文档库 最新最全的文档下载
当前位置:文档库 › n次独立重复试验的模型及二项分布.

n次独立重复试验的模型及二项分布.

n次独立重复试验的模型及二项分布.
n次独立重复试验的模型及二项分布.

第八节 n 次独立重复试验与二项分布

[备考方向要明了]

什 么

怎 么 考

1.了解条件概率和两个事件相互独立的概念.

2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.

相互独立事件、n 次独立重复试验的概率求法是每年高考的热点,特别是相互独立事件、n 次独立重复试验及二项分布的综合更是高考命题的重中之重,如2012年山东T19等.

[归纳·知识整合]

1.条件概率及其性质

条件概率的定义

条件概率的性质

设A 、B 为两个事件,且P (A )>0,称P (B |A )=

P AB

P A

为在事件A 发生条件下,事件B 发生的

条件概率

(1)0≤P (B |A )≤1

(2)如果B 和C 是两个互斥事件,则P (B ∪

C |A )=P (B |A )+P (C |A )

2.事件的相互独立性

(1)定义:设A 、B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立.

(2)性质:

①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )P (B ). ②如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立. [探究] 1.“相互独立”和“事件互斥”有何不同?

提示:两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.

3.独立重复试验与二项分布

独立重复试验 二项分布

定义

在相同条件下重复做的n 次试验称为n 次独立重复试验 在n 次独立重复试验中,用X 表示事件A 发生的次数,

设每次试验中事件A 发生的概率是p ,此时称随机变

量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功

概率

计算公式 A i (i =1,2,…,n )表示第i

次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n )

在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k

(1-p )

n -k

(k =0,1,2,…,n )

[探究] 2.二项分布的计算公式和二项式定理的公式有何联系? 提示:如果把p 看成a,1-p 看成b ,则C k n p k

(1-p )

n -k

就是二项式定理中的通项.

[自测·牛刀小试]

1.若事件E 与F 相互独立,且P (E )=P (F )=1

4,则P (EF )的值等于( )

A .0 B.116

C.14

D.12

解析:选B EF 代表E 与F 同时发生, 故P (EF )=P (E )·P (F )=1

16

.

2.已知P (B |A )=12,P (AB )=3

8,则P (A )等于( )

A.3

16

B.1316

C.34

D.14

解析:选C 由P (AB )=P (A )P (B |A )可得P (A )=3

4

.

3.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是( )

A .0.26

B .0.08

C .0.18

D .0.72

解析:选A P =0.8×0.1+0.2×0.9=0.26.

4.掷一枚不均匀的硬币,正面朝上的概率为2

3,若将此硬币掷4次,则正面朝上3次的

概率是________.

解析:设正面朝上X 次,则X ~B ? ??

??4,23, P (X =3)=C 34? ????233? ????

131

32

81

. 答案:3281

5.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.

解析:设事件A 为“周日值班”,事件B 为“周六值班”, 则P (A )=C 1

6C 27,P (AB )=1C 27,故P (B |A )=P AB P A =1

6.

答案:1

6

条件概率

[例1] (1)甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )

A .0.6

B .0.7

C .0.8

D .0.66

(2)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.

[自主解答] (1)甲市为雨天记为事件A ,乙市为雨天记为事件B ,则P (A )=0.2,P (B )=0.18,P (AB )=0.12,

故P (B |A )=

P AB P A =0.12

0.2

=0.6.

(2)记A =“甲厂产品”,B =“合格产品”,则P (A )=0.7,P (B |A )=0.95.故P (AB )=

P (A )·P (B |A )=0.7×0.95=0.665.

[答案] (1)A (2)0.665

在本例2中条件改为“甲厂产品的合格率是95%,其中60%为一级品”,求甲厂产品中任选一件为一级品的概率.

解:设甲厂产品合格为事件A ,一级品为事件B ,则甲厂产品中任一件为一级品为AB , 所以P (AB )=P (A )P (B |A )=95%×60%=0.57.

—————

——————————————

条件概率的求法

(1)定义法:先求P (A )和P (AB ),再由P (B |A )=

P AB

P A

求P (B |A );

(2)基本事件法:借古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件

AB 所包含的基本事件数n (AB ),得P (B |A )=n AB

n A

.

1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.

解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB .

(1)从5道题中不放回地依次抽取2道的事件数为

n (Ω)=A 25=20;

根据分步乘法计数原理,n (A )=A 1

3×A 1

4=12; 于是P (A )=

n A

n Ω

=1220=35

. (2)因为n (AB )=A 2

3=6,所以

P (AB )=n AB n Ω=620=3

10

.

(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率 P (B |A )=P AB

P A =3

1035

=12

.

法二:因为n (AB )=6,n (A )=12,所以P (B |A )=n AB n A =612=1

2

.

相互独立事件的概率

[例2] 某果园要用三辆汽车将一批水果从所在城市E 运至销售城市F ,已知从城市E 到城市F 有两条公路.统计表明:

汽车走公路Ⅰ堵车的概率为

110,不堵车的概率为910;走公路Ⅱ堵车的概率为3

5

,不堵车的概率为2

5,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,

且三辆汽车是否堵车相互之间没有影响.

(1)求甲、乙两辆汽车中恰有一辆堵车的概率; (2)求三辆汽车中至少有两辆堵车的概率.

[自主解答] 记“汽车甲走公路Ⅰ堵车”为事件A , “汽车乙走公路Ⅰ堵车”为事件B . “汽车丙走公路Ⅱ堵车”为事件C .

(1)甲、乙两辆汽车中恰有一辆堵车的概率为

P 1=P (A ·B )+P (A ·B )=110×910+910×110=950

.

(2)甲、乙、丙三辆汽车中至少有两辆堵车的概率为

P 2=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=

110×110×25+110×910

×35+910×110×35+110×110×35=59500

. —————

—————————————— 求相互独立事件同时发生的概率的方法

(1)利用相互独立事件的概率乘法公式直接求解;

(2)正面计算较繁或难以入手时,可从其对立事件入手计算.

2.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘,已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.

(1)求红队至少两名队员获胜的概率; (2)求红队队员获胜总盘数为1的概率.

解:(1)设甲胜A 为事件D ,乙胜B 为事件E ,丙胜C 为事件F ,则D ,E ,F 分别表示事件甲不胜A 、事件乙不胜B 、事件丙不胜C .

因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )

=0.5,P (F )=0.5.

红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为

P =P (DE F )+P (D E F )+P (D EF )+P (DEF )

=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55. (2)由题意知ξ可能的取值为0,1,2,3.

又由(1)知D ] E ]F 、D E F 、D E -F -

是两两互斥事件,且各盘比赛的结果相互独立.

P (ξ=1)=P (D E F )+P (D E F )+P (D E -F -

)

=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35. 即红队队员获胜1盘的概率为0.35.

独立重复试验与二项分布

[例3] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.

(1)从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率; (2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;

(3)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为X ,求X 的分布列.

[自主解答] (1)设从甲、乙、丙三台机床加工的零件中任取一件是一等品分别为事件

A ,

B ,

C ,

则P (A )=0.7,P (B )=0.6,P (C )=0.8.

所以从甲、乙、丙三台机床加工的零件中各取一件检验,至少有一件一等品的概率为

P 1=1-P (A )P (B )P (C )=1-0.3×0.4×0.2=0.976.

(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,它是一等品的概率为

P 2=

2×0.7+0.6+0.8

4

=0.7.

(3)依题意抽取的4件样品中一等品的个数X 的可能取值为0,1,2,3,4,则

P (X =4)=C 04×0.74

=0.2401, P (X =3)=C 14×0.3×0.73=0.4116, P (X =2)=C 24×0.32×0.72=0.2646, P (X =1)=C 34×0.33×0.7=0.0756, P (X =0)=C 44×0.34=0.0081.

∴X 的分布列为:

X 4 3 2 1 0 P

0.2401

0.4116

0.2646

0.0756

0.0081

—————

——————————————

二项分布满足的条件

(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.

(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数.

3.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同

学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.

(1)求该同学在一次投掷中投中A 区域的概率;

(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;

(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.

解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14

.

(2)依题意识,X ~B ? ??

??3,14,从而X 的分布列为: X 0 1 2 3 P

2764

2764

964

164

(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C 区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×1

2=

316

.

1个技巧——抓住关键词求解相互独立事件的概率

在应用相互独立事件的概率公式时,要找准关键字句,对含有“至多有一个发生”,“至少有一个发生”,“恰有一个发生”的情况,要结合对立事件的概率求解.

1个明确——明确常见词语的含义

解题过程中要明确事件中“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词的意义.已知两个事件A ,B ,则

(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A B ; (4)A ,B 恰有一个发生的事件为A B ∪A B ; (5)A ,B 至多一个发生的事件为A B ∪A B ∪A B .

易误警示——独立事件概率求法中的易误点

[典例] (2012·珠海模拟)某射手每次射击击中目标的概率是2

3,且各次射击的结果互

不影响.

(1)假设这名射手射击5次,求恰有2次击中目标的概率;

(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.

[解] (1)设X 为射手在5次射击中目标的次数,则X ~B ? ??

??5,23.在5次射击中,恰有2次击中目标的概率为

P (X =2)=C 25×? ??

??232×?

??

??

1-23

3

40243

. (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则

P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)

=? ????233×? ????132+13×? ????233×13+? ????132×? ????233=881

. (3)由题意可知,ξ的所有可能取值为0,1,2,3,6,

P (ξ=0)=P (A 1A 2A 3)=? ??

??13

3=127

P (ξ=1)=P (A 1A 2 A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=2

3×? ????

132+13×23×1

3+? ????

132×2

3

29

. P (ξ=2)=P (A 1A 2A 3)=23×13×23=427

P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=? ????

232×1

3+13×? ????

232=8

27,

P (ξ=6)=P (A 1A 2A 3)=? ??

??23

2=827

所以ξ的分布列为:

ξ

0 1 2 3 6 P

127

29

427

827

827

[易误辨析]

1.本题第(2)问因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,

可导致求得P =C 35? ????233

×? ????132=80243

这一错误结果;

2.本题第(2)问中因忽视连续三次击中目标,另外两次未击中导致分类不准确; 3.正确区分相互独立事件与n 次独立重复试验是解决这类问题的关键. [变式训练]

某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是1

3

.

(1)求小明在投篮过程中直到第三次才投中的概率; (2)求小明在4次投篮后的总得分ξ的分布列.

解:(1)设小明第i 次投篮投中为事件A i ,则小明在投篮过程中直到第三次才投中的概率为

P =P (A 1)·P (A 2)·P (A 3)=23×23×13=427

.

(2)由题意知ξ的可能取值为0,2,4,6,8,则P (ξ=0)=? ????234=1681;P (ξ=2)=C 1

4×? ???

?13×? ????233=3281;P (ξ=4)=C 24×? ????132×? ????232=827;P (ξ=6)=C 3

4×? ????133×? ????23=881;P (ξ=8)=? ??

??134

=181

. 所以ξ的分布列为:

ξ

0 2 4 6 8 P

1681

3281

827

881

181

一、选择题(本大题共6小题,每小题5分,共30分)

1.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )

A .0.12

B .0.42

C .0.46

D .0.88

解析:选D 由题意知,甲、乙都不被录取的概率为(1-0.6)·(1-0.7)=0.12.故至少有一人被录取的概率为1-0.12=0.88.

2.(2013·济南模拟)位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为13,向右移动的概率为2

3

,则质点

P 移动五次后位于点(1,0)的概率是( )

A.4

243 B.8243 C.40243

D.80243

解析:选D 依题意得,质点P 移动五次后位于点(1,0),则这五次移动中必有某两次

向左移动,另三次向右移动,因此所求的概率等于C 25? ????132

·? ????233=80243

.

3.(2013·荆州质检)已知随机变量ξ服从二项分布ξ~B ? ??

??6,13,即P (ξ=2)等于( )

A.316

B.1243

C.

13243

D.

80243

解析:选D 已知ξ~B ? ????6,13,P (ξ=k )=C k n p k q n -k

,当ξ=2,n =6,p =13时,有P (ξ

=2)=C 26? ????132? ??

??1-136-2=80243.

4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )

A.1

8 B.14 C.25

D.12

解析:选B P (A )=C 2

3+C 2

2C 25=410=25,P (A ∩B )=C 2

2C 25=1

10.

由条件概率计算公式,得P (B |A )=P A ∩B

P A =1

10410

=14

.

5.将一枚硬币连掷5次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )

A .0

B .1

C .2

D .3

解析:选C 由C k 5? ????12k ? ????125-k =C k +15? ????12k +1

·? ??

??155-k -1,即C k 5=C k +15

,故k +(k +1)=5,即k =2.

6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16

25

,则该队员每次罚球的命中率为( ) A.35 B.15 C.45

D.25

解析:选A 设该队员每次罚球的命中率为p (其中0

=1625

,p 2

=925.又0

. 二、填空题(本大题共3小题,每小题5分,共15分)

7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取

一粒,则这粒种子能成长为幼苗的概率为________.

解析:设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗)出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.

答案:0.72

8.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1

3,用ξ表示这5位乘客在第20

层下电梯的人数,则P (ξ=4)=________.

解析:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~

B ?

??

??

5,13,即有P (ξ=k )=C k 5? ????13k ×? ??

??23

5-k

,k =0,1,2,3,4,5. 故P (ξ=4)=C 45? ????134

×? ????231=10243

.

答案:10

243

9.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是________.

解析:设“任取一书是文科书”的事件为A ,“任取一书是精装书”的事件为B ,则A 、

B 是相互独立的事件,所求概率为P (AB ).

据题意可知P (A )=40100=25,P (B )=70100=7

10,

故P (AB )=P (A )·P (B )=25×710=7

25.

答案:7

25

三、解答题(本大题共3小题,每小题12分,共36分)

10.在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做每一道题的概率均为1

2

.

(1)求其中甲、乙两名学生选做同一道题的概率;

(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.

解:(1)设事件A 表示“甲选做第21题”,事件B 表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“AB +A - B -

”,且事件A 、B 相互独立.

故P (AB +A B )=P (A )P (B )+P (A )P (B )

=12×12+? ????1-12×?

????1-12=12.

(2)随机变量ξ的可能取值为0,1,2,3,4,

且ξ~B ?

??

??4,12

则P (ξ=k )=C k 4? ????12k ? ????1-124-k =C k 4? ????124(k =0,1,2,3,4).

故变量ξ的分布列为:

ξ

0 1 2 3 4 P

1

16

14

38

14

116

11.下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.

(1)求直方图中x 的值;

(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列.

解:(1)依题意及频率分布直方图知,0.02+0.1+x +0.37+0.39=1,解得x =0.12. (2)由题意知,X ~B (3,0.1) 因此P (X =0)=C 0

3×0.93

=0.729,

P (X =1)=C 13×0.1×0.92=0.243, P (X =2)=C 23×0.12×0.9=0.027, P (X =3)=C 33×0.13=0.001.

故随机变量X 的分布列为:

X 0 1 2 3 P

0.729

0.243

0.027

0.001

12.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.

(1)求出在1次游戏中玩家甲胜玩家乙的概率;

(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列.

解:(1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头、石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.

所以在1次游戏中玩家甲胜玩家乙的概率P =1

3

.

(2)X 的可能取值分别为0,1,2,3.X ~B ? ??

??3,13,则 P (X =0)=C 03·? ????23

3

827

, P (X =1)=C 13·? ????131·? ????

23

2

=1227, P (X =2)=C 23·? ????132·? ??

??23

1

=627

, P (X =3)=C 33·? ??

??13

3=127

. X 的分布列如下:

X 0 1 2 3 P

8

27

1227

627

127

1.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是

1

2

,且是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12

D.116

解析:选A 理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件A ·C ·B ,且A ,C ,B 之间彼此独立,

且P (A )=P (B )=P (C )=1

2

.

所以P (A ·B ·C )=P (A )·P (B )·P (C )=1

8

.

2.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________. 解析:由题意知,正面可以出现6次,5次,4次,所求概率

P =C 66? ????

126+C 56? ????126+C 46? ??

??12

6

=1+6+1564=11

32

. 答案:11

32

3.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为1

3,他们的投票相互没有影响,规定:若投票结果中至少有两

张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.

(1)求该公司决定对该项目投资的概率;

(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 解:(1)该公司决定对该项目投资的概率为

P =C 23? ??

??

132 ·23

+C 33? ??

??13

3

=727

. (2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:

“同意”票张数 “中立”票张数 “反对”票张数 事件A 0 0 3 事件B 1 0 2 事件C 1 1 1 事件D

1

2

P (A )=C 33? ??

??

133=127

,P (B )=C 13? ??

??13

3

=19

, P (C )=C 13C 12? ??

??

133=29

,P (D )=C 13? ??

??13

3

=19

. ∵A 、B 、C 、D 互斥,

∴P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=13

27.

高考数学(理)总复习讲义: n次独立重复试验及二项分布

第七节n 次独立重复试验及二项分布 1.条件概率及其性质 (1)条件概率的定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB ) P (A ) (P (A )>0). (2)条件概率的性质 ①非负性:0≤P (B |A )≤1; ②可加性:如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件. (2)若P (AB )=P (A )P (B ),则A 与B 相互独立. (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ). (5)一般地,如果事件A 1,A 2,…,A n (n >2,n ∈N *)相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)·…·P (A n ). 互斥事件与相互独立事件的相同点与不同点 (1)相同点:二者都是描述两个事件间的关系; (2)不同点:互斥事件强调两事件不可能同时发生,即P (AB )=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响. 3.独立重复试验与二项分布 (1)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生. (2)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验 中事件A 发生的概率为p ,则事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p ) n - k ,k =0,1,2,…,n ,则称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n 次独立重复试验;,(2)随机变量是否为某事件在这n 次独立重复试验中发生的次数.

独立重复试验教案

独立重复试验教案 教学目的 使学生了解独立重复试验的实际背景和能利用其法则进行实际计算. 教学重点和难点 独立重复试验的概念及其公式推导. (教学方法:讲练结合) 教学过程 1.独立重复试验的意义 独立重复试验,又叫做贝努里试验,是在同样的条件下重复地、各次之间相互独立地进行的一种试验,这种试验在概率论中占有相当重要的地位,因为随机现象的统计规律只有在大量独立重复试验中才能显示出来. 在这种试验中,每一次试验只有两种结果,即某事件要么发生;要么不发生.在一定条件下,种子要么发芽;要么不发芽.在产品抽样检查中,要么抽到合格品;要么抽不到合格品.所以在n次独立重复试验中某事件恰好发生k(k=0,1,2,…,n)次,另外(n-k)次就是某事件不发生. 2.n次独立重复试验中事件恰好发生k次的概率公式. 的展开式中x m的系数.因此,我们可将概率P n(m)的分布叫做二项式分布. 3.举例 (1)某批产品中有20%的次品,进行重复抽样检查,共取5个样品,求其中次品数等于0、1、2、3、4、5的概率. 解:已知n=5 P=0.2,

(2)一批产品中有30%的一等品,进行重复抽样检查,共取5个样品,求: (i)取出的5个样品中恰有2个一等品的概率是多少? (ii)取出的5个样品中至少有2个一等品概率是多少? =1-[P5(0)+P5(1)] =1-0.52822 =0.47178≈0.472 (3)某厂大量生产的某种小零件,经抽查检验知道其次品率 为0.3%,现把这种零件每100件装成一盒.试分别计算每盒中不含次品、恰好含1件次品、含2件次品、含3件次品、含4件次品的概率.并求一盒中至少含有3件次品的概率是多少? 解:将100个零件装进盒内,可以看成是进行了100次检验零件的随机试验. 在一盒中不含次品的概率 同理,可算得 P100(1)≈0.2228≈22% P100(2)≈0.0332≈3.3% P100(3)≈0.0033≈0.3%

n次独立重复实验与二项分布随堂练习(含答案)

n 次独立重复实验与二项分布 (时间:45分钟 分值:100分) 一、选择题 1. [2013·河池模拟]高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( ) A. 9 10 B. 45 C. 8 9 D. 8990 答案:D 解析:目标被击中的概率为P =1-(1-910)(1-89)=1-190=89 90 . 2. [2013·湖北调研]如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为( ) A. 0.960 B. 0.864 C. 0.720 D. 0.576 答案:B 解析:系统正常工作概率为C 12×0.9×0.8×(1-0.8)+0.9×0.8×0.8=0.864,所以选B. 3. [2013·大庆模拟]某单位在一次春游踏青中,开展有奖答题活动,从2道文史题和3道理科题中不放回地依次抽2道,在第一次抽到理科题的前提下第二次抽到理科题的概率为( ) A. 9 25 B. 625 C. 3 10 D. 12 答案:D 解析:因为第一次抽到的是理科题,此时剩下2道文史题和2道理科题,故第二次抽到理科题的概率为24=1 2 . 4. [2013·北京海淀模拟]已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率( ) A. 3 10 B. 13

n次独立重复试验与二项分布

二项分布及其应用 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做______________,用符号__________来表示,其公式为P (B |A )=__________. 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①____________; ②如果B 和C 是两互斥事件,则P (B ∪C |A )=__________________________________. 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称_______________________. (2)若A 与B 相互独立,则P (B |A )=________, P (AB )=P (B |A )·P (A )=____________. (3)若A 与B 相互独立,则________,________,________也都相互独立. (4)若P (AB )=P (A )P (B ),则________________. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有______种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n 次独立重复试验中,事件A 发生k 次的概率为________________________(p 为事件A 发生的概率),事件A 发生的次数是一个随机变量X ,其分布列为____________,记为____________. 1.“互斥事件”与“相互独立事件”的区别与联系 (1)“互斥”与“相互独立”都是描述的两个事件间的关系. (2)“互斥”强调不可能同时发生,“相互独立”强调一个事件的发生与否对另一个事件发生的概率没有影响. (3)“互斥”的两个事件可以独立,“独立”的两个事件也可以互斥. 2.条件概率 条件概率通常是指在事件A 发生的条件下,事件B 发生的概率.放在总体情况下看:先求P (A ),P (AB )再 求P (B |A )=P (AB ) P (A ).关键是求P (A )和P (AB ). 1.已知P (AB )=320,P (A )=3 5,则P (B |A )=________. 2.如图所示的电路,有a ,b ,c 三个开关, 每个开关开或关的概率都是,且是 相互独立的,则灯泡甲亮的概率为 . 3.(2010·福建)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________. 4.在4次独立重复试验中事件A 出现的概率相同,若事件A 至少发生一次的概率为65 81 ,则事件A 在1次试验

第七节 n次独立重复试验与二项分布

第七节n次独立重复试验与二项分布 A组基础题组 1.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则他们都中靶的概率是( ) A. B. C. D. 答案 D 由题意知甲中靶的概率为,乙中靶的概率为,两人打靶相互独立,同时中靶的概率P=×=. 2.(2018福建厦门二模,6)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( ) A. B. C. D. 答案 D 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的 概率P 1 =,∴3次中恰有2次抽到黄球的概率P=-=. 3.如图,元件A i (i=1,2,3,4)通过电流的概率均为0.9,且各元件是否通过电流相互独立,则电流能在M,N之间通过的概率是( ) A.0.729 B.0.882 9 C.0.864 D.0.989 1 答案 B 电流能通过A 1,A 2 的概率为0.9×0.9=0.81,电流能通过A 3 的概率为0.9,故电流不 能通过A 1,A 2 ,且也不能通过A 3 的概率为(1-0.81)×(1-0.9)=0.019. 故电流能通过元件A 1,A 2 ,A 3 的概率为1-0.019=0.981, 而电流能通过A 4 的概率为0.9, 故电流能在M,N之间通过的概率是0.981×0.9=0.882 9.

4.甲、乙两名羽毛球运动员要进行三场比赛,且这三场比赛可看作三次独立重复试验,若甲至少取胜一次的概率为 ,则甲恰好取胜一次的概率为( ) A. B. C. D. 答案 C 假设甲取胜为事件A,每次甲胜的概率为p,由题意得,事件A 发生的次数X~B(3,p),则有1-(1-p)3 = ,得p= ,则事件A 恰好发生一次的概率为 × × - = . 5.甲、乙两人同时解答某一问题,解答成功的概率是0.8,已知甲单独解答成功的概率是0.6,甲、乙单独解答成功与否互不影响,则乙单独解答成功的概率是 . 答案 0.5 解析 设乙单独解答成功的概率是p, 则0.6(1-p)+(1-0.6)p+0.6p=0.8, 解得p=0.5. 6.甲、乙两个狙击手对同一个目标各射击一次,其命中率分别为0.9,0.95.现已知目标被击中,则它被乙击中的概率是 .(精确到小数点后第三位) 答案 0.955 解析 设“目标被击中”为事件A,“被乙击中”为事件B, 则P(A)=0.9×(1-0.95)+(1-0.9)×0.95+0.9×0.95=0.995,P(AB)=P(B)=0.95, 所以P(B|A)= ( ) ( )= . . ≈0.955. 7.某气象站天气预报的准确率为80%,计算(结果保留到小数点后两位): (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率; (3)5次预报中恰有2次准确,且其中第3次预报准确的概率.

独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计) 教学目标 知识与技能: 理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。 过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。 情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。 教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 教学难点:二项分布模型的构建。 教学过程: 一、复习回顾: 1、条件概率:在事件A 发生的条件下,事件B 发生的条件概率:() (|)() P AB P B A P A = 2、事件的相互独立性:事件A 与事件B 相互独立,则: P ( AB ) = P ( A ) P ( B ) , 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立 二、创设情景,新课引入: 三个臭皮匠顶个诸葛亮的故事 已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.6,老二为0.6,老三为0.6,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为 三、师生互动,新课讲解: 1、分析下面的试验,它们有什么共同特点? (1)投掷一个骰子投掷5次; (2)某人射击1次,击中目标的概率是0.8,他射击10次; (3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛); (4)抛硬币实验。 在研究随机现象时,经常需要在相同的条件下重复做大量试验来发现规律。例如掷硬币结果的规律,需要做大量的掷硬币试验。显然,在n 次重复掷硬币的过程中,各次试验的结果都不会受其他试验结果的影响,即 P(A 1A 2...A n )=P(A 1)P(A 2)...P(A n ). (1) 其中i A =),...,2,1(n i =是第i 次试验的结果。 2、 引入概念 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。 1()10.40.40.40.9360.8P A B C -??=-??=>

高考理科数学练习训练题n次独立重复试验与二项分布含解析理

高考理科数学复习训练题 (建议用时:60分钟) A 组 基础达标 一、选择题 1.甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛没有平局,在每一场比赛中,甲胜乙的概率为23,甲胜丙的概率为14,乙胜丙的概率为1 5.则甲获第一名且丙 获第二名的概率为( ) A.11 12 B.16 C.130 D.215 D [设“甲胜乙”“甲胜丙”“乙胜丙”分别为事件A ,B ,C ,事件“甲获第一名且丙获第二名”为A ∩B ∩–C ,所以P (甲获第一名且丙获第二名)=P (A ∩B ∩–C )=P (A )P (B )P (– C )=23×14×45=215 .] 2.甲、乙两人练习射击,命中目标的概率分别为12和1 3,甲、乙两人各射击一次,有下列 说法:①目标恰好被命中一次的概率为12+13;②目标恰好被命中两次的概率为12×1 3;③目标 被命中的概率为12×23+12×13;④目标被命中的概率为1-12×2 3 ,以上说法正确的是( ) A .②③ B .①②③ C .②④ D .①③ C [对于说法①,目标恰好被命中一次的概率为12×23+12×13=1 2,所以①错误,结合选项 可知,排除B 、D ;对于说法③,目标被命中的概率为12×23+12×13+12×1 3,所以③错误,排除 A.故选C.] 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3 4,两个零件是否加工 为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512

C.14 D.16 B [设事件A :甲实习生加工的零件为一等品; 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=3 4 , 所以这两个零件中恰有一个一等品的概率为 P (A B -)+P (A -B )=P (A )P (B -)+P (A - )P (B )= 23×? ????1-34+? ????1-23×34=5 12.] 4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 C [设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )= P AB P A =2 5 ,故选C.] 5.(2018·绵阳诊断)某射手每次射击击中目标的概率是2 3,且各次射击的结果互不影 响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为( ) A.89 B.7381 C.881 D.19 C [因为该射手每次射击击中目标的概率是23,所以每次射击不中的概率为1 3,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3–A 4– A 5)+P (–A 1A 2A 3A 4–A 5)+P (–A 1– A 2A 3A 4A 5) =? ????233 ×? ????132 +13×? ????233 ×13+? ????132 ×? ????233 =881 .] 二、填空题

n次独立重复试验

n次独立重复试验 独立重复试验: (1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验. (2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次 的概率为,此时称随机变量X 服从二项分布,记作,并称p为成功概率. (3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. (4)独立重复试验概率公式的特点:是n次独立 重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式. 求独立重复试验的概率: (1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即 2,…,n)是第i 次试验的结果. (2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。 相互独立事件同时发生的概率 相互独立事件的定义: 如果事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。 若A,B是两个相互独立事件,则A与与,与B都是相互独立事件。 相互独立事件同时发生的概率:

两个相互独立事件同时发生,记做A·B,P(A·B)=P(A)·P(B)。 若A 1,A 2 ,…A n 相互独立,则n个事件同时发生的概率等于每个事件发生的 概率的积,即P(A 1·A 2 ·…·A n )=P(A 1 )·P(A 2 )·…·P(A n )。 求相互独立事件同时发生的概率的方法: (1)利用相互独立事件的概率乘法公式直接求解; (2)正面计算较繁或难以入手时,可从其对立事件入手计算。 条件概率 条件概率的定义: (1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示. (2)条件概率公式:称为事件A与B的交(或积). (3)条件概率的求法: ①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=。 ②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)= 。 P(B|A)的性质: (1)非负性:对任意的A∈Ω,; (2)规范性:P(Ω|B)=1; (3)可列可加性:如果是两个互斥事件,则。

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计) 教学目标 知识与技能: 理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。 过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。 情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。 教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 教学难点:二项分布模型的构建。 教学过程: 一、复习回顾: 1、条件概率:在事件A 发生的条件下,事件B 发生的 条件概率:()(|)() P AB P B A P A

2、事件的相互独立性:事件A 与事件B 相互独立,则: P ( AB ) = P ( A ) P ( B ) , 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立 二、创设情景,新课引入: 三个臭皮匠顶个诸葛亮的故事 已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.6,老二为0.6,老三为0.6,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为 三、师生互动,新课讲解: 1、分析下面的试验,它们有什么共同特点? (1)投掷一个骰子投掷5次; (2)某人射击1次,击中目标的概率是0.8,他射击10次; (3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛); (4)抛硬币实验。 在研究随机现象时,经常需要在相同的条件下重复 1()10.40.40.40.9360.8 P A B C -??=-??=>

独立重复试验与二项分布

独立重复试验与二项分布 1.n 次独立重复试验 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 2.二项分布 前提 在n 次独立重复试验中 字母的含义 X 事件A 发生的次数 p 每次试验中事件A 发生的概率 分布列 P (X =k )=C k n p k (1-p ) n -k ,k =0,1,2,…,n 结论 随机变量X 服从二项分布 记法 记作X ~B (n ,p ),并称p 为成功概率 明确该公式中各量表示的意义:n 为重复试验的次数;p 为在一次试验中某事件A 发生的概率;k 是在n 次独立重复试验中事件A 发生的次数. 判断正误(正确的打“√”,错误的打“×”) (1)n 次独立重复试验的每次试验结果可以有多种.( ) (2)n 次独立重复试验的每次试验的条件可以略有不同.( ) (3)二项分布与超几何分布是同一种分布.( ) (4)两点分布是二项分布的特殊情形.( ) 答案:(1)× (2)× (3)× (4)√ 已知随机变量X 服从二项分布,X ~B ? ?? ??6,13,则P (X =2)等于( ) A.316 B.4243 C.13243 D. 80243 答案:D 任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( ) A.34 B.38 C.13 D.14 答案:B

设随机变量X ~B (2,p ),若P (X ≥1)=5 9,则p =________. 答案:13 探究点1 独立重复试验的概率 甲、乙两人各射击一次,击中目标的概率分别是23和3 4,假设每次射击是否击中目标, 相互之间没有影响.(结果须用分数作答) (1)求甲射击3次,至少1次未击中目标的概率; (2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 【解】 (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=19 27 . (2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 2 2×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38, 由于甲、乙射击相互独立,故P (A 2B 2)=49×38=1 6. 1.[变问法]在本例(2)的条件下,求甲、乙均击中目标1次的概率? 解:记“甲击中目标1次”为事件A 3,“乙击中目标1次”为事件B 3,则P (A 3)=C 1 2×23×13= 49,P (B 3)=38 , 所以甲、乙均击中目标1次的概率为P (A 3B 3)=49×38=16 . 2.[变问法]在本例(2)的条件下,求甲未击中、乙击中2次的概率? 解:记“甲未击中目标”为事件A 4,“乙击中2次”为事件B 4,则P (A 4)=C 0 2(1-23)2=19,P (B 4) =C 22(34)2 =916,所以甲未击中、乙击中2次的概率为P (A 4B 4)=19×916=116 . 独立重复试验概率求法的三个步骤

n次独立重复试验的模型及二项分布.

第八节 n 次独立重复试验与二项分布 [备考方向要明了] 考 什 么 怎 么 考 1.了解条件概率和两个事件相互独立的概念. 2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. 相互独立事件、n 次独立重复试验的概率求法是每年高考的热点,特别是相互独立事件、n 次独立重复试验及二项分布的综合更是高考命题的重中之重,如2012年山东T19等. [归纳·知识整合] 1.条件概率及其性质 条件概率的定义 条件概率的性质 设A 、B 为两个事件,且P (A )>0,称P (B |A )= P AB P A 为在事件A 发生条件下,事件B 发生的 条件概率 (1)0≤P (B |A )≤1 (2)如果B 和C 是两个互斥事件,则P (B ∪ C |A )=P (B |A )+P (C |A ) 2.事件的相互独立性 (1)定义:设A 、B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立. (2)性质: ①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )P (B ). ②如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立. [探究] 1.“相互独立”和“事件互斥”有何不同? 提示:两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥. 3.独立重复试验与二项分布

独立重复试验 二项分布 定义 在相同条件下重复做的n 次试验称为n 次独立重复试验 在n 次独立重复试验中,用X 表示事件A 发生的次数, 设每次试验中事件A 发生的概率是p ,此时称随机变 量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功 概率 计算公式 A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n ) 在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p ) n -k (k =0,1,2,…,n ) [探究] 2.二项分布的计算公式和二项式定理的公式有何联系? 提示:如果把p 看成a,1-p 看成b ,则C k n p k (1-p ) n -k 就是二项式定理中的通项. [自测·牛刀小试] 1.若事件E 与F 相互独立,且P (E )=P (F )=1 4,则P (EF )的值等于( ) A .0 B.116 C.14 D.12 解析:选B EF 代表E 与F 同时发生, 故P (EF )=P (E )·P (F )=1 16 . 2.已知P (B |A )=12,P (AB )=3 8,则P (A )等于( ) A.3 16 B.1316 C.34 D.14 解析:选C 由P (AB )=P (A )P (B |A )可得P (A )=3 4 . 3.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是( ) A .0.26 B .0.08 C .0.18 D .0.72 解析:选A P =0.8×0.1+0.2×0.9=0.26.

知识讲解独立重复试验与二项分布

独立重复试验与二项分布 【学习目标】 1.理解n次独立重复试验模型及二项分布. 2.能利用n次独立重复试验及二项分布解决一些简单的实际问题. 【要点梳理】 要点一、n次独立重复试验 每次试验只考虑两种可能结果与,并且事件发生的概率相同。在相同的条件下重复地做次试验,各次试验的结果相互独立,称为次独立重复试验。 要点诠释: 在次独立重复试验中,一定要抓住四点: ①每次试验在同样的条件下进行; ②每次试验只有两种结果与,即某事件要么发生,要么不发生; ③每次试验中,某事件发生的概率是相同的; ④各次试验之间相互独立。 总之,独立重复试验,是在同样的条件下重复的,各次之间相互独立地进行的一种试验,在这种试验中,每一次的试验结果只有两种,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的。 要点二、独立重复试验的概率公式 1.定义 如果事件A在一次试验中发生的概率为P,那么n次独立重复试验中,事件A恰好发生k次的概率为: (k=0,1,2,…,n). 令得,在n次独立重复试验中,事件A没有发生的概率为 ........ 令得,在n次独立重复试验中,事件A全部发生的概率为 ........。 要点诠释: 1. 在公式中,n是独立重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,只有弄清公式中n,p,k的意义,才能正确地运用公式. 2. 独立重复试验是相互独立事件的特例,就像对立事件是互斥事件的特例一样,只是有“恰好”字样的用独立重复试验的概率公式计算更方便. 要点三、n次独立重复试验常见实例: 1.反复抛掷一枚均匀硬币 2.已知产品率的抽样 3.有放回的抽样 4.射手射击目标命中率已知的若干次射击 要点诠释: 抽样问题中的独立重复试验模型:

n次独立重复实验与二项分布

n 次独立重复实验与二项分布 一、选择题 1.某一试验中事件A 发生的概率为p ,则在n 次这样的试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k p n -k C .(1-p )k D .C k n (1-p )k p n -k [答案] D [解析] 在n 次独立重复试验中,事件A 恰发生k 次,符合二项分布,而P (A )=p ,则P (A )=1-p ,故P (X =k )=C k n (1-p )k p n -k ,故答案选D. 2.某一批花生种子,如果每1粒发芽的概率为4 5,那么播下4粒种子恰有2粒发芽的 概率是( ) [答案] B [解析] P =C 24? ????452? ????152 =96625 . 3.某电子管正品率为34,次品率为1 4,现对该批电子管进行测试,设第ξ次首次测到 正品,则P (ξ=3)=( ) A .C 23? ????142 ×34 B . C 23? ????342 ×14 2 ×34 2 ×14 [答案] C 4.某射手射击1次,击中目标的概率是,他连续射击4次,且各次射击是否击中目标相互之间没有影响.则他恰好击中目标3次的概率为( ) A .× B . C .C 3 4×× D .1- [答案] C

[解析] 由独立重复试验公式可知选C. 5.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为(C ) ()A 33710(1)C p p - ()B 333 10(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 6.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常 发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( A ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()() 33C 7. [2013·河池模拟]高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( ) A. 9 10 B. 45 C. 8 9 D. 8990 答案:D 解析:目标被击中的概率为P =1-(1-910)(1-89)=1-190=89 90 . 8. [2013·湖北调研]如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次是、、,则系统正常工作的概率为( ) A. B. C. D. 答案:B 解析:系统正常工作概率为C 1 2×××(1-+××=,所以选B. 9. [2013·大庆模拟]某单位在一次春游踏青中,开展有奖答题活动,从2道文史题和3道理科题中不放回地依次抽2道,在第一次抽到理科题的前提下第二次抽到理科题的概率为( ) A. 9 25 B. 625 C. 3 10 D. 12 答案:D 解析:因为第一次抽到的是理科题,此时剩下2道文史题和2道理科题,故第二次抽

5.独立重复试验解析

基础达标 1.若在一次测量中出现正误差和负误差的概率都是1 2,则在5次测量中恰好出现2次正 误差的概率是( ) A .5 16 B .2 5 C .58 D .132 解析:选 A .P =C 25· ????123×????122 =516 . 2.某电子管正品率为34,次品率为1 4,现对该批电子管进行测试,设第X 次首次测到正 品,则P (X =3)=( ) A .C 23 ????142 ×34 B . C 23 ????342 ×14 C .????142 ×34 D .????342 ×14 解析:选C .X =3表示第3次首次测到正品,而前两次都没有测到正品,故其概率是??? ? 142 ×34 . 3.甲、乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结 束,假定甲每局比赛获胜的概率均为2 3 ,则甲以3∶1的比分获胜的概率为( ) A .827 B .6481 C .49 D .89 解析:选A .当甲以3∶1的比分获胜时,说明甲乙两人在前三场比赛中,甲只赢了两 局,乙赢了一局,第四局甲赢,所以甲以3∶1的比分获胜的概率为P =C 23(23)2(1-23)×23=3×49 ×13×23=8 27 ,故选A . 4.一个学生通过某种英语听力测试的概率是1 2,他连续测试n 次,要保证他至少有一次 通过的概率大于0.9,那么n 的最小值为( ) A .6 B .5 C .4 D .3 解析:选C .由1-C 0n ????12n >0.9,得??? ?12n <0.1,所以n ≥4.

5.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列 {a n },a n =? ????-1,第n 次摸取红球 1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 57×(13)2×(23)5 B . C 27×(23)2×(13)5 C .C 57×(13)2×(13 )5 D .C 27×(13)2×(23 )2 解析:选B .由S 7=3知,在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为23,摸取白球的概率为13,则S 7=3的概率为C 27×(23)2×(13 )5 ,故选B . 6.下列例子中随机变量ξ服从二项分布的有________.(填序号) ①随机变量ξ表示重复抛掷一枚骰子n 次,出现点数是3的倍数的次数; ②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ; ③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M

独立重复实验与二项分布教学设计(罗雪梅)

课题:独立重复试验与二项分布 人教A版选修2-3第二章第二单元第三课时 授课教师:广东省清远市英德中学罗雪梅 一、教学目标 ●知识与技能: 理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服 从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相 应的实际问题。 ●过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念, 使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象 的数学思想方法。 ●情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯 物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精 神。 二、教学重点、难点 重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 难点:二项分布模型的构建。 三、教学方法与手段 教学方法:诱思探究教学法 学习方法:自主探究、观察发现、合作交流、归纳总结。 教学手段:多媒体辅助教学

四、教学过程

附:板书设计与时间安排1、板书设计

教案说明 我有这样的深刻体会:好的教学情景的创设,等于成功的一半。因而,我以一个轻松愉快的猜数游戏把学生带进一个轻松愉快的课堂环境中。从游戏开始,诱思深入,把老师在堂上讲、学生在堂下听的教学过程变为师生共同探索,共同研究的过程。学生围绕老师提出的一系列具有趣味性和启发性的层层入深的问题,展开讨论,使问题得到解决,从而突出本节重点,突破本节难点。在整个教学过程中,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线,思维为主攻”的“四为主”原则。教师不是抛售现成的结论,而是充分暴露学生的思维,展示“发现”的过程,突出“师生互动”的教学,这种设计充分体现了教师的主导作用。学生在一系列的思考、探究中逐步完成了本节的学习任务,充分实现了学生的主体性地位,在整个教学过程中,始终着眼于培养学生的思维能力,这种设计符合现代教学观和学习观的精神,体现了素质教育的要求。 教与学有机结合而对立统一。良好的教学设想,必须通过教学实践来体现,教师必须善于驾驭教法,指导学法,完成教学目标,从而使学生愉快地、顺利地、认真地、科学地接受知识。

n次独立重复试验及二项分布

n 次独立重复试验及二项分布 一 基础知识 1.条件概率及其性质 (1)条件概率的定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB ) P (A ) (P (A )>0). (2)条件概率的性质 ①非负性:0≤P (B |A )≤1; ②可加性:如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件. (2)若P (AB )=P (A )P (B ),则A 与B 相互独立. (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ). (5)一般地,如果事件A 1,A 2,…,A n (n >2,n ∈N *)相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)·…·P (A n ). 互斥事件与相互独立事件的相同点与不同点 (1)相同点:二者都是描述两个事件间的关系; (2)不同点:互斥事件强调两事件不可能同时发生,即P (AB )=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响. 3.独立重复试验与二项分布 (1)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生. (2)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验 中事件A 发生的概率为p ,则事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p ) n - k ,k =0,1,2,…,n ,则称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n 次独立重复试验;,(2)

相关文档
相关文档 最新文档