文档库 最新最全的文档下载
当前位置:文档库 › Matlab汽车运动控制系统设计

Matlab汽车运动控制系统设计

Matlab汽车运动控制系统设计
Matlab汽车运动控制系统设计

1绪论

1.1选题背景与意义

汽车已经成为人们日常生活不可缺少的代步交通工具,在汽车发达国家,旅客运输的60%以上,货物运输的50%以上由汽车来完成,汽车工业水平和家庭平均拥有汽车数量已经成为衡量一个国家工业发达程度的标志。进行汽车运动性能研究时.一般从操纵性、稳定性和乘坐舒适性等待性着手。但近年来.随着交通系统的日趋复杂,考虑了道路环境在内的汽车运动性能开始受到关注。因此,汽车运动控制系统的研究也显得尤为重要,在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,确定期望的静态指针(稳态误差)和动态指针(超调量和上升时间)。然后对汽车运动控制系统进行设计分析。从而确定系统的最佳静态和动态指针。

2 论文基本原理分析

2.1.1汽车运动横向控制

(1)绝对位置的获得方法

汽车横向方向的控制使用GPS(全球定位系统)的绝对位置信息。GPS信息的精度与采样周期、时间滞后等有关。为提高GPS的数据精度和平滑数据.采用卡尔曼滤波对采样数据进行修正。GPS的采样周期为200ms相对应控制的周期采用50ms。另外考虑通信等的滞后、也需要进行补偿,采用航位推测法(dead reckoning)解决此问题。通过卡尔曼滤波和航位推测法推算出的值作为汽车的绝对位置使用来控制车速、横摆角速度等车辆的状态量。GPS 的数据通过卡尔曼滤波减少偏差、通过航位推测法进行误差和迟滞补偿.提高了位置数据推算的精度。

(2)前轮转角变化量的算出方法

这里对前轮目标转角变化量()的算出方法作简要说明,横方向控制采用预见控制,可以从现在汽车的状态预测经过时间秒后的汽车位置,由秒后的预测位置和目标路径

的位置可以算出秒后为沿着目标路径行驶所需要的汽车横摆角速度。这个数值前回馈或者从与现在值的目标路径的误差的反馈来推算前轮目标转角变化量(式(1)).

式(1)

式中为控制周期,,根据与现在目标路径的误差最小的原则来求解。

2.1.2汽车运动纵方向的控制

建立一个合理的传动系统模型是设计高性能汽车纵向运动控制系统的基础。目前纵向运动控制器设计过程中采用的传动系统简化模型主要有两类:一类是忽略传动系统的部分动态特性得到简化模型:另一类是通过对输入输出特性辨识得到简化模型。本文借鉴文献,忽略传动系统的部分动态特性,将车辆简化为两轮模型,对于前轮驱动车辆,整车受力如图1所示。前后车轮运动方程分别为

上式中和,分别为前后轮转动惯量(左右轮之和),为后轮转速,和分别为前后车轮的垂直载荷(左右轮之和),和分别为前后轮切向力(左右轮之和),r为车轮半径,f为滚动阻力系数。对于汽车纵向运动控制系统,不会出现非常大的加减速度,采用线性化轮胎模型,得到切向力与滑移率关系为:。式中为轮胎纵向刚度,s 为滑移率。驱动时s=l-v/(rω),制动时s=l-(rω)/v。认为风阻作用于汽车质心,则前后轮垂直载荷分别为

式中M为整车品质;a和b分别为前后轴到质心的距离,L=a+b;为质心至地面的高

度。整车运动方程为

α ,式中

α

风阻系数,A为等效迎风面积。

发动机转矩、发动机转速、涡轮转速、半轴转矩、前后轮转速、车速7状态的非线性传动系统模型,在低频带内,发动机动态对传动系统特性基本无影响,如果控制系统只涉及较低频段.可以忽略发动机动态。忽略了半轴、轮胎滑移以及载荷转移和发动机转矩,只包括发动机转速、车速2个状态。

飞轮运动方程为

整车运动方程为

2.2汽车运动控制系统的模型简化分析

考虑图2所示的汽车运行控制系统。如果忽略车轮的转动惯量.并且假定汽车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反,则该系统可以简化成简单的质量阻尼系统。根据牛顿运动定律,该系统的模型(亦即系统的运动力方程)表示为:

(3-1)

其中,u为汽车的驱动力。

为了得到控制系统的传递函数,对式(3-1)进行Laplace变换。假定系统的初始条件为零,则动态系统的Laplace变换为:

由于系统输出是汽车的运动速度,用Y(S)替代V(s),得到:

因此.汽车运动控制系统模型的传递函数为:

2.3汽车控制系统PID控制器的校正

根据阶跃响应曲线.利用串联校正的原理.以及参数变化对系统响应的影响,对静态和动态性能指针进行具体的分析,最终设计出满足我们需要的控制系统。系统在未加入任何校正环节时的开环传递函数,在MATLAB环境下对系统未加校正时开环阶跃响应曲线进行仿真.绘制如图3阶跃响应曲线,图中系统的开环响应曲线未产生振荡,其上升时间约100秒,稳态误差达到98%,远不能满足跟随设定值的要求。

图 3

图 4

(1)首先选择P校正,也就是在系统中加入一个比例放大器,为了大幅度降低系统的稳态误差,同时减小上升时间。

P校正后系统的闭环传递函数为:

此时控制系统的稳态值为/。本系统的比例增益。即稳态值为800/(50+800)=O.941,这样可以把系统的稳态误差降低到0.06左右。加入P 校正后控制系统的死循环阶跃响应曲线如图3所示。图中,系统的稳态值约为0.941.稳态误差约为5.9%,这和最初的设计要求仍有差距,并且上升时间在7秒左右,不能达到设计的需要。因此我们选择PI校正。

(2)加入PI校正器后系统的闭环单位反馈传递函数为:

考虑到的作用.我们可以大幅度降低,取。,在MATLAB环境下仿真得出的系统响应曲线如图4(中)所示。从图4(中)中可以得知,加入PI校正后系统的上升时间有所下降,但仍大于5秒。同时又产生了另一个问题,系统的超调量达到了26.43%.这是使用积分器带来的副作用。因此适当地加入微分量。

(3)可以选择PD校正,此时系统的闭环单位反馈传递函数为:

鉴于对上升时间和稳态误差影响不大.我们在P校正的基础上.将降低少许,给出=10。系统响应曲线如图4(中)所示。

(4)加入PID校正,此时系统的闭环单位反馈传递函数为:

,和的选择一般先根据经验确定一个大致的范围,然后通过MATLAB绘制的图形逐步校正。这里我们取=700,=100,=100。得到加入PLD校正后系统的死循环阶跃响应如图4(右)所示。从图4(右)中可以得出,系统的静态指针和动态指针,已经很好的

满足了设计的要求。上升时间小于5s,超调量小于8%,约为6.67%。

图 5

根据系统的性能指针和一些基本的整定参数的经验,选择不同的PID参数进行模拟,最终确定满意的参数。这样做一方面比较直观,另一方面计算量也比较小,并且便于调整。

2.4汽车运动控制系统根轨迹校正的设计过程

为了减小系统的稳态误差,同时尽量减小超调量和上升时间的变化,达到满意的效果,我们需要从相位的角度来考虑,改变控制器的结构,从而想到相位滞后器的作用。相位滞后器的传递函数为:

这样.整个系统的死循环传递函数就变成了:

滞后控制器的零极点应设计成紧靠在一起,这样控制系统的稳态误差将减小/倍。根据上面的分析,将设计成-0.3,而等于-0.03。

图 6 图 7

得到的根轨迹如图7中。在实轴的-0.35的位置附近选择期望点,得到图7所示的系统阶跃响应曲线。

从图7中可以得知,这时的稳态误差已经满足设计要求。出现的少量超调亮是加入之滞后控制器的结果。死循环系统的超调量约为7.64%,满足小于8%的设计要求,上升时间约为2.5秒,以及稳态误差都已经满足设计要求。

3对论文采用的理论和方法进行研究

本论文利用MATLAB对简化后的汽车运动控制系统进行仿真,由于文中没有具体过程,图形也不能分辨精确值,扩写时我进行具体分析并按照自己的理解进行仿真。

文中简化后的汽车运动控制系统的开环传递函数为,其开环传递为一阶惯性系统。而全文没有提及汽车的质量m(经过后面的仿真,选取m值为800。)由于文中图形的分辨率问题,不能从文中读出精确值,仿真结果只能接近源图形,但已经足够完成要求,即对汽车运动控制简化模型的PID校正。

3.1.1汽车运动控制简化模型传递函数仿真设计

对原开环传递函数利用MATLAB进行单位阶跃输入响应的仿真。

仿真程序如下:

b=50;m=800; t=[0:0.1:120]; y=[1];u=[m b];

sys0=tf(y,u);[y1,t]=step(sys0,t);sys1; plot(t,y1); grid;

xlabel('Time (seconds)'), ylabel('Step Response')

仿真结果图形如图8,图中上升时间明显偏大,大约60秒,而且稳态误差有98%,远远不能满足论文中的要求,但原文中没有对要求进行统一,所以下文中我选定上升时间小于5秒,超调量8%,稳态误差小于2%。

图8 闭环传递函数 单位阶跃输入响应

3.1.2汽车运动控制系统P 校正函数仿真设计

论文对开环传递函数进行PID 校正,文中是通过三步尝试得到最终PID 校正参数。首先要减小系统的上升时间,进行P 校正,即在开环系统中加入比例放大环节 ,P 校正后

20

40

60

80

100

120

00.002

0.0040.0060.0080.010.0120.014

0.0160.018

0.02Time (seconds)

S t e p R e s p o n s e

系统的闭环传递环数为

按文中数据取kp=800,原系统b=50,m=800。利用MATLAB 进行闭环系统的单位阶跃输入响应仿真。

仿真程序如下:

kp=800;b=50;m=800; t=[0:0.1:7]; y=[kp];u=[m b+kp];

sys1=tf(y,u);[y1,t]=step(sys1,t);sys1; plot(t,y1); grid;

xlabel('Time (seconds)'), ylabel('Step Response') 仿真结果图形如下图9

图9 闭环传递函数 单位阶跃输入响应

具体分析:令Φ

比较系数得T=16/17,一阶系统的阶跃响应是一个按指数规律单调上升的过程,其动

1

2

345

6

7

00.10.20.30.40.50.60.7

0.80.9

1Time (seconds)

S t e p R e s p o n s e

态性能指标中不存在超调量、峰值时间、上升时间等项。按一阶系统的过渡过程时间定义:,计算得,当增大系统的开环放大系数会使T减小,减小。经过P 校正后上升时间明显减小,但稳态误差约为5.9%,还是不能满足要求。

3.1.3汽车运动控制系统PI校正函数仿真设计

利用PI校正改进系统,PI控制不仅给系统引进一个纯积分环节,而且还引进一个开环零点。纯积分环节提高了系统的型别,从而有效的改善系统的稳态性能,但稳定性会有所下降。所以,比例加积分环节可以在对系统影响不大的前提下,有效改善系统的稳态性能。PI校正后的闭环传递环数为:

利用MATLAB进行闭环系统的单位阶跃输入响应仿真程序如下:

b=50;m=800;kp=200;ki=70;

t=[0:1:45];

y=[kp ki];u=[m b+kp ki];

sys2=tf(y,u);[y2,t2]=step(sys2,t);

plot(t2,y2);grid;

xlabel('Time (seconds)'), ylabel('Step Response')

仿真结果图形如下图10

图10 闭环传递函数 单位阶跃输入响应

仿真结果分析:

此系统为具有一个零点的二阶系统,零点对此系统的动态性能分析参考教材《自动控制原理》分析如下:

把上式写成为

系统的单位阶跃响应

=

=

不难发现, ,根据拉氏变换的微分定理

由于 ,故

051015

202530354045

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

S t e p R e s p o n s e

是典型的二阶系统的单位阶跃响应,而是典型二阶系统的单位脉冲响应(乘以系数)。

一般情况下,零点的影响是使响应迅速且具有较大的超调量,正如图所示。零点越靠近极点,对阶跃响应的影响越大。

3.1.4汽车运动控制系统PD校正函数仿真设计

加入PD控制校正,闭环传递函数为

利用MATLAB进行闭环系统的单位阶跃输入响应

仿真程序如下:

b=50;m=800;kp=200;kd=10;

t=[0:0.5:20];

y=[kd kp];u=[m+kd b+kp];

sys3=tf(y,u);[y3,t3]=step(sys3,t);

plot(t3,y3);grid;

xlabel('Time (seconds)'), ylabel('Step Response')

图11 闭环传递函数 单位阶跃输入响应

系统单位阶跃响应的上升时间约为10秒,稳态误差为20%,稳态误差过大,需要继续校正。

3.1.5汽车运动控制系统PID 校正函数仿真设计

对原系统进行PID 校正,加入PID 控制环节后传递函数为

利用MATLAB 进行闭环系统的单位阶跃输入仿真,经过多次比较取得kp=700,ki=100,kd=100。与论文结果一致。

程序如下:

b=50;m=800;kp=700;ki=100;kd=100; t=[0:0.1:50];

0246

8101214161820

0.10.20.30.40.50.60.7

0.8Time (seconds)

S t e p R e s p o n s e

y=[kd kp ki];u=[m+kd b+kp ki]; sys4=tf(y,u);[y4,t4]=step(sys4,t); plot(t4,y4);grid;

xlabel('Time (seconds)'), ylabel('Step Response') 仿真阶跃输入响应结果如下

图12 闭环传递函数 单位阶跃输入响应

观察图7,上升时间约3.5秒,超调量约5%,满足校正要求,虽然继续增大比例放大器 系数,阶跃响应可以无限接近阶跃函数,但实际应用中由于实际器件限制 不可能无限大。

3.2汽车运动控制系统相位滞后器校正研究及仿真

首先分析P 校正后系统的闭环传递环数为:

由margin 函数可得系统的bode 图如图13,由图像显示系统稳定。

5

10

15

20253035

40

45

50

0.10.20.30.40.50.60.70.8

0.91

1.1Time (seconds)

S t e p R e s p o n s e

MATLAB 仿真程序如下:

m=800;b=50;kp=800; num=[kp];den=[m b+kp]; sys=tf(num,den); margin(sys)

图13 P 校正后的系统bode 图

相位滞后器的传递函数为:

其bode 图如图14,MATLAB 仿真程序如下:

p=0.03,z=0.3 num=[1 z];den=[1 p]; sys0=tf(num,den); margin(sys0)

M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

P h a s e (d e g )

Bode Diagram Gm = Inf , P m = Inf

Frequency (rad/sec)

图14 相位滞后器的bode 图

这样.整个系统的死循环传递函数就变成了:

利用MATLAB 仿真其bode 图,程序如下:

b=50;m=800;kp=700; z=0.3;p=0.03;

y=[kp kp*z];u=[m b+p+kp b*p+p*kp]; sys5=tf(y,u);margin(sys5) 仿真图形为下图图15

05

10

15

20

M a g n i t u d e (d B )10

-3

10

-2

10

-1

10

10

1

-60

-30

P h a s e (d e g )

Bode Diagram

Gm = Inf , P m = -180 deg (at Inf rad/sec)

Frequency (rad/sec)

图15 相位滞后器校正后的bode 图

由图10 可以看出,由原传递函数和相位滞后器串联而成的系统的对数坐标时,两环节对数坐标的纵坐标相加减即可。但相位滞后器校正的有点在于中、高频幅值的衰减,使系统的截止频率 左移(下降),从而获得足够的相角裕量。滞后校正的副作用是相角滞后,给系统附加一个负值相角,一致在一定程度上影响了其优点的发挥。原汽车运动控制系统传递函数本来就是一个惯性系统,是稳定系统,所以相位滞后校正效果没有PID 校正好。

加入滞后控制器后的闭环阶跃响应曲线用MATLAB 仿真,程序如下:

kp=700;b=50;m=800; z=0.3;p=0.03;

t=[0:0.1:30];y=[kp kp*z];u=[m b+m*p+kp b*p+kp*z]; sys52=tf(y,u);[y,t]=step(sys52,t); plot(t,y);grid;

xlabel('Time (seconds)'), ylabel('Step Response')

M a g n i t u d e (d B )10

10

10

10

10

10

P h a s e (d e g )

Bode Diagram

Gm = Inf , P m = 124 deg (at 0.484 rad/sec)

Frequency (rad/sec)

图16 加入滞后控制器后的系统闭环阶跃响应曲线

观察图像,系统闭环阶跃响应上升时间约为4.3秒,超调量约10%,超调量偏大,没有PID 校正的效果好。

3.3汽车运动控制系统相位滞后器校正研究及仿真

根据给定的要求 ,利用

的关系可以求得 。为了留有余地,取 。故 。

再由 ,按

, ,所期望的闭环主导极点为

利用MATLAB 根轨迹仿真得原传递函数根轨迹如下图11

0510

15

202530

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

S t e p R e s p o n s e

图17 系统根轨迹图

观察图像不难发现,此根轨迹于闭环主导极点无交点。需要加入一个零点和一个极点,且极点闭零点更靠近虚轴。

-1-0.8-0.6-0.4-0.200.20.4

0.60.81Root Locus

Real Axis

I m a g i n a r y A x i s

图18

结论

从该系统的设计我们可以看到,应用PID 控制是比较有效的,而且基本不用分析被控对象的机理,又根据 , ,和 的参数特性以及MATLAB 绘制的节约响应曲线进行设计即可。在MATLAB 环境下,我们可以根据方针曲线来选择PID 参数。根轨迹是设计SISO 系统控制器非常有效的方法,利用作图的手段来求出闭环极点的分布,避免了复杂的数学计算过程。通过根轨迹图,我们可以很容易的看出系统中摸个参数的变化对系统的闭环极点产生什么影响,进而如何影响系统的动态性能。该方法简便快捷,结果准确可靠,他是控制系统设计的优秀手段之一。

本文创新点:在MATLAB 环境下对汽车运动控制系统进行PID 和根轨迹的设计和校正。

Root Locus

Real Axis

I m a g i n a r y A x i s

-0.4-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴

2013 年12 月13 日 汽车运动控制系统仿真设计 10级自动化2班姜鹏 2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

运动控制系统双闭环直流调速系统仿真

运动控制系统双闭环直流调速系统仿真 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

本科生课程论文课程名称运动控制系统 学院机自学院 专业电气工程及其自动化学号 1212XXXX 学生姓名翟自协 指导教师杨影 分数

题目: 双闭环直流调速系统仿真 对例题设计的双闭环系统进行设计和仿真分析,仿真时间10s 。具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为: P P =60kW , P P =220V , P P =308 A , P P =1000 r/min , 电动势系数 P P = V ·min/r ,主回路总电阻 R =Ω,变换器的放大倍数 P P =35。电磁时间常数 P P =,机电时间常数 P P =,电流反馈滤波时间常数 P PP =,转速反馈滤波时间常数 P PP =。额定转速时的给定电压(P P ?)P =10V ,调节器ASR ,ACR 饱和输出电压P PP ?= 8V , P PP =。 系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量 ≤5% ,空载起动到额定转速时的转速超调量 ≤10%。试求: (1)确定电流反馈系数β(假设起动电流限制在 以内)和转速反馈系数α。 (2)试设计电流调节器ACR.和转速调节器ASR 。 (3)在matlab/simulink 仿真平台下搭建系统仿真模型。给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。 (4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。并与仿真结果进行对比分析。

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

基于单片机的模糊温度控制器的设计

基于单片机的模糊温度控制器的设计 1 引言 本文研究的被控对象为某生产过程中用到的恒温箱,按工艺要求需保持箱温100℃恒定不变。我们知道温度控制对象大多具有非线性、时变性、大滞后等特性, 采用常规的PID 控制很难做到参数间的优化组合, 以至使控制响应不能得到良好的动态效果。而模糊控制通过把专家的经验或手动操作人员长期积累的经验总结成的若干条规则,采用简便、快捷、灵活的手段来完成那些用经典和现代控制理论难以完成的自动化和智能化的目标, 但它也有一些需要进一步改进和提高的地方。模糊控制器本身消除系统稳态误差的性能比较差, 难以达到较高的控制精度, 尤其是在离散有限论域设计时更为明显, 并且对于那些时变的、非线性的复杂系统采用模糊控制时, 为了获得良好的控制效果, 必须要求模糊控制器具有较完善的控制规则。这些控制规则是人们对受控过程认识的模糊信息的归纳和操作经验的总结。然而, 由于被控过程的非线性、高阶次、时变性以及随机干扰等因素的影响, 造成模糊控制规则或者粗糙或者不够完善, 都会不同程度的影响控制效果。为了弥补其不足, 本文提出用自适应模糊控制技术,达到模糊控制规则在控制过程中自动调整和完善, 从而使系统的性能不断完善, 以达到预期的效果。 2 自调整模糊控制器的结构及仿真 (1) 控制对象 一般温度可近似用一阶惯性纯滞后环节来表示, 其传递函数为: 式中: K———对象的静态增益; Tc———对象的时间常数; τ———对象的纯滞后时间常数。 本文针对某干燥箱的温度控制, 用Cohn-Coon 公式计算各参数得: K=0.181; Tc=60; τ=20。 ( 2) 自调整模糊控制器的结构 自调整模糊控制器的结构如图1 所示。

汽车运动控制方案

南京工程学院 课程设计说明书 题目汽车运动控制系统的 / 设计与仿真 课程名称MATLAB 的控制系统 院(系、部、中心) 专业) 班级 学生姓名 学号 设计时间 ? 设计地点基础实验楼B114 指导教师 \

2012年1月南京 目录 一、课设目的 (3) ^ 二、控制对象分析 (3) 、控制设计对象结构示意图 (3) 、机构特征 (3) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (4) 、系统建模 (4) 、PID控制器的设计 (4) 五、控制系统仿真结构图 (5) — 六、仿真结果及指标 (6) 对于二阶传递函数的系统仿真 (6) 输入为500N时,K P=700、K I=100、K D=100。 (6) 输入为50N时,K P=700、K I=100、K D=100 (7) PID校正的设计过程 (7) 未加校正装置的系统阶跃响应: (7) PID校正装置设计 (8)

七、收获和体会 (9) >

Matlab 与控制系统仿真设计 一、课设目的 针对具体的设计对象进行数学建模,然后运用经典控制理论知 识 设计控制器,并应用Matlab 进行仿真分析。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。 二、控制对象分析 、控制设计对象结构示意图 : 图1. 汽车运动示意图 、机构特征 汽车运动控制系统如图1所示。忽略车轮的转动惯量,且假定汽 车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反。 根据牛顿运动定律,该系统的模型表示为: ?? ?==+v y u bv v m (1) 其中,u 为汽车驱动力(系统输入),m 为汽车质量,b 为摩擦阻 力与运动速度之间的比例系数,v 为汽车速度(系统输出),v 为汽车加速度。 假定kg m 1000=,m s N b /50?=,N u 500=。

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

汽车运动控制系统仿真

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计内容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计内容 1.系统的模型表示

模糊控制器的设计

4模糊控制器的设计 4 Design of Fuzzy Controllor 4.1概述(Introduction) 随着PLC在自动控制领域内的广泛应用及被控对象的日趋复杂化,PLC控制软件的开发单纯依靠工程人员的经验显然是行不通的,而必须要有科学、有效的软件开发方法作为指导。因此,结合PLC可编程逻辑控制器的特点,应用最新控制理论、技术和方法,是进一步提高PLC软件开发效率及质量的重要途径。 系统设计的目标之一就是要提高装车的均匀性,车厢中煤位的高度变化直接影响装车的均匀性,装车不均匀对车轴有很大的隐患。要保持高度值不变就必须不断的调整溜槽的角度,但是,在装车过程中,煤位的高度和溜槽角度之间无法建立精确的数学模型。模糊控制它最大的特点是[43-45]:不需建立控制对象精确数学模型,只需要将操作人员的经验总结描述成计算机语言即可,因此采用模糊控制思想实现均匀装车是行之有效的方法。虽然很多PLC生产厂家推出FZ模糊推理模块,但这些专用模块价格昂贵,需使用专门的编程设备,成本高通用性差,所以自主开发基于模糊控制理论的PLC控制器有很大的工程价值。 本章首先介绍了模糊控制的基本原理、模糊控制系统及模糊控制器的设计步骤;然后在对煤位高度控制系统分析的基础上,设计基于模糊理论的PLC控制,分别从查询表计算生成和PLC程序查询两个部分进行设计。 4.2模糊控制原理(Fuzzy Control Principle) 4.2.1模糊控制理论(Fuzzy Control Theory) 模糊控制理论是由美国加利福尼亚大学的自动控制理论专家L.A.Zadch教授首次提出,由英国的Mamdani首次用于工业控制的一种智能控制技术[46]。模糊控制(FUZZY)技术是一种由数学模型、计算机、人工智能、知识工程等多门科学领域相互渗透、理论性很强的科学技术。 模糊控制是以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的数学工具,用计算机来实现的一中计算机智能控制[47-48]。它的基本思想是:把人类专家对待特定的被控对象或过程的控制策略总结成一系列以“IF…THEN…”形式表示的控制规则,通过模糊推理得到控制作用集,作用与被控对象或过程。与传统的控制方法相比,它具有以下优点[48]:无需知道被控对象的数学模型;是一种反映人类智慧思维的智能控制;易被人们所接受;构造容易;鲁棒性好。

Matlab汽车运动控制系统设计

1绪论 1.1选题背景与意义 汽车已经成为人们日常生活不可缺少的代步交通工具,在汽车发达国家,旅客运输的60%以上,货物运输的50%以上由汽车来完成,汽车工业水平和家庭平均拥有汽车数量已经成为衡量一个国家工业发达程度的标志。进行汽车运动性能研究时.一般从操纵性、稳定性和乘坐舒适性等待性着手。但近年来.随着交通系统的日趋复杂,考虑了道路环境在内的汽车运动性能开始受到关注。因此,汽车运动控制系统的研究也显得尤为重要,在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,确定期望的静态指针(稳态误差)和动态指针(超调量和上升时间)。然后对汽车运动控制系统进行设计分析。从而确定系统的最佳静态和动态指针。 2 论文基本原理分析 2.1.1汽车运动横向控制 (1)绝对位置的获得方法 汽车横向方向的控制使用GPS(全球定位系统)的绝对位置信息。GPS信息的精度与采样周期、时间滞后等有关。为提高GPS的数据精度和平滑数据.采用卡尔曼滤波对采样数据进行修正。GPS的采样周期为200ms相对应控制的周期采用50ms。另外考虑通信等的滞后、也需要进行补偿,采用航位推测法(dead reckoning)解决此问题。通过卡尔曼滤波和航位推测法推算出的值作为汽车的绝对位置使用来控制车速、横摆角速度等车辆的状态量。GPS 的数据通过卡尔曼滤波减少偏差、通过航位推测法进行误差和迟滞补偿.提高了位置数据推算的精度。 (2)前轮转角变化量的算出方法 这里对前轮目标转角变化量(?δ)的算出方法作简要说明,横方向控制采用预见控制,可以从现在汽车的状态预测经过时间t p秒后的汽车位置,由t p秒后的预测位置和目标路径

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

基于PLC的小车自动往返运动控制系统2

第一章概述 1完成本次循环工作后,停止在最初位置。其运动路线示意图如下图1-1所示。 如图1-1 小车运动路线示意图 第二章硬件设计 2.1 主电路图 如图2-1为小车循环控制的主电路原理图。该电路图利用两个接触器的主触点KM1、KM2分别接至电机的三相电源进线中,其中相对电源的任意两相对调,即可实现电机的正反转,也可达到小车左右运行的目的。假设接通KM1为正转(小车右行),则接通KM2为反转(小车左行)。

图2-1小车循环控制的主电路原理 2.2 I/O地址分配 如表2-1为小车循环运动PLC控制的I/O分配表。在运行过程中,这些I/O口分别起到了控制各阶段的输入和输出的作用,并且也使小车的控制过程更清晰明了,动作与结果显示更加方便直接。 表2-1

2.3 I/O接线图 如图2-2为小车循环运动PLC控制的I/O接线图。在进行调试过程时,在PLC模块上,当I0.0有输入信号,即按下SQ1;当I0.1有输入信号,也即按下SQ2,以此类推,I/O接线图就是把实际的开关信号变成调试时的输入信号。同理,输出信号也是利用PLC模块把小车的实际运动用Q0.0、Q0.1的状态表现出来。 图2-2小车循环运动PLC控制的I/O接线图 2.4 元件列表 如表2-2为小车循环运动PLC控制的元件列表。在本次设计中就是利用这些元件,用若干导线连接起来组成了我们需要的原理图、I/O接线图。 表2-2

第三章软件设计 3.1 程序流程图 如图3-1为小车循环运动PLC控制的程序流程图。小车在一个周期内的运动由4段组成。设小车最初在左端,当按下启动按钮,则小车自动循环地工作,若按下停止按钮,则小车完成本次循环工作后,停止在最初位置。 首先小车位于初始位置,按下SB1启动后,小车向右行驶;当碰到行程开关SQ4,小车转向,向左行驶;碰到行程开关SQ2,小车再一次转向,向右行驶;碰到行程开关SQ3,小车又向左行驶,直到再次碰到SQ1,然后开始依次循环以上过程。若不按下停止按钮SB2则小车一直进行循环运动,若此时按下停止按钮SB2,小车又碰到行程开关SQ1,则小车回到初始位置。

对汽车控制系统建模与仿真

对汽车控制系统建模与仿真 摘要:PID 控制是生产过程中广泛使用的一种最基本的控制方法,本文分别采用用简单的比例控制法和用PID控制来控制车速,并用MATLAB对系统进行了动态仿真,具有一定的通用性和实用性。 关键词:MATLAB 仿真;比例控制;PID 控制 1 MATLAB和PID概述 MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 2车辆行驶过程车速的数学模型 对行驶在斜坡上的汽车的车速进行动态研究,可以分析车辆的性能,指导车辆的设计。MATLAB软件下的SIMULILNK模块是功能强大的系统建模和动态仿真的软件,为车辆行驶过程车速控制分析提供了一种有效的手段。 汽车行驶如图7.4.1所示的斜坡上,通过受力分析可知在平行于斜面的方向上有三个力作用于汽车上:发动机的力、空气阻力和重力沿斜面的分量下滑力。

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A 则B c R A B A E =?+? 若A 则B 否则C c R A B A C =?+? 若A 或B 且C 或D 则E ()()R A B E C D E =+?+????????? 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 11112222n 00R and R and R and and '? n n n A B C A B C A B C x y c →→→→= 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨ 2. 最大隶属度法 例: 10.3 0.80.5 0.511234 5 C =+----- +++,选3-=*u

20.30.80.40.21101234 5 C =+ +++ + ,选 5.12 21=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 m j n i C u B EC A E ij j i ,,2,1;,,2,1 then then if ===== 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 j i ij j i C B A R ,??= m j n i j i C B A R z y x z y x ij j i ===== ,1 ,1)()()(),,(μμμ μ 根据模糊推理合成规则可得:R B A U )(?= Y y X x B A R U y x z y x z ∈∈=)()(),,()(μμμμ 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121 ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 t h e n o r and or if :1 PB u NM NB EC NM NB E R === 3. 对模糊变量E ,EC ,u 赋值(见教材中的表)

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.wendangku.net/doc/4015548276.html, 实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1.已知控制系统框图如图所示:

图1-1单闭环系统框图 图中,被控对象G(S) 10e-150s,GC(S)为PID控制器,试整定PID控制器 300s + 1 参数,并建立控制系统Simulink仿真模型。再对PID控制子系统进行封装,要求可通过封装后子系统的参数设置页面对KP、Ti、Td进行设置。 2.已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR和转速调 节器ASR并进行SimUIink建模仿真。 图1-2直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID控制器参数整顿 根据PID参数的工程整定方法(Z-N法),如下表所示,KP= 伯=0.24,Ti= 2 =300, Kτ Td= 0. 5 =75。 表1-1 Z-N法整定PID参数

PI 0.9T -K T3τ无0.4K c0.8TC无 PID 1.2T K I 2τ0?5τ0.6K C 0.5TC0.12TC (2) Simulink仿真模型建立 建立SimUIink仿真模型如下图1-3所示,并进行参数设置: 图1-3中,SteP模块"阶跃时间”改为 O, Transport Delay模块的"时间延迟”设置为 150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

IP 回 Gaml Integrator du'dl S S □ VieW Simulation FOrmat ToOlS C? I ∣-CaΛtel 5 0.5 O 500 IPlD ≠ I ≡ ?希刊 3片令Uy 卜I IlOOo J?orΛal 三爭 E Φ I- F 過应? 图1-7 PID 子系统 Tim& offset. 0 (3) PID 子系统的创建 首先将参数 Gain 、Gain1、Gain 三个模块的参数进行设置,如下图所示: 再对PID 子系统进行圭寸装,选中"SUbSyStem ”后,单击鼠标右键,选择" MaSk SUbSyStem ”,弹 图1-5 PID 控制运行结果 Garn WO O ≡ a [^: P 刃盹逼圖0 ■垢 G I airl2 Deirivativ? W FUnCtlOn BlaCk PararrleterS- Gain 图1-6 PID 参数设置 然后建立PID 控制器子系统,如下图 1-7所示: TranSier FCn Transport Delay SietLal AttrLbU EiElIerrt-UriSe g ,aiιι (y =, Je-IaIi 吕 FUnCtiOn BIoCk Paranneters≡ Gain2 Signal Att ribut SaJliJJIe tine (-1 for i≡< P a,E ≥τ∣e i t 6r AttElbules Hlenent 5?jιple txι≡c (-1 fur Ieih Knlt ipLicat iαι∏LS EleMrtt -vise (K. *u) Sanple tune Ii-I for inketLtθd) i Elenent-Wije g 自丄n (y = .)LAU) _OE j??tn? ??LΠ Jy ± K ÷ α Or u^K}a V? FUnCtiOn Block Parameters : GainI K?LΓi (T) IlU I ltiPIICatiOn5 EIenI l eT SUbSyStem 10 300s+1

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。 (d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应

曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统 无积分作用单回路控制系统

大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。 (2).串级控制系统的设计及仿真。 (a)已知主被控对象传函W 01(s) = 1 / (100s + 1),副被控对象传函W 02 (s) = 1 / (10s + 1),副环干扰通道传函W d (s) = 1/(s2 +20s + 1)。 (b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。(c)用MatLab的Simulink画出上述两系统。

相关文档
相关文档 最新文档