误插性能出众,体积也比较小巧,所以正在赢得很多的厂商青睐,这种接口广泛出现在读卡器、MP3、数码相机以及移动硬盘上。

信源编码

信源编码是一种以提高通信有效性为目的而对信源符号进行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。

信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩;码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。作用之二是当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。

信源编码是对输入信息进行编码,优化信息和压缩信息并且打成符合标准的数据包。

串口通信协议

所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。

串口的配置参数有波特率、数据位、停止位和奇偶校验。在飞控程序中对使用到的串口进行相应的配置,就能发送数据,在接收端进行相应的设置,就可以接收飞控发出的数据。简单的串口通信协议的数据包的格式可以自行规定,例如55 AA XX XX AA 55这样的数据包,其中55 AA作为协议的开始标志,AA 55作为协议的结束标志,其中 XX XX 作为发送的数据,在主机端数据以这样的格式进行打包发送,PC端或者是其他接收端则接收到数据包按数据格式进行数据的解析就能获取相应的数据。

MAVLINK协议简介

MAVLink是一种轻量,只包含头文件信息调度库的通信协议,遵从GNU 的LGPL许可协议。主要用于地面站(GCS)和微型无人运载工具间的通信。可以传输微型无人运载工具的方向、GPS信息和速度等信息。MAVLink协议可以工作在2.4G、900M、433M波段,兼容传统无线发射设备,能够全双工工作。该协议比较简单,可完全满足一般微型无人机的通信需求,是一种极具应用价值的开源通信协议。

MAVLink完全面向两个特性而设计:速度与安全。它允许检查丢失的数据包,但是每个消息只需要6字节的开销。MAVLink的体系结构,MAVLink分为地面站和载具两部分。两者可以通过串行通信、无线调制解调器、UDP(用户数据报协议)、WIFI802.11bgn链接。地面站部分分为三层:MAVLink层、MAV抽象层、用户接口层。MAVLink层是硬件层,产生与载具通信的数据帧,保证报文格式的稳定,负责直接与载具通信。在MAV抽象层中包括各种MAV目标函数,这一层允许MAVLink适用于不同的自驾仪系统。最上层是用户界面层,包括2D 地图界面、平显。载具部分有两层,底层为与地面直接通信的数据格式层,上层是包括自驾仪数据结构和任务库(包括参数、航点等)。任务库是载具快速执行参数和航线协议的保证。

MAVLINK数据包结构

MAVLINK传输时的基本单位是消息帧,每一帧的消息结构如下:

其中除了灰色外,其他的格子都代表了一个字节的数据。

红色的是起始标志位(stx),在v1.0版本中以“FE”作为起始标志。这个标志位在mavlink消息帧接收端进行消息解码时有用处。

第二个格子代表的是灰色部分(payload,称作有效载荷,要用的数据在有效载荷里面)的字节长度(len),范围从0到255之间。在mavlink消息帧接收端可以用它和实际收到的有效载荷的长度比较,以验证有效载荷的长度是否正确。

第三个格子代表的是本次消息帧的序号(seq),每次发完一个消息,这个字节的内容会加1,加到255后会从0重新开始。这个序号用于mavlink消息帧接收端计算消息丢失比例用的,相当于是信号强度。

第四个格子代表了发送本条消息帧的设备的系统编号(sys),用于mavlink消息帧接收端识别是哪个设备发来的消息。

第五个格子代表了发送本条消息帧的设备的单元编号(comp),用于mavlink消息帧接收端识别是设备的哪个单元发来的消息(暂时没什么用)。

第六个格子代表了有效载荷中消息包的编号(msg),注意它和序号是不同的,这个字节很重要,mavlink消息帧接收端要根据这个编号来确定有效载荷里到底放了什么消息包并根据编号选择对应的方式来处理有效载荷里的信息包。

最后两个字节是16位校验位,ckb是高八位,cka是低八位。校验码由crc16算法得到,算法将整个消息(从起始位开始到有效载荷结束,还要额外加上个MAVLINK_CRC_EXTRA字节)进行crc16计算,得出一个16位的校验码。之前提到的每种有效载荷里信息包(由消息包编号来表明是哪种消息包)会对应一个MAVLINK_CRC_EXTRA,这个MAVLIN_CRC_EXTRA是由生成mavlink代码的xml文件生成的,加入这个额外的东西是为了当飞行器和地面站使用不同版本的mavlink协议时,双方计算得到的校验码会不同,这样不同版本间的

mavlink协议就不会在一起正常工作,避免了由于不同版本间通讯时带来的重大潜在问题。

MAVLINK消息帧讲解

在mavlink消息帧里最重要的两个东西,一个是msgid;一个是payload,前者是payload中内容的编号,后者则存放了消息。消息有许多种类型,在官网的网页中中以蓝色的“#”加数字的方式来表示消息的编号如“#0”(这样的表示方法应该是为了方便在网页中查找相应编号消息的定义)。在官网介绍网页里往下拉,大概拉到二分之一的位置处,开始出现“MAVLink Messages”的介绍,往下看是各种消息的数据组成说明。下面将以heartbeat消息为例,讲解mavlink消息。

以#0 消息为例,这个消息叫心跳包(heartbeat)。它一般用来表明发出该消息的设备是活跃的,飞行器和地面站都会发出这个信号(一般以1Hz发送),地面站和飞行器会根据是否及时收到了心跳包来判断是否和飞行器或地面站失去了联系。

在表中可以看出,心跳包由6个数据组成,第一个是占一个字节的飞行器

类型数据(type),这个数据表示了当前发消息的是什么飞行器,比如四旋翼,固定翼等等。type的取值如何与飞行器类型对应,这在官方的mavlink消息介绍网页可以找到,位于网页开始出的数据枚举中。

MAVLINK数据包结构

其中,第一个是通用飞行器,对应的type数值是0;第二个是固定翼类型,对应的数值是1;第三个对应的是四旋翼,对弈的数值是2,依次类推。对于飞行器端则代表了当前飞行器的类型,地面站可以根据这个参数来判断飞行器的类型并作出相应的反应。

第二个参数是自驾仪(即通常所说的飞控)类型,比如apm,ppz,Pixhawk等飞控,具体定义查找和之前查找飞行器类型时的方法一样。同样的,对于发送心跳包的飞行器来说代表了自己的飞控类性,对地面站发出的心跳包来说意义不大。如下表所示

第三个参数是基本模式(base mode),是指飞控现在处在哪个基本模式,对于发心跳包的地面站来说没有意义,对于发送心跳包的飞控来说是有意义的。这个参数要看各个飞控自己的定义方式,模式标记位MAV_MODE_FLAG所示:

第四个参数是用户模式(custom mode),在Pixhawk的用户模式中以多轴为例,它分为主模式(main mode)和子模式(sub mode),两种模式组合在一起成为最终的模式,主模式分为3种,手动(manual),辅助(assist),自动(auto)。手动模式类似apm的姿态模式。在辅助模式中,又分为高度控制模式(altctl)和位置控制模式(posctl)两个子模式,高度控制模式就类似apm 的定高模式,油门对应到飞行器高度控制上。位置模式控制飞行器相对地面的速度,油门和高度控制模式一样,yaw轴控制和手动模式一样。自动模式里又分为3个子模式,任务模式(mission),留待模式(loiter),返航模式(return),任务模式就是执行设定好的航点任务,留待模式就是gps悬停模式,返航模式就是直线返回home点并自动降落。在apm里这个参数貌似是没有用的,注意这个数据占了4个字节,在Pixhawk中,前两个字节(低位)是保

留的,没有用,第三个字节是主模式,第四个字节是子模式。

第五个是系统状态(system status),其中的standby状态在Pixhawk里就是还没解锁的状态,active状态就是已经解锁,准备起飞的状态。状态MAV_STATE所示:

第六个是mavlink版本(mavlink version),现在是“3”版本。

其余的消息也是类似的结构,各个数据的定义可以查看mavlink官方网页的说明,这些说明一般在网页的前面部分。具体说明以飞控为准,mavlink仅提供基本的定义。

MAVLINK消息帧发送与解析

原始的mavlink消息放在common文件夹里面(大部分消息都在common文件夹中)。checksum.h中存放的是计算校验码的代码。 mavlink_helper.h里面是将各个消息包补充完整(调用checksum.h中的函数计算校验码并补上消息帧的头,比如sysid和compid等)成为mavlink消息帧再发送。

以发送心跳包(heartbeat)为例,讲解如何使用mavlink头文件来发送心跳包。首先打开common文件夹中的mavlink_msg_heartbeat.h 头文件。这个头文件可以分为两部分,一部分用来打包、发送heartbeat消息,另一部分用来接收到heartbeat消息时解码消息。

无人机通信链路抗干扰问题研究

35 I nternet Communication 互联网+通信 无人机在军事领域具有很大的应用优势,但是面对日渐复杂的电磁环境,需要对其通信链路抗干扰手段进行分析,降低电磁因素对无人机的干扰,提高无人机工作稳定性和可靠性。针对无人机通信链路特点,需对各项干扰因素进行分析,从技术、设计以及应用多个角度着手,保证所选抗干扰手段的有效性。 一、无人机通信链路干扰问题 1、遥测遥控信号干扰。1.分布式干扰。在无人机工作区域内,存在众多体积小、重量轻、成本低的小型电子干扰机,由程序控制,能自动实现对选定军事电子设备进行干扰。同时,其分布具有很大的随机性,可产生多方向干扰扇面,对无人机产生大区域压制性干扰。如果干扰方向数据不小于自适应凋零天线阵阵元数目时,自适应调零控制将会失效。2.远程超大功率多信道干扰。利用空间功率合成技术、智能天线技术与相控阵技术,来实现对无人机通信链路关键节点的干扰。此干扰不仅具有很宽的使用频段,还具有避免抵近干扰危险性的特点。 2、GPS 导航系统干扰。GPS 卫星无线电导航信号,选择低信噪比的扩谱调制传输方式。GPS 军码信号编码所需周期较长,就目前应用现状来看,很难产生足够大功率干扰信号来抵消GPS 接收机扩频增益。最为常见的无线电导航干扰,如转发瞄准、宽带阻塞与离散拦阻式等干扰方法,主要采用:1信息干扰,既通过发射大功率杂波信号来干扰导航信息的正确获取和使用;2信息源摧毁,导致整个导航系统瘫痪。 二、无人机通信链路抗干扰手段 1.应用抗干扰技术。选择自适应天线阵并结合扩频技术,来提高无人机通信抗干扰性能,主要包括自适应阵处理、扩频处理和中心处理计算机三部分[1-2]。第一,自适应阵处理部分。电磁环境对无人机的干扰,主要作用对象是情报传输系统的收信系统,自适应阵处理技术的应用,对接收的信号和干扰进行自适应处理,有效估计信号的来源,对天线阵的发射方向进行自适应调整,使其对准接收信号主向,确保自适应天线阵可以有效发射。第二,扩频通信部分。主要包括收发功能,接收主要为自适应阵所输出的信号,对其进行解调及解码等处理,并可以提供自适应阵所需要的参考信号; 无人机通信链路抗干扰问题研究 □马文良 中国人民解放军92419部队 【摘要】 无人机作为一种重要军事装备,被广泛应用到侦察与反侦察、导航对抗、遥控遥测对抗等多个方向。为了保证无人机稳定工作,需要保证通信系统运行可靠性,为GPS 导航和无线遥测遥控系统提供保障。基于电磁环境干扰,对无人机通信链路抗干扰手段进行分析,来提高其对环境的适应能力,充分发挥其具有的优势。本文对无人机通信链路干扰问题,提出了相应的抗干扰手段。【关键词】 无人机 通信链路 电磁环境 抗干扰 发送则主要是对信号进行采集、编码、调制以及扩频等处理,最终得到扩频发射信号。第三,中心处理计算机部分。主要是对各种情报信息进行处理,并完成系统自检、初始化、模式控制、监测与转换等各项功能,确保信息的有效交换与处理。与常规通信系统相比,该系统具有更强的抗窄带干扰能力,但需要对频域扩展比进行合理设计。另外,当干扰强度达到一定限度后,扩频系统便达不到抗干扰要求。目前对扩频信号的检测,可以通过全景接收机来实现,同时对于跳频通信问题,也可以通过提高跟踪干扰速度来实现。 图1 无人机自适应阵抗干扰系统 2.隐身低辐射设计。主要从工程设计角度进行分析,应用新型复合材料、雷达吸波材料以及低噪声发动机,进而提高无人机抗干扰能力,避免被侦察,同时还可以从动力、红外、光电、电磁以及噪声等方面进行分析[3]。应用限制红外反射技术,即将能够吸收红外光的特质漆涂在无人机表面,并向燃料内注入产生红外辐射的化学制剂,可以有效抵抗雷达的侦察。可以对无人机进行充电表面涂层,由24V 电源充电后,表面涂层可以有效吸收雷达波,可以有效减小雷达探测距离40%~50%[4]。同时,充电表面涂层还可以根据实际需求进行变色,可以最大程度上与周围环境融为一体,具有良好的反侦察效果。另外,还可对无人机进行工艺改造,对无人机副翼、襟翼等各传动面进行改造,设计成综合面,减小各部件间的连接缝,缩小雷达反射面,进而避免雷达的侦察。 结束语:在未来信息化战场上,无人机应用将越来越广泛,需要对无人机通信链路抗干扰技术进行分析,确定抗干扰技术研究方向,有针对性的采取措施,提高无人机的稳定性及可靠性,充分发挥其应有的价值。 参 考 文 献 [1] 徐靖涛,陆钰,王金根.无人机通信链路抗干扰手段探析[J].桂林航天工业高等专科学校学报,2007,04:1-3. [2] 马传焱.无人机测控系统抗干扰技术与应用分析[J].飞航导弹,2006(11): 9-11. [3] 邹湘伏,何清华,贺继林.无人机发展现状及相关技术[J]. 飞航导弹, 2006(10):9-14. [4] 刘先虎,范万水,王备仓.复杂电磁环境下无人机通信抗干扰问题研究[J].军事通信技术,2010,03:86-90.

无人机通信频段划分-隔离器、环形器

无人机通信频段划分----隔离器、环形器 无人机、通信频段、隔离器、环形器、 工信部根据《中华人民共和国无线电频率划分规定》及我国频谱使用情况,规定840.5-845MHz、1430-1444MHz和2408-2440MHz频段用于无人驾驶航空器系统。 1、840.5-845MHz可用于无人驾驶航空器系统的上行遥控链路。其中,841-845MHz也可采用时分方式用于无人驾驶航空器系统的上行遥控和下行遥测链路。 2、1430-1444MHz频段可用于无人驾驶航空器系统下行遥测与信息传输链路,其中,1430-1438MHz频段用于警用无人驾驶航空器和直升机视频传输,其他无人驾驶航空器使用1438-1444MHz频段。 3、2408-2440MHz频段可作为无人驾驶航空器系统上行遥控、下行遥测与信息传输链路的备份频段。相关无线电台站在该频段工作时不得对其他合法无线电业务造成影响,也不能寻求无线电干扰保护。 4、上述频段的信道配置,所用无线电设备发射功率、无用发射限值和接收机的邻道选择性应符合相关要求。 5、频率使用、无线电台站设置和所用无线电发射设备应符合国家无线电管理及无人驾驶航空器系统管理有关规定。

在此列举一些无人机禁区:机场、高楼林立的CBD、人群聚集的地方、高压线、手机基站、很多人放风筝的地方、钢筋混凝土地面、铁塔、铁矿、深水码头、远离海岸的水面、军事设施等。 市面上以大疆产品为居多,这里简单讲讲,大疆通常为2.4Ghz,也就是约.2400Mhz。此工作频段位于无人机系统下行链路。假如你是一位因新奇而去玩的飞手,请注意:远离电场、磁场比较强的设施,防止信号丢失。 下面简单介绍几款隔离器环形器可用于无人机通信频段

无人机数据传输系统-手册

1.概论: 无人机,即无人驾驶的飞机。是指在飞机上没有驾驶员,只是由程序控制自动飞行或者由人在地面或母机上进行遥控的飞机。它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统可以实现远距离飞行并得以控制。无人机与有人驾驶的飞机相比而言,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务,因此被广泛应用。 二、无人机的特点及技术要求 无人机没有飞行员,其飞行任务的完成是由无人飞行器、地面控制站和发射器组成的无人机系统在地面指挥小组的控制一下实现的。据此,无人机具有以下特点: (1)结构简单。没有常规驾驶舱,无人机结构尺寸比有人驾驶飞机小得多。有一种无尾无人机在结构上比常规飞机缩小40%以上。重量减轻,体积变小,有利于提高飞行性能和降低研制难度。 (2)安全性强。无人机在操纵人员培训和执行任务时对人员具有高度的安全性,保护有生力量和稀缺的人力资源。可以用来执行危险性大的任务。 (3)性能提高。无人机在设计时不用考虑飞行员的因素。许多受到人生理和心理所限的技术都可在无人机上使用,从而突破了有人在机的危险,保证了飞行的安全性。 (4)一机多用,稍作改进后发展为轻型近距离对地攻击机。

(5)采用成熟的发动机和主要机载设备,以减少研制风险与经费投入,加快研制进度。联合研制以减小投资风险、解决经费不足有利于扩大出口及扬长技术与设备优势。 (6)研制综合训练系统。技术要求有: (1)信息技术包括信息的收集和融合,信息的评估和表达,防御性的信息战、自动目标确定和识别等; (2)设备组成包括低成本结构、小型化及模块化电子设备、低可见性天线、小型精确武器、可储存的高性能发动机及电动作动器等; (3)性能实现包括先进的低可见性和维护性技术、任务管理和规划、组合模拟和训练环境等。 三、无人机系统按照功能划分,主要包括四部分: (1)飞行器系统 包括空中和地面两大部分。空中部分包括:无人机、机载电子设备和辅助设备等,主要完成飞行任务。地面部分包括:飞行器定位系统、飞行器控制系统、导航系统以及发射回收系统,主要完成对飞行器的遥控、遥测和导航任务,空中与地面系统通过数据链路建立起紧密联系。 (2)数据链系统 包括:遥控、遥测、跟踪测量设备、信息传输设备、数据中继设备等用以指挥操纵飞机飞行,并将飞机的状态参数及侦察信息数据传到控制站。 (3)任务设备系统 包括:为完成各种任务而需要在飞机上装载的任务设备。

无人机遥测数传通信链路

无人机数传模块简介 在多旋翼无人机上常常会用到的433MHZ/915MHZ数传模块,也常被叫做“数传电台”、“无线数传模块”、“无线电遥测”等。它是利用数字信号处理技术(Digital Signal Processing,简称DSP)和无线电技术(Radio Engineering)来实现稳定可靠的数据传输功能。 由于采用了DSP技术,使得数传这种通讯媒介具有很优异的性能以及备广泛应用于各个行业。数传抗干扰能力强,受噪声影响小且可以通过校验等方式滤除干扰信息,对器件和电路的差异不敏感,最大的特点是可以多次再 生恢复而不降低质量,还具有易于处理、调度灵活、高质量、高可靠性、维护方便等特点。 数传作为和飞控的无线数据交互工具,可以把无人机的实时状态信息传回到地面接收装置,如电机转速、电池电压、实时高度、GPS位置、姿态角度等,这些信息可以供爱好者或开发者更好的对无人机进行各方面的优化工作。 数传在其他领域也有很广泛的应用:如电力电气SCADA(Supervisory Control And Data Acquisition)系统,点多而分散的配变站十分适宜数传的使用;油田、煤矿、水文、气象等地理环境复杂数据采集工作;城市水处理、集中供热等市政工程无人值守化的推进数传也在大展身手等等。 调制方式的划分 数字信号的调制方式有MSK (Minimum Shift Keying)、GFSK(Gaussian Frequency Shift Keying)、QPSK(Quadrature Phase Shift Keyin)、QAM (Quadrature Amplitude Modulation)、CPFSK(Continuous-phase frequency-shift keying)、GMSK(Gaussian Filtered Minimum Shift Keying)等等,它们都是根据ASK、FSK和PSK(调幅、调频和调相)的组合或改进而得来的。下面对常见的数字调制方法ASK、FSK、MSK、GFSK、GMSK进行原理的简单介绍: 传输距离及其影响因素 市面上常见的航模数传都是采用3DR方案的数传模块,分为100MW和 500MW两个版本,100MW的传输距离为500-1000米左右,500MW的传输距离为3000-5000米左右,(此为实际传输距离,非理论值)。对于数传来讲,传输距离的影响因素很多,如发射机功率,接收机灵敏度,天线的增益,有无遮挡等等。除了常用的以外也有基于3G或4G网络的图传数传一体设备,这样基本不受距离的限制。但是由于多轴的续航大部分在20分钟左右,使得超远距离的数传对于飞行的实际意义不大,通常采用1KM-5KM左右的数传基本可以达到使用要求。 数传接收机的灵敏度一般都在-100dbm到-120dBm左右,一般也就只有改变发射机的功率来增加传输距离;也可以通过天线来增加通信距离,一般来讲,天线的增益越高,可以提供的通信距离越远,大的多轴可以采用定向天线来获得更远的传输距离;遮挡也会对传输信号的产生影响,所以尽量在空旷的地方飞行;此外还有传播衰耗,此种衰耗可以理解为是由于辐射能量的扩散引起的衰耗等。 ST微控制器的串口通讯 任何 UART 双向通信均需要至少两个引脚:接收数据输入引脚(RX)和发送数据输出引脚(TX)。 ?RX:接收数据输入引脚就是串行数据输入引脚。过采样技术可区分有效

无人机通信链路选型指南

无人机通信链路选型指南 近几年来,时常在耳边提“无人机”3个字。如在农业生产中使用无人机喷洒农药,出门旅游使用无人机进行导航拍摄,军事上也有像无人机袭击政府首脑高管,无人机摧毁油田库存平台等震撼的事情发生。可以预见无人机不管是在民用还是军事上已经越来越引起人们的关注。随着民用无人机技术的迅猛发展,无人机也不再是军队专属。随着技术的越来越多的公司投入到无人机的项目开发中。 无人机系统主要分为三大部分:地面站、飞控以及无线通信链路。 E103、E62、E34系列无线模块都非常适用于无人机系统无线通信链路的实施方案中。 E103系列E103-W02方案 E103-W02模块基于TI CC3200芯片开发,模块即拿即用,数据透明传输。支持标准IEEE802.11b/g/n协议和完整的TCP/IP协议,支持STA/AP工作模式。发射功率20db,理想传输距离达300m,支持3M高速连串。应用于无人机开发中,可以很好支持无人机实时高清图传,直接利用wifi直接跟手机进行数据交互,大大缩减开发工作量。 E62-433T20S E62-433T20S点对点高速传输的433Mhz无线模块,全双工工作方式在接收数据的同时可以发送数据。模块具有跳频扩频功能(FHSS),收发双方会根据跳频算法自动在多至50个频点中同步跳变,大大提高抗干扰性能。在无人机应用中理想状态通信传输距离可达1km 左右。

E34-2G4D20D E34-2G4D20D采用的是nRF24L01+芯片方案,也是目前无人机无线通信中最常使用的一 种芯片方案。E34-2G4D20D是全双工高速无线串口模块,使用2.4GHz公共频道,不限包长, 支持文件传输。可达2km通信距离。模块延迟低、高速率率可传文件、图片、视频大数据传输。相对较于E103-W02和E62-433T20S,模块的通信距离是最远的。 型号通信距离传输速率无线频点通信方式抗干扰尺寸 W103-W02300m3Mbps 2.4G 全双工一般27mm*19mm (wifi) E62-433T20S1km64kbps400MHz全双工强36mm*21mm E34-2G4D20D2km250kbps 2.4G全双工一般36mm*21mm 表格1:E103-W02、E62-433T20S、E34-2G4D20D的产品特性通过表格可以对比出E34-2GD20D在通信距离的表现上是远远高于E103-W02和 E62-433T20S,可以用一骑绝尘来形容,另外在传输速度上也表现不错低延迟可以进行标清 图像的数据传输。 E34-2GD20D在有通信距离要求的无人机应用中是最理想的实施方案。 W103-W02能够透传速率达到3Mbps实时高清图像传输成为了可能,另外采用wifi连接 可以地面站可以直接通过手机,用户只需要进行相对简单的程序编写就可以实现人机交互极 大的降低开发工作量,所以E103-W02可以应用于需要高清图传以及高效的交互控制场景中 的无人机系统。 E62-433T20S折中了通信距离,具有自动跳频的特点极大的提高了抗干扰性能,应用于 无人机系统可以提高系统通信链路的操控能力。

无人机数据链关键技术与发展趋势.

本文2010- 09-24收到,作者分别系解放军理工大学气象学院硕士生、副教授、硕士生、硕士生无人机数据链关键技术与发展趋势 王 俊周树道程龙朱国涛 图1 无人机数据链的基本组成 摘 要

简述了无人机数据链基本组成,重点分析归 纳了当前无人机数据链的相关关键技术,并结合现状对无人机数据链技术未来的发展趋势进行了展望。 关键词 无人机 数据链 数据链技术 引言 进入21世纪以来,随着高新技术在航空领域的广泛应用,无人机的发展取得了长足进步。伴随着无人机的不断发展与应用,如何实现无人机与指挥控制站之间快速、可靠、实时的双向通信显得尤其重要,无人机数据链是实现这种双向信息传输的关键。为了实现双向通信,指挥控制站首先需将指挥、控制等遥控指令及时传输到无人机上,随后无人机将自身状态以及传感器获取的情报信息发回到指挥控制站。无人机数据链是连接无人机与指挥控制站的纽带,没有数据链技术的支持,无人机则无法实现智能自主飞行。1 无人机数据链基本组成 无人机数据链一般由机载部分和地面部分组成,如图1所示。机载部分包括机载数据终端和天线。机载数据终端包括射频接收机、发射机以及调制解调器,天线主要采用全向天线。地面部分包含地面数据终端和一副或几副天线。地面数据终端由射频接收机和发射机以及调制解调器组成,一般可以分装成以下几个部分:一辆天线车,一条连接地面天线和指挥控制站的本地数据连线,以及地面控制站中的若干处理器和接口。

无人机数据链在功能上包括一条用于地面控制站对飞行器控制的上行链路和一条用于接收无人机遥测信息的下行链路。上行链路主要传输地面站至 无人机的遥控指令,下行链路主要传输无人机至地面终端的遥测数据,一般下行链路的传输速率要远远高于上行链路。2 无人机数据链关键技术 无人机数据链关键技术主要包括中继传输技术、调制技术、抗干扰传输技术以及视频图像编码等一系列技术。2.1中继传输技术 当无人机超出无线电视距范围时,需要采用中继方式实现地面指挥站与无人机群间的通信。按照中继转发设备所处的不同位置可以分为地面中继以及空中中继方式。地面中继转发设备置于地面控制站与无人机之间的制高点上;空中中继转发设备置于某种合适的空中中继平台上,空中中继平台和任务无人机间采用定向天线,并通过数字引导或自跟踪方式确保天线波束彼此对准,相比较地面中继而言,空中中继成本要高些。按照中继转发设备的不同又可以分为飞机中继以及卫星中继:飞机中继方式采用飞机作为中继转发设备,由地面站、中继飞

无人机通讯链路系统

(一)立项依据与研究内容(4000-8000字): 1、项目的立项依据 (1)研究意义 低空无人机(Unmanned Aerial Vehicle缩写UA V )也称为无人航空器或遥控驾驶航空器,是一种由无线电遥控设备控制,或由预编程序操纵的非载人飞行器。无人机具有机动灵活的特点,它体积小,重量轻,可随时运输和携带。它对起降的要求低,随时飞降。无人机一般在云下低空平稳飞行,弥补了卫星光学遥感和普通航空摄影经常受云层遮挡获取不到影像的缺陷。除了具有广阔的军事应用前景外,用无人机替代有人飞机执行高风险任务,也是当今国际航天领域一个重要发展方面。特别是在近几年国际局部战争中无人机被大量地使用,可以预见在未来战场上无人机用途将越来越大,已经成为世界各国武器装备发展的重点。同时,无人机作为一种技术含量高、使用性能好、发展前景广阔的空中飞行器,在民用领域亦可完成防灾减灾的灾害评估、地质勘测航拍、警用高速公路巡查、森林防火、海事巡逻、大型露场演出航拍等多种任务。 但随着机载任务设备(干扰器、雷达等)的不断完善和增加,地面终端与机载平台之间的数据交互量也在也在逐步提高,为了实现数据的可靠交换,提高数据传输速率,必须建立完善的数据链系统。利用数据链进行通信,具有传输速率快、抗干扰能力强、误码率低等优点。与传统的通信方式相比,它能极大的提高信息处理能力,并且 最大限度的保证信息的完整性。

无人机数据链是无人机系统的重要组成部分,是飞行器与地面系统联系的纽带。随着无线通信、卫星通信和无线网络通信技术的发展,无人机数据链的性能也得到了大幅度提高。但是,目前无人机数据链系统采用的调制模式都比较简单,如2FSK、BPSK、OFDM技术、直接扩频技术等,传输速率与抗干扰能力有限;在现代电子战环境下,无人机数据链系统需要进行超大容量的信息传输,针对性的电子干扰信号,以及信息的传输方式,因此,增强抗干扰性能、及时准确的传输数据以及信息传输绕射能力仍然是无人机数据链系统有待解决的重要研究课题。因此加强对无人机数据链路系统的研究对我国低空领域的发展有着至关重要的意义。 本课题拟针对无人机通讯链路系统,吸取国外先进经验,结合国情和人文习惯,重点研究基于单载波频域均衡技术(SC-FDE) 的数据链路系统,并对影响无人机的通信的电磁干扰、复杂地形等关键技术进行研究。 (2)国内外研究现状 我国目前最常用的数据链系统是80 年代初研制的数传/导航兼备系统。该系统由机载设备和地面设备构成。数据引导与塔康设备兼容,数据率为600bps,调制方式为ASK。其工作方式为:地面台以广播方式发出带地址码的指挥信息,机载台按地址接收各自的信息,并在接收后经一定的延迟向地面台发回复信息。机载台把接收的信息经译码得到指令,再由码声器转化为声音指令,对重要信息还同时使用综合航向指示器的航向指令针、敌情指示器、双针高度表、双

无人机概述与系统组成

无人机概述及系统组成 无人机( UAV)的定义 无人机驾驶航空器(UA: Unmanned Aircraft ),是一架由遥控站管理(包括远程操纵或自主飞行)、不搭 载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性和非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统( UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的 型号设计规定的任何其他部件组成的系统,无人机系统包括地面系统、飞机系统、任 务载荷和无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 无人机和航模的区别 一、定义不同 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航 空模型是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航 空器,就叫航空模型。 二、飞行方式不同 唯一的区别在于是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就是无人机的本身是带了“大脑”飞行,可能“大脑”受限于人 工智能,没有人脑灵光。但是航模的“大脑”始终是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,是中国技术顶尖

无人机地面站

概述 近20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。 地面站的配置和功能概述 地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。 (1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能:用于给飞行器发送命令和有效载荷;接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元。包括一台或多台计算机,主要功能:获得并处理从UAV来的实时数据;显示处理;确认任务规划并上传给UAV;电子地图处理;数据分发;飞行前分析;系统诊断。 地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面

AOPA无人机概述练习题2学习资料

A O P A无人机概述练习 题2

01目前主流的民用无人机所采用的动力系统通常为活塞式发动机和__________两种。P16 A.火箭发动机 B.涡扇发动机 C.电动机 答案:C. 02活塞发动机系统常采用的增压技术主要是用来。P17 A.提高功率 B.减少废气量 C.增加转速 答案:A. 03.电动动力系统主要由动力电机、动力电源和__________组成。P20 A.电池 B.调速系统 C.无刷电机 答案:B. 04.从应用上说,涡桨发动机适用于。P23 A.中低空、低速短距/垂直起降无人机 B.高空长航时无人机/无人战斗机 C.中高空长航时无人机 答案:C.

05.属于无人机飞控子系统功能的是p27 A.无人机姿态稳定与控制 B.导航控制 C.任务信息收集与传递 答案:A. 06.不属于无人机飞控子系统所需信息的是p28 A.经/纬度 B.姿态角 C.空速 答案:A. 07.不应属于无人机飞控计算机任务范畴的是 p29 A.数据中继 B.姿态稳定与控制 C.自主飞行控制 答案:A. 08.无人机通过__________控制舵面和发动机节风门来实现无人机控制。P33 A.伺服执行机构 B.操纵杆 C.脚蹬 答案:A.

09.无人机电气系统中电源和__________两者组合统称为供电系统。P35 A.用电设备 B.配电系统 C.供电线路 答案:B. 10.无人机搭载任务设备重量主要受限制于。 A.空重 B.载重能力 C.最大起飞重量 答案:B. 11.无人机配平的主要考虑是__________沿纵轴的前后位置 p37 A.气动焦点 B.发动机 C.重心 答案:C. 12.大型无人机计算装载重量和重心的方法主要有:计算法、图表法和__________。P38 A.试凑法 B.查表法 C.约取法

无人机通信链路组网方案设计

本科毕业论文题目:中小型固定翼无人机组网通信链路方案设计 学员姓名:易骁迪学号:仿真工程 培养类型:合训类专业:200909012035 所属学院:指挥军官基础教育学院年级:2008级 指导教员:张代兵职称:副研究员 所属单位:机电工程与自动化学院自动化研究所 国防科学技术大学训练部制

目录 目录 ...................................................................................................................... I 摘要 . (i) ABSTRACT .............................................................................................................. i i 第一章绪论. (1) 1.1课题研究背景 (1) 1.2国内外研究进展 (2) 1.2.1国外无人机系统通信组网发展情况 (2) 1.2.2无人机组网通信技术现状 (4) 1.3研究内容与组织结构 (6) 第二章无人机通信组网关键技术 (8) 2.1 无人机通信系统简介 (8) 2.2无人机MANET无线自组网技术 (9) 2.2.1 无人机MANET网的特点 (9) 2.2.3 无人机MANET网络的典型应用 (11) 2.3基于MANET自组网的路由协议简介和分析 (12) 2.3.1无线自组网路由协议 (12) 2.3.2无线自组网路由协议的分类 (13) 2.3.3几种自组网路由协议的简介 (16) 2.3.4性能比较 (19) 2.4 本章小结 (22) 第三章无人机通信组网方案设计 (23) 3.1各种条件下的无人机组网需求分析 (23) 3.1.1 战场无人机网络模型 (23) 3.1.2各种条件下对无人机组网的要求 (24) 3.2 IP920电台简介 (25) 3.1.1IP920电台的性能指标 (25) 3.1.2IP920电台工作模式和网络拓扑简介 (28)

无人机中继链路传播损耗及性能分析

ISSN1004-9037,CODEN SCYCE4 Journal of Data Acquisition and Processing Vol.33,No.4,Jul.2018,pp.732-739 DOI:10.16337/j.1004-9037.2018.04.017 ?2018by Journal of Data Acquisition and Processing http://https://www.wendangku.net/doc/4011318250.html, E-mail:sjcj@https://www.wendangku.net/doc/4011318250.html, Tel/Fax:+86-025-******** 无人机中继链路传播损耗及性能分析 胡续俊1陈小敏1朱秋明1,2祝梦卿1陈兵1 (1.南京航空航天大学江苏省物联网与控制技术重点实验室,南京,211106; 2.英国赫瑞瓦特大学工程与物理科学学院,爱丁堡,EH144AS) 摘要:针对两跳无人机中继通信场景,综合考虑机身姿态、天线特性、气候状况及信道衰落等影响,建立了两跳中继链路的传播损耗模型,分析了传播损耗均值的计算方法,推导了多径阴影复合衰落导致传播损耗随机起伏的统计特性。在此基础上,进一步推导得到了两跳无人机中继系统的中断概率与误比特率的理论表达式。最后,通过对郊区、山区和海洋场景的数值仿真,验证了本文推导的理论结果的正确性,并分析了无人机飞行高度、地面节点位置以及通信场景等因素对两跳中继系统性能的影响。 关键词:无人机;中继链路;信道衰落;传播损耗;中断概率 中图分类号:TN98文献标志码:A PropagationLossandPerformanceEvaluationofUAVRelayLink Hu Xujun1,Chen Xiaomin1,Zhu Qiuming1,2,Zhu Mengqing1,Chen Bing1 (1.Jiangsu Key Laboratory of Internet of Things and Control Technologies,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China;2.School of Engineering&Physical Sciences,Heriot-Watt University,Edinburgh,EH144AS,UK)Abstract:For the dual-hop relay system of unmanned aerial vehicle(UAV),a propagation loss model of dual-hop relay link is established.The influence of fuselage feature,antenna characteristics,climate con-dition and channel fading are considered.Based on the model,the calculating methods of propagation loss are analyzed.Then the statistical characteristics of propagation loss with random fluctuation caused by composite fading including shadowing and multipath fading are derived.Furthermore,the theoretical ex-p ression of the outage probability and bit error rate(BER)of dual-hop UAV relay system is developed. Finally,through the numerical simulations in urban,mountainous and sea,the theoretical results accura-cy obtained is verified and the impact of flight altitude,g round node position and communication scenarios on the performance of the dual-hop relay system is discussed. Keywords:unmanned aerial vehicle(UAV);relay link;channel fading;p ropagation loss;outage proba-bility 引言 无人机(Unmanned aerial vehicle,U AV)具有结构简单和造价低廉等优点,在通信、侦察、搜索 基金项目:国家重大科学仪器设备开发专项(2013Y Q200607)资助项目;国家自然科学基金重点(61631020)资助项目;中央高校基本科研业务费青年科技创新基金(NS2016044)资助项目;江苏省物联网与控制技术重点实验室基金(NJ20160027)资助项目;南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20160412)资助项目。 收稿日期:2017-03-31;修订日期:2017-09-03 万方数据

固定翼无人机系统组成及介绍试题

系统组成及介绍 1.目前主流的民用无人机所采用的动力系统通常为活塞式发动机和_________两种。 A.火箭发动机 B.涡扇发动机 C.电动机 参考答案:C 2.活塞发动机系统常采用的增压技术主要是用来。 A.提高功率 B.减少废气量 C.增加转速 参考答案:A 3.电动动力系统主要由动力电机、动力电源和_________组成。 A.电池 B.调速系统 C.无刷电机 参考答案:B 4.从应用上说,涡桨发动机适用于。 A.中低空、低速短距/垂直起降无人机 B.高空长航时无人机/无人战斗机 C.中高空长航时无人机 参考答案:C

5.属于无人机飞控子系统功能的是 A.无人机姿态稳定与控制 B.导航控制 C.任务信息收集与传递 参考答案:A 6.不属于无人机飞控子系统所需信息的是 A.经/纬度 B.姿态角 C.空速 参考答案:A 7.不应属于无人机飞控计算机任务范畴的是 A.数据中继 B.姿态稳定与控制 C.自主飞行控制 参考答案:A 8.无人机通过_________控制舵面和发动机节风门来实现无人机控制。 A.伺服执行机构 B.操纵杆 C.脚蹬 参考答案:A 9.无人机电气系统中电源和__________两者组合统称为供电系统。

A.用电设备 B.配电系统 C.供电线路 参考答案:B 10.无人机搭载任务设备重量主要受限制于。 A.空重 B.载重能力 C.最大起飞重量 参考答案:A 11.无人机配平的主要考虑是_________沿纵轴的前后位置 A.气动焦点 B.发动机 C.重心 参考答案:C 12.大型无人机计算装载重量和重心的方法主要有:计算法、图表法和__________。 A.试凑法 B.查表法 C.约取法 参考答案:B 13.指挥控制与_________是无人机地面站的主要功能 A.导航

无人机地面站

无人机地面站 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程,飞行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收. 中文名:无人机地面站 外文名:UAV ground station 目录 概述 地面站的配置和功能概述 ?地面站的典型配置 ?地面站的典型功能 关键技术及典型解决方案 ?友好的人机界面 ?操作员的培训 ?一站多机的控制 ?开放性、互用性与公共性 ?地面站对总线的需求 ?可靠的数据链 无人机地面站发展的趋势 概述 近20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。

相关文档