文档库 最新最全的文档下载
当前位置:文档库 › midas civil 实例6 悬索桥的成桥阶段和施工阶段分析

midas civil 实例6 悬索桥的成桥阶段和施工阶段分析

midas civil  实例6 悬索桥的成桥阶段和施工阶段分析
midas civil  实例6 悬索桥的成桥阶段和施工阶段分析

MIDAS—GEN施工阶段分析例题

例题钢筋混凝土结构施工阶段分析 2 例题. 钢筋混凝土结构施工阶段分析 概要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。真实模拟建筑物的实际建造过 程,同时考虑钢筋混凝土结构中混凝土材料的时间依存特性(收缩徐变和抗压强度的 变化)。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.使用节点单元及层进行建模 5.定义边界条件 6.输入各种荷载 7.定义结构类型 8.运行分析 9.查看结果 10.配筋设计

例题 钢筋混凝土结构施工阶段分析 3 1.简要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。(该例题数据仅供参考) 例题模型为六层钢筋混凝土框-剪结构。 基本数据如下: 轴网尺寸:见平面图 主梁: 250x450,250x500 次梁: 250x400 连梁: 250x1000 混凝土: C30 剪力墙: 250 层高: 一层:4.5m 二~六层 :3.0m 设防烈度:7o(0.10g ) 场地: Ⅱ类 图1 结构平面图

例题 钢筋混凝土结构 抗震分析及设计 1

例题钢筋混凝土结构抗震分析及设计 例题. 钢筋混凝土结构抗震分析及设计 概要 本例题介绍使用MIDAS/Gen 的反应谱分析功能来进行抗震设计的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.建立框架柱及剪力墙 5.楼层复制及生成层数据文件 6.定义边界条件 7.输入楼面及梁单元荷载 8.输入反应谱分析数据 9.定义结构类型 10.定义质量 11.运行分析 12.荷载组合 13.查看结果 14.配筋设计 2

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

MIDAS GTS-地铁施工阶段分析资料精

高级例题1
地铁施工阶段分析

GTS高级例题1.
- 地铁施工阶段分析
运行GTS
1
概要
2
生成分析数据
6
属性 / 6
几何建模
20
矩形, 隧道, 复制移动 / 20
扩展, 圆柱 / 25
嵌入, 分割实体 / 27
矩形, 转换, 分割实体 (主隧道) / 30
矩形, 转换, 分割实体 (连接通道) / 33
矩形, 转换, 分割实体 (竖井,岩土) / 36
直线, 旋转 / 39
生成网格
41
网格尺寸控制 / 41
自动划分实体网格 / 44
析取单元 / 46
自动划分线网格 / 48
重新命名网格组 / 53
修改参数 / 57
分析
58
支撑 / 58
自重 / 60
施工阶段建模助手 / 61
定义施工阶段 / 67
分析工况 / 68
分析 / 70

查看分析结果
71
位移 / 71
实体最大/最小主应力 / 74
喷混最大/最小主应力 / 77
桁架 Sx / 79

GTS 高级例题1
GTS高级例题1
建立由竖井、连接通道、主隧道组成的城市隧道模型后运行分析。 在此GTS里直接利用4节点4面体单元直接建模。
运行GTS
运行程序。
1. 运行GTS 。
2. 点击 文件 > 新建建立新项目。
3. 弹出项目设置对话框。
4. 项目名称里输入‘高级例题 1’。
5. 其它的项直接使用程序的默认值。
6. 点击

7. 主菜单里选择视图 > 显示选项...。
8. 一般表单的网格 > 节点显示指定为‘False’。
9. 点击

1

midas施工阶段分析

本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil的施工阶 段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。主要包括分析预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的步骤和方法。 BliJU Elki EJI Laid 肛归旳F^siik Mida 口啊lads wndEw 屮「討] 图1.分析模型-IOI ?l St IMvr ■?■

桥梁概况及一般截面 分析模型为一个两跨连续梁,其钢束的布置如图 2所示,分为两个阶段来施工 桥梁形式:两跨连续的预应力混凝土梁 桥梁长度: L = 2@30 = 60.0 m 区分 钢束 艮坐标 x (m) 0 12 24 30 36 48 60 钢束1 z (m) 1.5 0.2 2.6 1.8 钢束2 z (m) 2.0 2.8 0.2 1.5 图2.立面图和剖面图 L=30 m L=30 m ? -------- 1 0壬 ■ -? 0 + ? 12 m 6 m CS1 CS2 6 m m

预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。 1. 定义材料和截面 2. 建立结构模型 3. 输入荷载 恒荷载 钢束特性和形状 钢束预应力荷载 4. 定义施工阶段 5. 输入移动荷载数据 6. 运行结构分析 7. 查看结果

使用的材料及其容许应力 混凝土 设计强度: 2 f ck = 400 kgf / cm 初期抗压强度:f ci =270kgf/cm 2 弹性模量: Ec=3,000Wc1.5 vfck+ 70,000 = 3.07 X 105kgf/cm 2 容许应力: 预应力钢束 (KSD 7002 SWPC 7B-① 15.2mm (0.6?strand) 屈服强度: 2 f py = 160 kgf / mm T P y = 22.6 tonf / strand 抗拉强度: 2 f pu =190kgf / mm T P U = 26.6tonf / strand 截面面积: 2 A p =1.387 cm 弹性模量: 6 2 E p = 2.0X 0 kgf /cm 张拉力: fpi=0.7fpu=133kgf/mm 2 锚固装置滑动: 空=6 mm 磨擦系数: g = 0.30 / rad k = 0.006 /m

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

栈桥——迈达斯分析验算示例(清晰版)

栈桥分析 北京迈达斯技术有限公司

目 录 栈桥分析 (1) 1、工程概况 (1) 2、定义材料和截面 (2) 定义钢材的材料特性 (2) 定义截面 (2) 3、建模 (4) 建立第一片贝雷片 (4) 建立其余的贝雷片 (8) 建立支撑架 (9) 建立分配梁 (12) 4、添加边界 (17) 添加弹性连接 (17) 添加一般连接 (19) 释放梁端约束 (22) 5、输入荷载 (22)

添加荷载工况 (22) 6、输入移动荷载分析数据 (23) 定义横向联系梁组 (23) 定义移动荷载分析数据 (23) 输入车辆荷载 (24) 移动荷载分析控制 (26) 7、运行结构分析 (27) 8、查看结果 (27) 生成荷载组合 (27) 查看位移 (28) 查看轴力 (29) 利用结果表格查看应力 (30)

栈桥分析 1、工程概况 一座用贝雷片搭建的施工栈桥,跨径15m(5片贝雷片),支承条件为简支,桥面宽6米。设计荷载汽—20,验算荷载挂—50。贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片上弦杆的每个节点处,间距约75cm。如下图所示: 贝雷片参数:材料16Mn;弦杆2I10a槽钢(C 100x48x5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片的连接为销接。 图1 贝雷片计算图示(单位:mm) 支撑架参数:材料A3钢,截面L63X4。 分配横梁参数:材料A3钢,截面I20a,长度6m。

建模要点:贝雷片主梁用梁单元,销接释放绕梁端y-y轴的旋转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车道布置一个车道,居中布置。 2、定义材料和截面 定义钢材的材料特性 模型 / 材料和截面特性 / 材料/添加 材料号:1 类型>钢材;规范:JTJ(S) 数据库>16Mn (适用) 材料号:2 类型>钢材;规范:JTJ(S) 数据库>A3 确认 定义截面 注:midas/Civil的截面库中含有丰富的型钢截面,同时还拥有强大的截面自定义功能。 模型 / 材料和截面特性 / 截面/添加 数据库/用户 截面号1; 名称:(弦杆) 截面类型:(双槽钢截面) 选择用户定义,数据库名称(GB-YB); 截面名称:C 100x48x5.3/8.5 C:(80mm)点击适用

MIDASCivil中施工阶段分析后自动生成的荷载工况说明

MIDAS/Civil 中施工阶段分析后自动生成的荷载工况说明 CS: 恒荷载: 除预应力、徐变、收缩之外的在定义施工阶段时激活的所有荷载的作用效应 CS: 施工荷载 为了查看CS: 恒荷载中部分恒荷载的结果而分离出的荷载的作用效应。分离荷载在“分析>施工阶段分析控制数据”对话框中指定。 输出结果(对应于输出项部分结果无用-CS:合计内结果才有用) No. 荷载工况名称 反力 位移 内力 应力 1 CS: 恒荷载 O O O O 2 CS: 施工荷载 O O O O 3 CS: 钢束一次 O O O O 4 CS: 钢束二次 O X O O 5 CS: 徐变一次 O O O O 6 CS: 徐变二次 O X O O 7 CS: 收缩一次 O O O O 8 CS: 收缩二次 O X O O 9 CS: 合计 O O O O CS: 合计中包含的工况 1+2+4+6+8 1+2+3+5+7 1+2+3+4+6+8 1+2+3+4+6+8 CS: 钢束一次 反力: 无意义 位移: 钢束预应力引起的位移(用计算的等效荷载考虑支座约束计算的实际位移) 内力: 用钢束预应力等效荷载的大小和位置计算的内力(与约束和刚度无关)

应力: 用钢束一次内力计算的应力 CS: 钢束二次 反力: 用钢束预应力等效荷载计算的反力 内力: 因超静定引起的钢束预应力等效荷载的内力(用预应力等效节点荷载考虑约束和刚度后计算的内力减去钢束一次内力得到的内力) 应力: 由钢束二次内力计算得到的应力 CS: 徐变一次 反力: 无意义 位移: 徐变引起的位移(使用徐变一次内力计算的位移) 内力: 引起计算得到的徐变所需的内力(无实际意义---计算徐变一次位移用) 应力: 使用徐变一次内力计算的应力(无实际意义) CS: 徐变二次 反力: 徐变二次内力引起的反力 内力: 徐变引起的实际内力(参见下面例题中收缩二次的内力计算方法) 应力: 使用徐变二次内力计算得到的应力 CS: 收缩一次 反力: 无意义 位移: 收缩引起的位移(使用收缩一次内力计算的位移) 内力:引起计算得到的收缩所需的内力(无实际意义---计算收缩一次位移用) 应力: 使用收缩一次内力计算的应力(无实际意义) CS: 收缩二次 反力: 收缩二次内力引起的反力 内力: 收缩引起的实际内力(参见下面例题) 应力: 使用收缩二次内力计算得到的应力 例题1: P R2 e sh:收缩应变(Shrinkage strain) (随时间变化) P: 引起收缩应变所需的内力 (CS: 收缩一次) 因为用变形量较难直观地表现收缩量,所以MIDAS程序中用内力的表现方式表 现收缩应变. ?: 使用P计算(考虑结构刚度和约束)的位移 (CS: 收缩一次) e E:使用?计算的结构应变 F: 收缩引起的实际内力 (CS: 收缩二次)

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

Midas Civil中各种时间的含义

midas Civil中各种时间的含义 在使用midas Civil,需要对桥梁结构进行施工阶段分析,那必然会碰到混凝土收缩徐变的问题,利用midas建模时,经常会碰到一些时间的定义,我在这里把这些时间的含义罗列出来,以供大家参考。 首先需要注意一点:收缩的龄期与徐变的龄期是没有任何联系的,收缩龄期是计算混凝土收缩的时间,而徐变龄期是计算徐变的时间,只有结构上作用荷载,才会发生徐变的效应。 一、收缩开始的混凝土龄期: 收缩开始时的混凝土龄期:浇筑混凝土后开始收缩时间,即发生收缩效应的时间;midas 是在定义时间依存材料特性中定义,按规范要求,一般取3d。 二、混凝土徐变的材龄: 混凝土发生徐变的时间为徐变材龄,这个值是在定义混凝土施工阶段的时候定义的,如下图:即在midas中的“混凝土材龄”,这个材龄是混凝土从浇筑到激活(即参与受力)的时间,同时也是发生徐变的时间,因为有荷载作用采用徐变。针对徐变的计算材材龄。不要输入0,按实际的天数输入即可。 三、施工阶段持续时间: 施工的持续时间,是指该施工过程持续的天数,这个持续时间不包括结构的材龄。对于持续时间可能会有个疑问,从混凝土浇筑到受力需要一段时间养护,那如何考虑这弹模的变化?这个可以利用midas中“强度发展曲线”来考虑,对于中国规范,强度发展未作规定,故一般可以不需要定义强度发展曲线。 四、施工阶段荷载-时间荷载: 为了考虑相邻构件的时间经历差异,并反映到材料的时间依存特性(徐变、收缩、强度的变化等),给构件施加时间荷载。 一般时间荷载主要用在:两个桥墩在模拟施工阶段时是同时激活的,但是实际上只有一套模板,这样一个桥墩的悬臂段比另一个晚了60天,也即第一个桥墩了60天时间经历,由于这60天的时间差异,两个桥墩的悬臂梁的挠度也将有差别,为了最大限度降低合龙段完工时产生的残留应力,必须正确预测两个桥墩悬臂梁的挠度,故做施工阶段分析时,可以用时间荷载来考虑两个桥墩的时间经历差异。 midas 在定义施工阶段时会要求输入材龄 该材龄为该结构组的初始材龄,即在该施工阶段开始时,结构组已经具备的材龄。程序将按输入的材龄计算徐变。一般输入从浇筑混凝土后到拆模直到该单元开始发生作用(拆除了脚手架)的时间。当定义了强度发展函数时,一定要准确输入该材龄。重点就是这是徐变材料。也就是混凝土有强度开始算起,跟施工持续时间没有必然联系。他们相互独立。比如浇筑混凝土到拆模10天,材龄小于10天,因为刚浇筑没有强度,也就不存在徐变。 如果是预制构件,当前施工阶段结构材龄就大于施工持续时间,因为在当前施工之前,构件就具备材龄了.

Midas桁架分析

2. 桁架分析 概述 通过下面的例题,比较内部1次超静定桁架和内、外部1次超静定桁架两种结构在制作误 差产生的荷载和集中力作用时结构的效应。 页脚内容1

图2.1 分析模型 材料 钢材类型: Grade3 截面 数据: 箱形截面300×300×12 mm 荷载 1. 节点集中荷载: 50 tonf 2. 制作误差: 5 mm 预张力荷载(141.75 tonf) P = K = EA/L x = 2.1 x 107 x 0.0135 / 10 x 0.005 = 141.75 tonf 设定基本环境 打开新文件以‘桁架分析.mgb’为名存档。设定长度单位为‘m’, 力单位为‘tonf’。 文件/ 新文件 文件/ 保存( 桁架分析) 工具/ 单位体系 页脚内容2

长度> m; 力> tonf 图2.2 设定单位体系 页脚内容3

设定结构类型为X-Z 平面。 模型/ 结构类型 结构类型> X-Z 平面 定义材料以及截面 构成桁架结构的材料选择Grade3(中国标准),截面以用户定义的方式输入。 模型/ 特性/ 材料 设计类型> 钢材 规范> GB(S); 数据库> Grade3 模型/ 特性/ 截面 数据库/用户 截面号( 1 ); 形状> 箱形截面; 名称(300x300x12 ); 用户(如图2.4输入数据) 页脚内容4

图2.3 定义材料图2.4 定义截面 页脚内容5

页脚内容6建立节点和单元 首先建立形成下弦构件的节点。 正面 捕捉点 (关) 捕捉轴线 (关) 捕捉节点 (开) 捕捉单元(开) 自动对齐 (开) 模型 / 节点/ 建立节点 坐标系 (x , y, z ) ( 0, 0, 0 ) 图 2.5 建立节点

MIDAS中PSC变截面箱梁施工阶段及PSC设计例题

PSC变截面箱梁施工阶段及PSC设计例题 北京迈达斯技术有限公司 2007年3月19日 一、结构描述 (2) 二、结构建模 (4) 三、分步骤说明 (4) 1、定义材料和截面特性 (4) 2、建立上部梁单元并赋予单元截面属性 (7) 3、定义结构组并赋予结构组单元信息 (11) 4、定义边界组并定义边界条件 (12) 5、定义荷载工况和荷载组 (13) 6、定义施工阶段 (14) 7、分阶段定义荷载信息 (14) 8、分析及后处理查看 (20) 9、按照JTG D62规范的要求对结构进行PSC设计 (21)

PSC变截面箱梁施工阶段及PSC设计例题 对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算。 一、结构描述 这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。施工方法采用悬臂浇注,跨中截面和端部截面如图1所示。 图1-1 跨中截面示意

图1-2 支座截面示意 桥梁立面图如图2所示。 图2 连续梁立面图 图3 钢束布置形状

二、结构建模 对于施工阶段分析模型,通常采用的建模方法是: 1、定义材料和截面特性(包括混凝土收缩徐变函数定义); 2、建立上部梁单元并赋予单元截面属性; 3、定义结构组并赋予结构组信息; 4、建立边界组并定义边界条件; 5、定义荷载工况和荷载组; 6、定义施工阶段; 7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分); 8、分析,分析完成后定义荷载组合进行后处理结果查看; 9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。 下面就每个步骤分别详述如下—— 三、分步骤说明 1、定义材料和截面特性 本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。如下图4所示。 图4 材料列表 通常对于预应力混凝土结构(PSC结构)按照现浇施工时,要考虑混凝土的收缩徐变效应,因此需要在建模前要定义混凝土的收缩徐变函数,按照如下图所示定义混凝土收缩徐变函数。

实例1 迈达斯 MIDAS

目录
前言
书的组成和使用方法 关于本书中使用的符号说明
桥梁设计技术例题
顶推法(ILM)桥梁的施工阶段分析 使用建模助手做悬臂法(FCM)桥梁的施工阶段分析 使用一般方法做悬臂法(FCM)桥梁的施工阶段分析 使用建模助手做移动支架法(MSS)桥梁的施工阶段分析 悬索桥成桥阶段分析以及施工阶段分析 斜拉桥成桥阶段分析以及施工阶段分析
施工阶段水化热分析


前 言
书的组成和使用方法
"高级应用例题"由七个实际设计例题组成. 在实际设计例题中将介绍PSC桥梁的各种施工工法,斜拉桥和悬索桥的分析与设计步 骤,基础混凝土的水化热分析步骤, MIDAS/Civil中土木结构专用的特殊功能的使用 方法等.另外还将介绍如何使用建模助手输入模型的基本数据和特性,从而自动定义 和生成模型数据和施工阶段的方法;并将详细介绍如何根据分析的类型和特性,来确 认分析结果的后处理功能(如悬臂法预拱度控制图表,各施工阶段分析结果图表,主梁 应力图表,预应力损失图表,确认水化热分析结果功能等).用悬臂法和顶推法施工的 桥梁,不仅介绍了用建模助手建模的方法,还介绍了使用一般功能建模的方法. 在实际设计例题中,提供了一些基本数据,用户建模时可以按照提供的数据和步骤输 入模型数据. 在MIDAS/Civil的安装盘里有本书中的例题演示动画文件.用户可以通过动画先了解一 下整个建模步骤,然后再按本书的例题顺序建模,这样可以更容易地掌握程序的使用 方法以及土木工程设计技术.
1

高级应用例题
关于本书中使用的符号说明
在下面例题中,将使用一些简略表示方法说明前后处理的功能. 将使用的功能用主菜单和图标的形式表示,主菜单中没有的功能只用图标菜单表示. 模型 / 节点 /
建立节点
单元号
选择建立节点(倾斜字体). 点击单元号图标. 主菜单中查看菜单里的功能在本书中均只用图标表示.
显示
主菜单中下拉菜单里的上下级菜单用符号'/'表示. 模型 / 节点 /
移动和复制
选择功能弹出对话框后,对话框中各项目的输入及选项用符号'>'表示,最后 选用的功能用粗体字表示. 模型 / 节点 / 距离 > 等间距 选用等间距复制.
移动和复制
2

迈达斯(Midascivil)建模助手做移动支架法施工阶段分析教程

使用建模助手做移动支架法(MSS)施工阶段分析

目 录 概 要 1桥梁基本数据以及一般截面 / 2 移动支架法的施工顺序以及施工阶段分析 / 3 使用材料以及容许应力 / 4 荷载 / 5 设定建模环境 7 定义材料 8使用移动支架法/满堂支架法桥梁建模助手建模 8输入模型数据 / 9 输入预应力箱型梁截面数据 / 11 输入钢束布置数据 / 15 编辑和添加数据 20查看施工阶段 / 20 添加荷载数据 / 22 时间依存性材料特性的定义和连接 / 30 运行结构分析 35查看分析结果 36 查看分析结果 37使用图形查看应力和内力 / 37 使用表格查看应力 / 42 查看预应力的损失 / 43 查看钢束坐标 / 44 查看钢束伸长量 / 45 查看荷载组合作用下的内力 / 46

使用建模助手做移动支架法施工阶段分析 概 要 逐跨施工预应力箱型梁桥的的方法有移动支架法(Movable Scaffolding System ; 简称MSS)和满堂支架法(Full Staging Method ; 简称FSM)。移动支架法法的模板设置 在导梁上,因此无需进行水上作业和架设大量的脚手架。另外,移动支架法与满堂支架 法相比,因为不与地面、河流等直接接触,所以施工时可以灵活使用桥梁下空间。 使用移动支架法和满堂支架法施工的预应力箱型梁桥,因为各施工阶段的结构体系不同,所以只有对各施工阶段做结构分析才能最终确定截面大小。另外,为了正确分析 混凝土材料的时间依存特性和预应力钢束的预应力损失,需要前阶段累积的分析结果。 用户在本章节中将学习使用移动支架法/满堂支架法桥梁建模助手建立移动支架法(MSS)各施工阶段和施工阶段分析的步骤,以及确认各施工阶段应力、预应力损失、挠 度和内力的方法。 例题中的桥梁为按移动支架法施工的现浇桥梁。 图1 分析模型(成桥阶段) 1

midas拱分析实例

3. 拱结构分析概述 分析拱高度(H)和长度(L)之比(H:L)分别为1:4、1:5和1:7的拱结构,比较其产生的位移 和内力。 拱肋 吊杆 主梁 图 3.1 分析模型 材料 钢材类型 : 1: Grade3

截面 拱肋 : 箱形 1000 × 1000 × 20 mm 主梁 : 箱形 1000 × 1000 × 20 mm 吊杆 : 工字形截面500 × 200 × 10 /16 mm 荷载 均布荷载 : 10.0 tonf/m 设定基本环境 打开新文件,以‘拱.mgb’为名存档。设定长度单位为‘m’, 力的单位为‘tonf’。 文件 / 新文件 文件 / 保存(拱) 工具 / 单位体系 长度 > m ; 力 > tonf? 图 3.2 设定单位体系 设定结构类型为X-Z平面。 模型/ 结构类型 结构类型> X-Z 平面?

定义材料和截面 定义材料为Grade3,定义各个构件的截面。 吊杆选择数据库中的工字形截面。 模型 / 特性 / 材料 类型>钢材 规范>GB(S) ; 数据库>Grade3 ? 模型 / 特性 / 截面 截面数据 截面号 ( 1 ) ; 名称 ( 肋和梁 ) 截面形状>箱形截面 ; 用户 H ( 1 ) ; B ( 1 ) ; tw ( 0.02 ) ; tf1 ( 0.02 ) ? 截面号( 2 ) ; 截面形状 >工字形截面 ; 数据库>GB-YB 名称 > HN 500×200×10/16 ? 图 3.3 定义材料 图 3.4 定义截面 在截面名称栏里可以 直接输入截面名称或者选择数据库栏里的所需截面。 选择截面后会自动输 入截面的主要数据和刚度数据。点击 键可以查看刚度数 据。

MIDAS连续梁有限元分析案例(三)

连续梁逐跨现浇法有限元 分析

目录 第一章工程概况 (2) 1.1 桥梁基本概况 (2) 1.2 主要材料及参数 (2) 1.3 设计荷载取值 (2) 第二章 MIDAS建模 (4) 2.1 组的定义 (4) 2.2 施工阶段的定义 (5) 2.3 预应力布置 (6) 第三章结果分析 (10) 3.1 施工阶段结果分析 (10) 3.1.1 施工阶段法向压应力验算 (10) 3.1.2使用阶段正截面压应力验算 (11) 3.1.3 使用阶段正截面抗弯验算 (11) 3.2 成桥阶段结果分析 (11) 3.2.1成桥阶段的支座反力 (11) 3.2.2成桥后结构的竖向位移 (12) 3.2.3 成桥阶段结构的弯矩 (12) 3.2.4 成桥阶段的应力 (13)

第一章工程概况 1.1 桥梁基本概况 (1)桥梁跨径布置:4×30m=120m; (2)桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+ 2.5m(人行道)+0.25m(栏杆)=20.5m; (3)主梁高度:1.6m,支座处实体段为1.8m; (4)行车道数:双向四车道+2人行道; (5)桥梁横坡:机动车道向外1.5%,人行道向内1.5%; (6)施工方法:逐跨现浇法。 1.2 主要材料及参数 (1)混凝土选用C50混凝土,其力学指标见表1-1。 (2)预应力筋选用直径为15.24mm的低松弛钢绞线,其力学指标见表1-2。 1.3 设计荷载取值 (1)恒载 m;二期恒载(人行道、护栏、主要包括材料重量,混凝土容重:25KN/3 桥面铺装等)合计:85KN/m; (2)活载: 车辆荷载:公路I级

midas连续梁分析实例

1.连续梁分析 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 力。 讥闵丄 3跨连续1次超静定 ~T^ 5.0 m 图i.i 分析模型 概述 Model 1 3跨连续两次超静定 5.0 m 2.5 m 2.5 m 5.0 m 5.0 m (0= 1.0 torf / m d'TsSX

材料 钢材:Grade3 截面 数值:箱形截面400 X 200 X 12 mm 荷载 1. 均布荷载:1.0 tonf/m 2. 温度荷载:△ T = 5 C (上下面的温度差) 打开新文件,以’连续梁分析.mgb'为名存档。单位体系设定为’m 文件/新文件 文件/存档(连续梁分析) 工具/单位体系 长度> m ; 力> tonf 设定基本环境 图1.2 设定单位体系和'tonf

设定结构类型为X-Z平面 模型/结构类型 结构类型> X-Z平面 设定材料以及截面 材料选择钢材GB( S)(中国标准规格),定义截面。 模型/材料和截面特性/ 材料 名称(Grade3) 设计类型> 钢材规> GB(S); 数据库> Grade3 模型/材料和截面特性/ 截面数据 截面号(1 ) 用户:如图输入截面 截面形状> 箱形截面名称> 400 X 200X 12 选择“数据库”中的任意材料,材 料的基本特性值(弹性模量、泊松 比、线膨胀系数、容重)将自动输 出。 建立节点和单元 图1.3 定义材料图1.4 定义截面

为了生成连续梁单元,首先输入节点 正面, 捕捉点(关), 捕捉轴线 (关) 捕捉节点(开),捕捉单元(开),自动对齐 模型/节点/建立节点 图1.5 建立节点 坐标(x, y, z )(0, 0, 0 ) 张冷农* 也風 n 0 > 口丄二?■孚压 辛* *H型理件JU ?E 3 _J i士:B Ei | | TiasjrB^WSF'in. Gm ¥4.I J3 - IDC-.4SQ H rtr^STi F '.

midas Gen-钢结构安装过程施工阶段分析

w w w.M i d a s U s e r.c o m

钢结构安装过程施工阶段分析 2 钢结构安装过程施工阶段分析 1、分析背景 (1) 2、实际案例 (1) 3、建模要点 (2) 4、施工过程分析 (3) 5、分析结果 (6)

钢结构施工过程施工阶段分析 钢结构安装过程施工阶段分析 1、分析背景 合理的施工方案和科学分析是保证结构安全经济的重要手段。空间结构在世界范围内得到广泛应用的同时,其体系越来越新颖、形式越来越复杂,跨度也越来越大,对施工技术相应提出了越来越高的要求。空间结构的施工过程是一个伴随结构形态和受力状态不断变化的动态过程,会出现体系转换、施工荷载加载和卸载等情况,这些都会大大影响结构内力,因此结构的最危险状态往往出现在施工过程中,传统的分析设计方法以使用阶段的结构作为研究对象,不考虑施工过程的影响,不能反映施工阶段真实的受力特点。《网架结构设计与施工规程》JGJ7-91第5.1.7条规定:“安装方法选定后,应分别对网架施工阶段的吊点反力、挠度、杆件内力、提升或顶升时支承柱的稳定性和风载下网架的水平推力等项进行验算,必要时应采取加固措施。”因此,在实际施工过程,我们对结构施工过程中的内力、挠度进行观测,将实测值与理论仿真分析的结果作比较,如果发现较大偏差可采取有效措施进行调整。这样才能保证结构施工的安全性,保证结构施工满足设计的要求。 2、实际案例 本例中,钢结构大屋盖施工安装采用高空拼装、等标高直线累计滑移技术,其中桁架下弦面设置滑移通道。 工程分6榀桁架逐一拼装,顺次滑移进行安装,主要荷载为自重。同时考虑千斤顶临时支点的布置和释放对钢结构安装过程进行模拟计算。 1

相关文档
相关文档 最新文档