文档库 最新最全的文档下载
当前位置:文档库 › 技术专家手把手教你计算放大器噪声系数

技术专家手把手教你计算放大器噪声系数

技术专家手把手教你计算放大器噪声系数
技术专家手把手教你计算放大器噪声系数

导读] 本文简要介绍了两种放大器架构的噪声系数计算,包括inverting,non-inverting 架构的噪声系数计算,并提供计算小工具。关键词:噪声系数放大器

1. 引言

在各种放大器使用的场合,我们时常需要计算到放大器,却没有一个直观的方式来看放大器这一级对链路噪声的影响。本文讨论了各种放大器架构下,放大器的噪声系数的计算方式。

2. 放大器噪声指标

电子元件应用中,常见如下5 种噪声来源:

1. 散弹噪声(shot noise,白噪声,在频谱中表现为平坦的)

2. 热噪声(thermal noise,白噪声,在频谱中表现为平坦的)

3. 闪烁噪声(flicker noise,1/f 噪声)

4. 突发噪声(burst noise,脉冲噪声)

5. 雪崩噪声(Avalanche noise,反向击穿时才出现的噪声)

基本上每个放大器都有输入电压噪声和输入电流噪声两个指标。在频域,通常其单位用nV/rtHz,和pA/rtHz 来表征。如下图:

Figure 1 输入电压噪声和电流噪声曲线图例

按噪声种类来分,其大致贡献在不同的频段如下:

Figure 2 噪声种类分布图

如果把所有电容,电感都看做无噪声的器件,一个普通的放大器的输出噪声按主要的贡献可以按如下图所示:

Figure 3 放大器噪声分量分解

根据这个估计,可以得到如下电阻值的电压噪声:

在输出的噪声中,上图的各个分量其贡献如下:

输出的噪声是这些分量的均方和:

Figure 4 放大器电压噪声等效输出模型

同理,对上式中的第4 项,负端的电流噪声,也可以建立这样的模型:

Figure 5 放大器电流噪声等效输出模型

3. 信噪比计算

以上的计算还仅限于噪声谱密度的计算,在实际应用中其实主要要关注的是信噪比,这就要引入噪声计算中很重要的一点:带宽。所以还需要考虑到带宽积分后的总噪声。

在得到一定带宽内的电压噪声密度后,需要把电压噪声换算成功率,才能进行积分计算,而不能直接把电压噪声直接积分,如下:假设我们已知一个放大器的电压噪声密度为5nV/rtHz,如果要计算10Hz 以内的积分噪声,则按如下方式计算:

Figure 6 通过噪声谱密度计算综合噪声

如我们上面所述,放大器的噪声分布是分区域的,如果再算上通道的滤波效应,计算积分噪声的步骤如下:

Figure 7 输入电压噪声及电流噪声谱密度频率分布图1. 1/f 噪声区域(en1/f)

Figure 8 1/f 噪声

Figure 9 平坦带噪声

以上的电路只是一个运放的通用模型,实际应用的场景下,运放的配置可能千差万别,可能可以是inverting 输入形式,也可能是non-inverting 输入的形式,还可能是全差分的运放形式。且实际应用的时候,运放可能作为放大器,也可能作为ADC 驱动器,我们可能不仅关心运放等效输出的噪声有多大,同时也会关注运放这一级对整条链路的噪声恶化有多少,也就是运放的噪声系数。

下面我们就对三种形式的运放: inverting 输入运放,和Non-Inverting 输入运放进行分别的计算。

4. 放大器噪声系数计算

4.1 Inverting 输入运放噪声系数计算

假定:

计算出总的输出噪声如下:

4.2 Non-Inverting 输入运放噪声系数计算

同样的计算方法,假定一个Non-Inverting 电路如下:

Figure 13 Non-Inverting 放大器噪声模型

根据如下信噪比计算公式:

5. 案例分析

由附件里的计算工具可以得到:Rs=50 Ohm,

Rg=80 Ohm

Rf=2.4 KOhm

RM=133 Ohm

RT=116 Ohm

此时算上源阻抗后的信号增益是-15V/V,

由计算工具可以得到,此时的NF=4.6dB

更改配置为Non-inverting 输入,如下:

Figure 15 Non-inverting 放大器输入电路

Rs=50 Ohm,

RT=50 Ohm

Rg=25 Ohm

Rf=725Ohm

此时算上源阻抗,signal gain 为15V/V,得到NF 为6.11dB。

可以看出不同的配置下,即使增益相同,得到的噪声系数也是不同的。在这种增益下,Inverting 配置得到的噪声系数要远比Non-Inverting 的好。

6. 总结

放大器的噪声计算需要考虑诸多因素,如放大器本身的噪声,外围匹配电阻带来的噪声,以及带后续滤波器宽带来的影响。通过上面所给的公式,就可以把放大器对整条链路的影响计算清楚。

噪声计算公式

三、时间平均声级或等效连续声级Leq A 声级能够较好地反映人耳对噪声的强度和频率的主观感觉,对于一个连续的稳定噪声,它是一种较好的评价方法。但是对于起伏的或不连续的噪声,很难确定A 声级的大小。例如我们测量交通噪声,当有汽车通过时噪声可能是75d B ,但当没有汽车通过时可能只有50dB ,这时就很难说交通噪声是75dB 还是50dB 。又如一个人在噪声环境下工作,间歇接触噪声与一直接触噪声对人的影响也不一样,因为人所接触的噪声能量不一样。为此提出了用噪声能量平均的方法来评价噪声对人的影响,这就是时间平均声级或等效连续声级,用Leq 表示。这里仍用A 计权,故亦称等效连续A 声级L Aeq 。 等效连续A 声级定义为:在声场中某一定位置上,用某一段时间能量平均的方法,将间歇出现的变化的A 声级以一个A 声级来表示该段时间内的噪声大小,并称这个A 声级为此时间段的等效连续A 声级,即: ()??????? ??????????=?dt P t P T L T A eq 2001lg 10 =??? ? ???T L dt T A 01.0101lg 10 (2-4) 式中:p A (t )是瞬时A 计权声压;p 0是参考声压(2×10-5 Pa );L A 是变化A 声级的瞬时值,单位dB ;T 是某段时间的总量。 实际测量噪声是通过不连续的采样进行测量,假如采样时间间隔相等,则: ??? ??=∑=n i L eq Ai N L 11.010 1lg 10 (2-5) 式中:N 是测量的声级总个数,L A i 是采样到的第i 个A 声级。 对于连续的稳定噪声,等效连续声级就等于测得的A 声级。 四、昼夜等效声级 通常噪声在晚上比白天更显得吵,尤其对睡眠的干扰是如此。评价结果表明,晚上噪声的干扰通常比白天高10dB 。为了把不同时间噪声对人的干扰不同的因素考虑进去,在计算一天24h 的等效声级时,要对夜间的噪声加上10dB 的计权,这样得到的等效声级为昼夜等效声级,以符号L dn 表示;昼间等效用L d 表示,指的是在早上6点后到晚上22点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来;夜间等效用L n 表示,指的是在晚上22点后到早上6点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来:

翻译_无线电接收器的噪声系数

无线电接收器的噪声系数 H. T. ERJISt, FELLOW, I.R.E. 摘要——本文给出了电波接收器噪系数的严格定义,此定义不局限于高增益接收机,也适用于普通的四端口网络。分析了接收器整体的噪声系数与其组件的噪声系数之间的关系,简要叙述了接收器组件与其噪声系数的测量方法之间的不匹配。 简介 当越来越短的波得到实际应用,无线电接收器的噪声源也越来越被重视。在很多相关论文中,特别是Llewellyn(英国音乐家)和Jansky(美国无线电工程师)在1928年发表的论文中,通过实验得到:热激噪声(约翰逊噪声)决定了短波无线电接收器的绝对灵敏度。早在1942年,North 建议采用的无线电接收器的绝对灵敏度的标准与我们当时所用的标准相差多达2倍。因为它是基于接收器输入电路的阻抗匹配,我们的标准很有局限性,所以我们采用了他的标准。 本文提出了一个更严格的关于无线电接收器的绝对灵敏度标准的定义,即噪声系数。该定义不局限于高增益接收机,也适用于普通的四端口网络。它使通过一个简单的分析就给出接收器整体的噪声系数与其组件的噪声系数之间的关系成为可能。对于双重检波接收器来说,这些组件可能是高频放大器、变频器和中频放大器。本文也给出了噪声系数的测量方法。

四端口网络噪声系数的定 义如图1所示,一个信号发生器 连接到输入端,输出电路也被标 记出来。网络的输入阻抗和输出 阻抗可能包含电抗成分,它们可 能与发生器和输出电路匹配或不匹配。四端口网络可能是一个放大器、转换器、衰减器或简单的变压器。信号发生器对于接下来的定义是必要的,但信号发生器里面的衰减器和连接右面的输出电路则只是为了表明对噪声系数和增益的测量。 噪声系数将依据可用信号功率、有效噪声功率、增益和有效带宽来定义,下面将给出这些术语的定义并进行讨论。 可用信号功率 阻为R0欧,电动势为E伏特的发生器提供给R1欧的电阻E2R1/(R0+R1)2瓦特的功率,当输出电路与发生器匹配,即R1= R0时,这个功率达到最大等于E2/4R0。E2/4R0被人们称为发生器的可用功率,它的定义与所连接的电路的阻抗无关。当R1不等于R0时,因为存在失配损耗,所以输出功率小于可用功率。事实上,在放大器的输入电路中,由于不匹配而降低的输出噪声可能比降低的输出信号更多,所以不匹配很可能是个有益的条件。正是这种放大器的输入电路中不匹配条件的存在,使本文中的术语“可用功率”显得更加恰当。在图1中,用S o表示信号发生器输出端的可用信号功率。这里S o等于V2/RA瓦特,当V表示衰减器输入端电压,R表示衰减器的特征阻抗,A表示

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

低噪声放大器设计指南

低噪声放大器设计指南 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分 别为获得 F min 时的最佳源反射系数、 晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF -1)/G 1G +…… (4) 232其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。 所以,一般来说低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

噪声系数(Noise Figure)对手机射频接收机灵敏度之影响

Noise Figure 所谓灵敏度,指的是在SNR能接受的情况下,其接收机能接收到的最小讯号[1-2],其公式如下: 第二项是所谓的Noise Figure,理想上SNR当然是越大越好,最好是无限大(表示都没有噪声),但实际上不可能没有噪声,因此,由[3-4]可知,所谓Noise Figure,衡量的是当一个讯号进入一个系统时,其输出讯号的SNR下降多寡,亦即其噪声对系统的危害程度,示意图与定义如下:

而接收机整体的Noise Figure,公式如下: 由上式可知,越前面的阶级,对于Noise Figure的影响就越大,而一般接收机的方块图如下[5] : 因此,从天线到LNA,包含ASM、SAW Filter、以及接收路径走线,这三者的Loss 总和,对于接收机整体的Noise Figure,有最大影响,因为由[5]可知,若这边的Loss多1 dB,则接收机整体的Noise Figure,就是直接增加1 dB,因此挑选ASM 时,要尽量挑选Insertion Loss较小的[7]。

而由[8]可知,SAW Filter可以抑制带外噪声,因此原则上须在LNA输入端,添加SAW Filter,避免带外噪声劣化接收机整体性能。但有些接收机,其SAW Filter 会摆放在LNA与Mixer之间,如下图[9] : 前述说过,LNA输入端的Loss,对于接收机整体的Noise Figure,有最大影响,因此上图的PCS与WCDMA,之所以将SAW Filter摆放在LNA之后,主要也是为了Noise Figure考虑,假设SAW Filter的Insertion Loss为1 dB,LNA的Gain 为10 dB,若将SAW Filter摆放在LNA之前,则接收机整体的Noise Figure,便是直接增加1 dB,但若放在LNA之后,则接收机整体的Noise Figure,只增加了1/10 = 0.1 dB。而在Layout时,其接收路径走线要尽可能短,线宽尽可能宽,这样才能将其Insertion Loss降低,甚至必要时,可以将走线下层的GND挖空,如此便可以在阻抗不变的情况下,进一步拓展线宽,使其Insertion Loss更为降低[10]。

噪声复习题

噪声复习题及参考答案(39题) 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(第三册噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 5、国标(GB-9660-88)《机场周围飞机噪声环境标准》和国标(GB-9661-88)《机场周围飞机噪声测 量方法》 一、填空题 1.测量噪声时,要求气象条件为:无、无、风力(或)。 答:雨雪小于5.5米/秒(或小于四级) 2.从物理学观点噪声是指;从环境保护的观点,噪声是指。 答:频率上和统计上完全无规则的声音人们所不需要的声音 3.噪声污染属于污染,污染特点是其具有、、。 答:能量可感受性瞬时性局部性 4.环境噪声是指,城市环境噪声按来源可分 为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声其它噪声 5.声压级常用公式L P= 表示,单位。 答: L P=20 lgP/P° dB(分贝) 6.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计 为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得 7.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在 Hz范围内必定有峰值。 答:低频高频 2000-5000 8.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比为;工程频谱测量常用的八个倍频程段是 Hz。 答:2 21/3 63,125,250,500,1k,2k,4k,8k

噪声衰减公式(建议收藏)

点声源随传播距离增加引起的衰减 在自由声场(自由空间)条件下,点声源的声波遵循着球面发散规律,按声功率级作为点声源评价量,其衰减量公式为:.。.。..文档交流 (8—1) 式中: △L—-距离增加产生衰减值,dB; r——点声源至受声点的距离,m. 在距离点声源,r1处至r2处的衰减值: △L=20 lg(r1/r2)(8-2) 当r2=2 r1时,△L=—6dB,即点声源声传播距离增加1倍,衰减值是6 dB. 点声源的几何发散衰减实际应用有两类: a.无指向性点声源几何发散衰减的基本公式是: L(r)=L(r0)-20 lg(r/r0)(8—3) 式中:L(r),L(r0)—-分别是r,r0处的声级。 如果已知r0处的A声级,则式(8-4)和式(8-3)等效: L A(r)=L A(r0)-20 lg(r/r0) (8—4) 式(8-3)和式(8-4)中第二项代表了点声源的几何发散衰减: A div=20 lg(r/r0) (8-5)

如果已知点声源的A声功率级L WA,且声源处于自由空间,则式(8—4)等效为式(8—6): L A(r)=L WA-20 lgr—11 (8—6) 如果声源处于半自由空间,则式(8—4)等效为式(8—7): L A(r)=L WA-20 lgr-8 (8—7) b.具有指向性声源几何发散衰减的计算见式(8-8)或式(8-9): L(r)=L(r0)-20 lg(r/r0)(8-8) L A(r)=L A(r0)—20 lg(r/r0)(8—9) 式(8-8)、式(8-9)中,L(r)与L(r0),LA(r)与L A(r0)必须是在同一方向上的声级.。..。.。文档交流 文档交流感谢聆听

低噪声放大器设计 论文

低噪声放大器设计 摘要:微弱信号检测就是利用近代电子学和信号处理方法从噪声中提取有用信号,其关键在于抑制噪声。恢复、增加和提取有用信号。与普通放大器相比,低噪声放大器应具有低得多的噪声系数。欲使放大器获得良好的低噪声特性,除使用好的低噪声器件外,还要有周密的设计。本文将从低噪声放大器在通讯系统中的作用,低噪声放大器的主要技术指标以及低噪声放大器的设计方法来论述低噪声放大器,以获得最佳噪声性能的低噪声放大器。重点介绍了低噪声放大器的设计方法。 关键词:低噪声,微弱信号检测,噪声系数,放大器 0.引言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

接收机灵敏度计算公式

接收灵敏度的定义公式 摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。 在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 图1. 下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) 的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin 得到: Nout = F × Nin × G

噪声常用计算公式整汇总

目录 一、相关标准及公式 (3) 1)基本公式 (3) 2)声音衰减 (4) 二、吸声降噪 (5) 1)吸声实验及吸声降噪 (6) 2)共振吸收结构 (7) 三、隔声 (8) 1)单层壁的隔声 (8) 2)双层壁的隔声 (9) 3) 隔声测量.................................. 错误!未定义书签。 4)组合间壁的隔声及孔、缝隙对隔声的影响 (10) 5)隔声罩 (10) 6)隔声间 (10) 7)隔声窗 (11) 8)声屏障 (11) 9)管道隔声量 (12) 四、消声降噪 (12) 1)阻性消声器 (12) 2)扩张室消声器 (14) 3)共振腔式消声器 (15) 4)排空放气消声器 (13)

压力损失 (13) 气流再生噪声 (13) 五、振动控制 (16) 1)基本计算 (16) 2)橡胶隔振器(软木、乳胶海棉) (16) 3)弹簧隔振器 (18)

重要单位: 1N/m=1kg/s2 1r/min=1/60HZ 标准大气压1.013*105 气密度 5273.2=1.29 1.01310P T ρ? ?? 基准声压级Po=10*105 基准振动加速度10-6m/s2 1Mpa=1000000N/m2 倍频程测量范围: 中心频率两侧70.7%带宽;1/3倍频程测量范围: 中心频率两侧23.16%带宽 一、相关标准及公式 1)基本公式 声速331.50.6c t =+ 声压与声强的关系2 2P I=cv c ρρ= 其中v wA =,单位:W/m 2 声能密度和声压的关系,由于声级密度I c ε=,则2 2P c ερ= J/m 3 质点振动的速度振幅p I v c p ρ= = m/s 《环境影响噪声控制工程—洪宗辉P11》 A 计权响应与频率的关系见下表《注P350》

GPS低噪声放大器的设计

NF(dB)=10lg ? 一个微波管的射频绝对稳定条件是K>1,S 11<1-S12S21,S22<1-S12S21。 低噪声放大器的设计 姓名:####学号:################班级:1######## 一、设计要求 1.中心频率为1.45GHz,带宽为50MHz,即放大器工作在1.40GHz- 1.50GHz频率段; 2.放大器的噪声系数NF<0.8dB,S11<-10dB,S22<-15dB,增益 Gain>15dB。 二、低噪声放大器的主要技术指标 低噪声放大器的性能主要包括噪声系数、合理的增益和稳定性等。 1.噪声系数NF 放大器的噪声系数(用分贝表示)定义如下: ?S in N in? ?S out N out? 式中NF为射频/微波器件的噪声系数;S in ,N in 分别为输入端的信号功率和噪 声功率;S out ,N out 分别为输出端的信号功率和噪声功率。 噪声系数的物理含义是,信号通过放大器后,由于放大器产生噪声,使得信噪比变坏,信噪比下降的倍数就是噪声系数。 2.放大器的增益Gain 在微波设计中,增益通常被定义为传输给负载的平均功率与信号源的最大资用功率之比: Gain=P L P S 增益的值通常是在固定的频率点上测到的,低噪声放大器都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,因此增益Gain要下降。噪声最佳匹配情况下的增益称为相关增益。通常,相关增益比最大增益大概低2~4dB. 3.稳定性 22

只有当3个条件都满足时,才能保证放大器是绝对稳定的。 三、低噪声放大器的设计步骤 1.下载并安装晶体管的库文件 (1)由于ADS2008自带的元器件库里并没有ATF54143的元器件模型,所以 需要从Avago公司的网站上下载A TF54143.zap,并进入ADS主界面,点击【File】——【Unarchive Project】进行安装。 (2)新建工程A TF54143_LNA_1_prj,执行菜单命令【File】—— 【Include/Remove Projects】将A TF54143_prj添加到新建工程中,这样新建工程就能使用器件A TF54143了。 2.确定直流工作点 低噪声放大器的设计的第一步是设置晶体管的直流工作点。 (1)在ADS中执行菜单【File】——【New Design】,在弹出的对话框中的 Schematic Design Templates下拉列表中选择“DC_FET_T”模板,在Name文本框中输入DC_FET_T,单击【OK】,这样DC_FET控件就被 放置在原理图中了。 (2)在原理图中放置器件A TF54143,设置DC_FET控件的参数并连接原理图 如图1所示。 图1完整DC_FET_T原理图 (3)仿真得到A TF54143的直流特性图如图2所示。

技术专家手把手教你计算放大器噪声系数

导读] 本文简要介绍了两种放大器架构的噪声系数计算,包括inverting,non-inverting 架构的噪声系数计算,并提供计算小工具。关键词:噪声系数放大器 1. 引言 在各种放大器使用的场合,我们时常需要计算到放大器,却没有一个直观的方式来看放大器这一级对链路噪声的影响。本文讨论了各种放大器架构下,放大器的噪声系数的计算方式。 2. 放大器噪声指标 电子元件应用中,常见如下5 种噪声来源: 1. 散弹噪声(shot noise,白噪声,在频谱中表现为平坦的) 2. 热噪声(thermal noise,白噪声,在频谱中表现为平坦的) 3. 闪烁噪声(flicker noise,1/f 噪声) 4. 突发噪声(burst noise,脉冲噪声) 5. 雪崩噪声(Avalanche noise,反向击穿时才出现的噪声) 基本上每个放大器都有输入电压噪声和输入电流噪声两个指标。在频域,通常其单位用nV/rtHz,和pA/rtHz 来表征。如下图: Figure 1 输入电压噪声和电流噪声曲线图例 按噪声种类来分,其大致贡献在不同的频段如下:

Figure 2 噪声种类分布图 如果把所有电容,电感都看做无噪声的器件,一个普通的放大器的输出噪声按主要的贡献可以按如下图所示: Figure 3 放大器噪声分量分解

根据这个估计,可以得到如下电阻值的电压噪声: 在输出的噪声中,上图的各个分量其贡献如下: 输出的噪声是这些分量的均方和:

Figure 4 放大器电压噪声等效输出模型 同理,对上式中的第4 项,负端的电流噪声,也可以建立这样的模型:

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: * HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义: 式2. 在这个定义中,噪声由两个因素产生。一个是到达射频系统输入的干扰,与需要的有用信号不同。第二个是由于射频系统载波的随机扰动(LNA,混频器和接收机等)。第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为: PNA = kTΔF,

噪声常用计算公式整汇总资料

目录 一、相关标准及公式 (2) 1)基本公式 (2) 2)声音衰减 (2) 二、吸声降噪 (3) 1)吸声实验及吸声降噪 (3) 2)共振吸收结构 (4) 三、隔声 (5) 1)单层壁的隔声 (5) 2)双层壁的隔声 (6) 3) 隔声测量 (6) 4)组合间壁的隔声及孔、缝隙对隔声的影响 (6) 5)隔声罩 (6) 6)隔声间 (7) 7)隔声窗 (7) 8)声屏障 (7) 9)管道隔声量 (8) 四、消声降噪 (8) 1)阻性消声器 (8) 2)扩张室消声器 (8) 3)共振腔式消声器 (9) 4)排空放气消声器 (10)

压力损失 (10) 气流再生噪声 (10) 五、振动控制 (10) 1)基本计算 (10) 2)橡胶隔振器(软木、乳胶海棉) (11) 3)弹簧隔振器 (12)

重要单位: 1N/m=1kg/s2 1r/min=1/60HZ 标准大气压1.013*105 气密度 5273.2=1.29 1.01310P T ρ? ?? 基准声压级Po=10*105 基准振动加速度10-6m/s2 1Mpa=1000000N/m2 倍频程测量范围: 中心频率两侧70.7%带宽;1/3倍频程测量范围: 中心频率两侧23.16%带宽 一、相关标准及公式 1)基本公式 声速331.50.6c t =+ 声压与声强的关系2 2P I=cv c ρρ= 其中v wA =,单位:W/m 2 声能密度和声压的关系,由于声级密度I c ε=,则2 2P c ερ= J/m 3 质点振动的速度振幅p I v c p ρ= = m/s 《环境影响噪声控制工程—洪宗辉P11》 A 计权响应与频率的关系见下表《注P350》

低噪声放大器设计指南

低噪声放大器设计指南 文件标识:基础知识 当前版本: 1.0 作者:刘明宇 日期:2006.12.2 审阅\修改: 修改日期: 文件存放: 版本历史 版本作者日期修改内容 盖受控章 除非加盖文件受控章,本文一经打印或复印即为非

1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分别为获得 F min 时的最佳源反射系数、晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF 3-1)/G 1G + (4) 22其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪

灵敏度

讨论这个议题的主要起因是:灵敏度(sensitivity)是如何确定的.[https://www.wendangku.net/doc/405588463.html,] 问题:我们经常看到某些GPS芯片 商宣称自己的芯片灵敏度是如何的高,但是根据对整个系统的分析可以看出系统的灵敏度主要取决于第一级LNA的设计,GPS产品的灵敏度取决于GPS芯片和放大器的设计,那么就带来下面的问题:[https://www.wendangku.net/doc/405588463.html,] 1)系统的灵敏度是如何计算的芯片的灵敏度对系统设计有什么影响 [https://www.wendangku.net/doc/405588463.html,] 2)接收GPS信号的功率和信噪比是一个什么样的水平 [https://www.wendangku.net/doc/405588463.html,] 3)如何按照信噪比,信号功率设计系统灵敏度 [https://www.wendangku.net/doc/405588463.html,] [https://www.wendangku.net/doc/405588463.html,] 这真是一篇超精华的帖子!感谢楼主和参与的所有人![5 2 jinfoxhe: R1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. snow99: 好象在说GPS, 不是GSM, 虽然看起来很像 GPS RF BW: 2.046 MHz Modulation: BPSK Process Gain: 46 d Thermal Noise Floor: kTB = -111 dBm/2.046MHz Required Eb/N0: 6 dB (不太清楚, 可以修正)

Receiver NF: 3 dB (Typical) Sensitivity: -111 + 6 + 3 - 46 = -148 dBm 这只是一个大致结果, 考虑系统的其他算法以及Doppler校正, 最终灵敏度在-154 ~ -149之间 https://www.wendangku.net/doc/405588463.html,] Arm720: 楼上朋友对灵敏度的描述已经非常清楚了,降低系统的信噪比和噪声系数能提高系统的灵敏度.那么对于设计来说是不是可以这么理解: 1)根据灵敏度公式估算系统的接收灵敏度 2)根据估算的系统接收灵敏度计算对芯片接收灵敏度的要求 芯片接收的灵敏度反映了对前级放大器噪声系数和信噪比的设计要求. 不知我的理解是否正确,如果是这样,估算的原则又是什么那些参考书上有描述,我想详细的研究一下,多谢了! 那位测试过GPS信号的朋友能说一下GPS信号的接收功率和信噪比吗 Arm720: 看来我的发帖晚了一部,多谢jinfoxhe和snow99兄! 不过snow99兄的计算方法和上面公式好像对不上.你描述的是对GPS接收系统的需求,不只这些需求是如何计算出来的. 多谢了! 以下是引用jinfoxhe在2006-4-24 8:56:00的发言: 1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带 宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. 今天仔细看了看jinfoxhe兄的帖子,发现对关键问题进行了描述"Eb/N0为芯片在一定误码条件下的解调需要的信噪比",也就是说,你选的芯片就决定了接收系统灵敏度的理论值,这

第9章 噪声中信号的检测

第9章 噪声中信号的检测 前一章学习了经典假设检验理论,本章将要运用假设检验理论讨论噪声中信号的检测问题或最佳接收机的设计问题,在这里信号检测的含义是指从含有噪声的观测过程中判断是否有信号存在或区分几种不同的信号;而接收机实际上是对观测过程实施的数学运算。为了设计最佳接收机,首先需要指定设计准则,这可以采用第8章介绍的判决准则,然后相对于选定的准则来设计接收机,在设计通信系统的接收机时,通常采用最小错误概率准则,而对于雷达和声纳系统则采用纽曼-皮尔逊(Neyman-Pearson )准则。本章只介绍高斯白噪声环境下信号的检测问题,高斯有色噪声以及非高斯噪声环境下的检测问题请读者参看其它相关教材。 9.1 高斯白噪声中确定性信号的检测 考虑一个简单的二元通信系统,系统发送信号)(0t y 或)(1t y ,两个信号是完全已知的,假定接收机的观测时间间隔为(0,T),由于信道噪声的影响,接收到的信号受到噪声的污染,因此接收机观测到的过程为: 0011:()()() 0:()()() 0H z t y t v t t T H z t y t v t t T =+<<=+<< (9.1.1) 其中噪声)(t v 假定是零均值的高斯白噪声,功率谱密度为2/0N 。现在要设计一种接收机,通过对观测过程)(t z 的处理,对(9.1.1)式的两种假设作出判决。 由假设检验理论可知,最佳接收机的结构由似然比计算器与一个门限比较器组成,然而在第8章,涉及的观测数据都是离散的,因此要运用假设检验理论来解决噪声中信号的检测问题。首先需要将连续的观测过程离散化,然后再计算似然比。 假定噪声)(t v 为一带限噪声,功率谱密度为 0()/2, v G N ω=ω<Ω (9.1.2) 很显然,当Ω→∞时,带限过程趋于白噪声。带限过程的相关函数为 τ ΩτΩ?πΩ=τ) sin(2)(0N R v (9.1.3) 噪声的方差为 π Ω= σ202 N v 当/τ=πΩ时,(/)0v R πΩ=,即(0),(/),(2/),...,v v v πΩπΩ是相互正交的随机变量序列,由于

低噪声放大器的设计

低噪声放大器的设计 参数: 低噪声放大器的中心频率选为2.4GHz,通带为8MHz 通带内增益达到11.5dB,波纹小于0.7dB 通带内的噪声系数小于3 通带内绝对稳定 通带内输入驻波比小于1.5 通带内的输出驻波比小于2 系统特性阻抗为50欧姆 微带线基板的厚度为0.8mm,基板的相对介电常数为4.3 步骤: 1.打开工程,命名为dzsamplifier。 2.新建设计,命名为dzsamplifier。设置框如下: 点击OK后,如下图。

模板为BJT_curve_traver,带有这个模板的原理图可以自动完成晶体管工作点扫描工作。 3.在ADS元件库中选取晶体管。单击原理图工具栏中的, 打开元件库,然后单击,在 搜索“32011”。其中sp开头的原件是S参数模型,可以用来作S参数仿真,但这种模型不能用来做直流工作点扫描。以pb开头的原件是封装原件,可以做直流工作点扫描,此处选择pb开头的。 4.按照下图进行连接

5.将参数扫描控制器中的 【Start】项修改为Start=0. 6.点击进行仿真,仿真结束后,数据显示窗自动弹出。 如下图: 7.晶体管S参数扫描。 (1)重新新建一个新的原理图S_Params,进行S参数扫描。如下图:

点击OK后,出现: (2)在ADS元件库中选取晶体管。单击原理图工具栏中 的,打开元件库,然后单击,在 搜索“32011”。此处选择sp 开头的。 (3)以如图的形式连接。 (4)双击S参数仿真空间SP,将仿真控件修改如下。

(5)点击仿真按钮,进行仿真。数据如下图所示: (6)双击S参数的仿真控件,选中其中的【Calculate Noise】,如图 执行后:

WCDMABTS接收机灵敏度和整机噪声系数的理论计算

WCDMA BTS 接收机灵敏度和整机噪声系数的理论计算 1 概述 灵敏度是衡量接收机在一定条件下能够接收小信号的能力,它和诸多因素有关。例如,在不同的误码率、信纳比、信噪比等条件及不同的接收环境(静态、多径信道模型)情况下灵敏度概念和数值可能各不相同。 静态参考灵敏度是指接收机在静态理想传播环境(相当于有用信号直接输入接收机,没有任何外界干扰)下,错误比特率小于某一规定值时接收机可以接收最小有用信号的能力。它是各种传播条件中最高的灵敏度,也就是说在任何情况下的接收机灵敏度数值都不可能超过静态参考灵敏度。通常所讲的基站灵敏度一般是指它的静态参考灵敏度。 2 接收机灵敏度计算 基站接收机系统可以分为射频滤波、LNA、混频、中频滤波、放大、A/D变换、DSP 处理、解调等几部分组成,如图1所示。 图1 接收机原理框图 进入接收机输入端的信号有两种,有用信号P min 和热噪声信号P noise,由于接收机通道中电路本身也会产生噪声N f,因而在解调处有用信号和噪声信号的比例为: E b/N t=P min-P noise-N f(1) 其中E b/N t是有用信号平均比特能量与噪声和干扰功率谱密度的比值,又称为解调门限,相当于模拟FM调制的C/I(载干比),是衡量数字调制和编码方式品质因素的标准。E b/N t的值取决于该系统的调制方式和解调算法。P noise为接收机输入口处的热噪声信号,又称本底噪声,其数值为P noise=10Log(KT0·BW),其中K是波尔兹曼常数,K=1.38 10-23J/K;T0为标准噪声温度,T0=290K。则: P noise=10Log(KT0)+10Log(BW)=-174dBm+10Log(BW) (2) 式中BW为系统信道带宽。 对于WCDMA系统而言,BW=3.84MHz,由式(1)、(2)可以推出WCDMA基站接收机理论上静态参考灵敏度P min为: P min=-174dBm+10Log(BW)+ N f+ E b/N t =-108.15+ N f+ E b/N t(3)静态参考灵敏度是在静态传播情况下测得的数值,是衡量接收机性能好坏的一个重要指标。但在实际工作中,由于接收机所处的环境非常复杂,移动通信信道不可能是一个静态信

相关文档