文档库 最新最全的文档下载
当前位置:文档库 › 材料工程基础全复习

材料工程基础全复习

材料工程基础全复习
材料工程基础全复习

材料工程基础复习资料

一、绪论

1、概念:

科学:对于现象的观察、描述、确认、实验研究及理论解释。

技术:泛指根据生产实践经验和自然科学原理而发展成的各种工艺操作方法与技能。

工艺:使各种原材料、半成品加工成为产品的方法和过程。

工程:将科学原理应用到实际目标,如设计、组装、运转经济而有效的结构、设备或系统。材料工程:是工程的一个领域,其目的在于经济地,而又为社会所能接受地控制材料的结构、性能和形状。

2、材料科学与工程的任务?

材料科学与工程是关于材料成分、结构、工艺和它们的性能与用途之间有关的知识和应用的科学。

3、传统材料加工包括哪几个方面?

①传统的金属铸造②塑性加工③粉末材料压制、烧结或胶凝固结为制品④材料的焊接与

粘接

材料的切除,材料的成型,材料的改性,材料的连接

二、材料的熔炼

1、钢铁冶金

1)、高炉炼铁生产过程:①还原:矿石中的铁被还原;②造渣:高温下石灰石分解形成的氧化钙与酸性脉石形成炉渣;③传热和渣底反应:被还原的矿石降落使温度升高加速反应将全部氧化铁还原成氧化亚铁,风口区残余的氧化亚铁还原成铁,与炉渣一起进入炉缸。2)、炼钢过程中的理化过程:

①脱碳:碳被氧气直接氧化:

在温度高于1100℃条件下 2C+O2→2CO

间接氧化:

在温度低于1100℃条件下 2Fe+O2→2FeO

C+FeO→Fe+CO

②硅、锰的氧化:a.直接氧化反应:

Si+O2 → Si02

2Mn+O2 → 2MnO

b.间接氧化,但主要是间接反应:

Si+2FeO → Si02+2Fe

Mn+FeO → MnO+Fe

③脱磷:磷是以磷化铁(Fe2P)形态存在,炼钢利用炉渣中FeO及CaO与其化合生成磷酸

钙渣去除 Fe2P+5FeO+4CaO→(CaO)4·P2O5+9Fe

④脱硫:硫是以FeS形式存在,利用渣中足够的CaO,把其中FeS去除。

反应式为 FeS + CaO-->FeO + CaS

⑤脱氧(再还原):通常采用的脱氧剂有:锰铁、硅铁和铝等。

Me +FeO-->MeO +Fe

3)、高炉炼铁原料:铁矿石、燃料和熔剂

焦炭:它是把炼焦的煤粉或是几种煤粉的混合物装在炼焦炉内,隔绝空气加热到1000~1100度,干馏后留下的多孔块状产物。作用是提供热量和还原剂。4)、直接还原炼铁方法:用煤或天然气等还原剂直接将铁矿石在固态还原成海绵铁熔融还原炼铁方法:用铁矿石和普通烟煤作原料,在汽化炉的流化床中,将直接、

还原得到海绵铁进一步加热熔化,在熔融汽化炉的炉底形

成铁水与炉渣的熔池。

2、铜冶金

造锍熔炼:目的在于首先使炉料中的铜尽可能全部进入冰铜,部分铁以FeS形式也进入冰铜(Cu2S+FeS此熔体亦称为锍),使大部分铁氧化成FeO与脉石矿物造渣;其次使冰铜与炉渣分离。为了达到这两个目的,造锍熔炼必须遵循两个原则。一是必须使炉料中有足够的硫来形成冰铜,其次是炉渣中含二氧化硅接近饱和,以便使冰铜炉渣不至混熔。

3、单晶材料制备

熔体中生长单晶应满足那些热力学、动力学条件?

热力学:要使熔体中晶体生长,必须使体系的温度低于平衡温度。体系温度低于平衡温度的状态称为过冷,所以,过冷是熔体中晶体生长的必要条件。△T的绝对值称为过冷度,表示体系过冷程度的大小。过冷度是熔体法晶体生长的驱动力,一般情况下,过冷度越大,晶体生长越快,过冷度为零时,晶体生长速度为零。

动力学:晶体生长速度f与晶体的温度梯度以及熔体的温度梯度有关。远离生长界面的熔体温度最高,越趋近于生长界面,熔体温度趋于降低,这样便形成了由晶体到熔体方向(即Z向)的温度梯度。温度梯度的存在是热量输运的必要条件。要提高晶体生长速度,就要增大晶体的温度梯度和减小熔体的温度梯度,要降低晶体生长速度则采取相反措施。

三、金属的液态成型与半固态成型

1、液态成型

1)、从工艺方面列举如何获得等轴晶:

①适当降低浇注温度:

②合理运用铸型对液态合金的强烈激冷作用:

③孕育处理:

④动态晶粒细化:在合金凝固初期,直接对合金液施以振动、搅拌或旋转,都可以在液相中产生大量的游离晶体,细化等轴晶。

2)、合金的充型能力与流动性的概念极其关系:

充型能力:液态金属充满型腔,获得形状完整,轮廓清晰铸件的能力。

流动性:指合金本身的流动能力。

关系:一般流动性好的合金,其充型能力也强,合金的流动性是影响合金充型能力的内在因素。流动性是合金本身的性能之一,与合金成分、温度、杂质含量及其物理性能有关。影响合金的充型能力的因素有合金的流动性、浇注条件以及铸型性质及结构。

3)、为什么金属型铸造未能广泛取代砂型铸造?

和砂型铸造相比,金属型铸造有许多优点:

(1)组织致密,力学性能较高。

(2)铸件的尺寸精度高、表面粗糙度低,铝合金铸件的尺寸公差等级可达CT7—CT9,表面粗糙度可达Ra3.2—12.5μm。

(3)浇冒口尺寸较小,金属耗量减少,一般可节约金属15%~30%。

(4)多次浇注、工序简化、生产率高,易于实现机械化、自动化。

而砂型铸造:

(1)可以生产形状复杂的零件,尤其复杂内腔的毛坯;

(2)工艺灵活性大,适应性广,工业常用的金属材料均可铸造。几克~几百吨,壁厚0.3mm~1m;

(3)铸造成本较低:原材料来源广泛,价格低廉;

(4)铸件的形状尺寸与零件非常接近,减少切削量,属少无切削加工。

但金属型制造成本高,周期长,工艺要求严,易出现白口。不适合单件、小批生产零件,不适宜铸造形状复杂的薄壁未能广泛取代砂型铸造。铸件,否则易产生浇不足等缺陷。铸造高熔点合金,金属型寿命较低。因此金属型铸造未能广泛取代砂型铸造

4)、简述顺序凝固原则和同时凝固原则,并说明各自适用的场合(合金及铸件结构条件)。

顺序凝固原则:在铸件上从远离冒口或浇口到冒口或浇口之间建立一个递增的温度梯度,从而实现由远离冒口的部分向冒口的方向顺序地凝固。

顺序凝固原则适用于收缩大或壁厚差别较大,易产生缩孔的合金铸件。

同时凝固原则:即采用相应工艺措施使铸件各部分温度均匀,在同一时间内凝固。

同时凝固适用于各种合金的薄壁铸件。

5)、了解各种铸造方法的特点及应用

2、半固态成型

流变成型:指利用半固态金属制备器批量制备或连续制备糊状浆料,直接进行加工成型(铸造、挤压、轧制、锻模等)的方法。

触变成型:指将用浆料连续制备器生产的半固态浆料铸成一定形状的铸锭的成型方法。

3、快速凝固成型

实现快速凝固成型的基本条件及三项技术:

基本条件:①金属溶液必须被分散成液流或液滴,而且至少在一个方向上的尺寸极小,以便散热;②必须有能带走热量的冷却介质。

三项技术:大冷却速度凝固、大生长速度快速凝固、大过冷度快速凝固

四、金属塑性加工

1、塑性加工的特点并与铸造进行比较:

优点:(1)结构致密、组织改善、性能提高、强、硬、韧↑;

(2)少无切削加工,材料利用率高;

(3)可以获得合理的流线分布;

(4)生产效率高。

缺点:(1)一般工艺表面质量差;

(2)不能成型形状复杂件;

(3)设备庞大、价格昂贵;

(4)劳动条件差。

2、工艺基础:①基本工艺:轧制、挤压、拉拔、锻造、冲压成型

②金属塑性变形的性能变化:加工硬化,回复与再结晶

③金属塑性变形的类型:冷变形、热变形和温变形

④影响塑性变形的因素:材料性质、加工条件、应力状态

3、求任一点的主应力和主方向:解法如下

例:设某点应力状态为:,试求其主应力

和主方向.(应力单位:10MPa)

解:将各应力分量代入式:

得:

)

(

2

)

(

2

2

2

3

2

2

2

2

1

xy

z

zx

y

yz

x

zx

yz

xy

z

y

x

zx

yz

xy

x

z

z

y

y

x

z

y

x

J

J

J

τ

σ

τ

σ

τ

σ

τ

τ

τ

σ

σ

σ

τ

τ

τ

σ

σ

σ

σ

σ

σ

σ

σ

σ

+

+

-

+

=

+

+

+

+

+

-

=

+

+

=

代入:

分解因式:

为求主方向,可将应力分量代入式:

0)(0)(0)(=-++=+-+=++-n m l n m l n m l z zy xz zx y xy zx yx x σστστσσσττσ

σ0

)5(30)6(2032)4(=-++=+-+=++-n m l n m l n m l σσ

σ

4、屈服条件及两个屈服准则:

屈服准则(塑性条件、塑性方程):在复杂应力状态下,只有当各应力分量满足一定的关系时,质点才能进入塑性状态。这种关系称为屈服准则。屈服准则是判断材料从弹性状态进入塑性状态的判据。

两个屈服准则:

Tresca屈服准则:当材料(质点)中的最大剪应力达到某一临界值时,则材料发生屈服;该临界值取决于材料在变形条件下的性质,而与应力状态无关。

设σ1>σ2>σ3, 则τmax 1=(σ1-σ3)/2 = C, C可通过实验求得。其值与应力状态无关。

当拉伸试样屈服时,σ2=σ3=0、σ1=σs,代入上式得C=1/2σs。于是,屈雷斯加屈服准则的数学表达式为σ1-σ3=σs

若不知道主应力大小顺序,屈雷斯加屈服准则:

三个式子只要满足一个,该点即进入塑性状态.

Misses 屈服准则:当材料质点单位体积的弹性形状变化能达到某一临界值;该临界值只取决于材料在变形条件下的性质,而与应力状态无关。

密塞斯屈服准则表达式为: 或

5、应力状态(静水压力)对金属塑形的影响:主应力图中,压应力个数越多,数值越大,即静水压力越大,则金属的塑性越好;拉应力个数越多,数值越大,即静水压力越小,则金属的塑性越低。

五、材料的连接

1、焊接

1)、焊接的概念(实质):使两个分离的物体通过加热或加压,或两者并用,在用或不用填充材料的条件下借助于原子间或分子间的联系与质点的扩散作用形成一个整体的过程。 2)、焊缝的外延生长:熔池中液态金属开始凝固时,熔池边界未熔的母材晶粒可作为非自发形核的现成基底,在很小的过冷度下,依附于母材晶粒逆热流方向生长,形成方向性很强的柱状晶,这种凝固特征就叫焊缝的外延生长。

3)、焊接热影响区:指受焊接热循环的影响,焊缝附近的母材金属组织或性能发生变化的区域。

4)、焊缝凝固特点:①外延生长(联生结晶)②形成弯曲柱状晶

5)、焊接变形的基本形式:主要有收缩变形、角变形、弯曲变形、波浪变形、扭曲变形等。

6)、常用焊接方法比较:自行查看课件与课本

7)、电阻焊:焊件组合后通过电极施加压力,利用电流流过接头的接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态,使之在压力条件下形成接头的焊接方法。

2、粘接:粘接是借助于物理—化学过程形成两种固态物体永久性连接的一种技术。粘接作用仅发生在表面及薄层,其实质是一种界面现象。

六、金属材料的常规热处理

1、概念及其分类:金属材料的常规热处理是一种在固态下加热、保温和冷却,通过改变金属材料内部的组织结构,使其获得所需性能的工艺。普通热处理可分成退火、正火、淬火和回火四种工艺类型。表面热处理分为表面淬火及化学热处理。即金属热处理分为整体处理、表面热处理和化学热处理。

()()()22132322212s σσσσσσσ=-+-+-222222)(6)()()(s zx yz xy x z x y y x στττσσσσσσ=+++-+-+-

2、基本原理

1)、加热可分为等温加热和连续加热。

2)、加热工艺的基本工艺参数:加热温度、加热速度、保温时间。

3)、冷却可分为等温冷却和连续冷却。

4)、TTT图:等温冷却转变曲线。(C曲线)

C曲线左方是过冷奥氏体区,高温区发生的是珠光体转变,低温区发生的是贝氏体转变。

3、常规热处理工艺

1)、退火:将金属或合金加热到适当温度、保持一定时间,然后缓慢冷却已获得接近平衡状态组织结构的热处理工艺。

目的:使金属材料产生软化,使其易于冷成型和切削加工。还用于改变金属材料的其它性能和改变金属材料的组织。

退火工艺:

①完全退火:钢加热到A3以上完全奥氏体化后退火。为了细化晶粒、均匀组织、消除内应力、降低硬度、改善钢的切削加工性。

②球化退火:是将钢加热至Ac1+(20~40℃)之间,经过保温后缓慢冷却以获得近于平衡组织的热处理工艺。使二次渗碳体及珠光体中的渗碳体球状化(退火前正火将网状渗碳体破碎),以降低硬度,改善切削加工性能;并为以后的淬火作组织准备。

③扩散退火(又称均匀化退火):是将钢锭、铸件或锻坯加热至略低于固相线的温度下长时间保温,然后缓慢冷却以消除化学成分不均匀现象的热处理工艺。为了消除铸锭或铸件在凝固过程中产生的成分偏析,使成分和组织均匀化。

④中间退火:是把冷变形后的金属加热到再结晶温度以上保温适当的时间,使变形晶粒重新转变为均匀等轴晶粒而消除加工硬化的热处理工艺,也叫再结晶退火。为了消除加工硬化,降低强度和硬度,使钢的机械性能恢复到冷变形前的状态。

⑤去应力退火:为消除铸造、锻造、焊接和机加工、冷变形等冷热加工在工件中造成的残留内应力而进行的低温退火。为了减少和消除工件在铸造、锻造、焊接、切削、热处理等加工过程中产生的残余内应力,稳定工件的尺寸,防止工件的变形。

2)、正火:将钢加热到A3C以上30~50℃,保温适当时间后,在精致的或轻微搅动的空气中冷却,得到含有珠光体均匀组织的热处理工艺。

目的:1.①改善钢的切削加工性能;②消除工件的热加工缺陷;③消除过共析钢的网状渗碳体,便于球化退火;④代替调质处理作为最终热处理,提高加工效率。

3)、淬火:淬火是将钢件加热到 Ac3或Ac1以上某一温度,保持一定时间,然后以适当的速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。

目的:等温淬火:目的是获得下贝氏体;普通淬火:目的是获得马氏体。

与不同温度回火配合:低温:使工具、轴承、渗碳零件等一些高强度的耐磨件获得高的硬度和钢的耐磨性;中温:显著提高钢的弹性极限;高温:使结构钢获得良好的强度和韧性的配合。

淬透性:钢在淬火时获得马氏体的能力。其决定因素是临界冷速。临界冷速愈小。钢的淬透性就愈大。

方法:①单液淬火法②双液淬火法③分级淬火法④等温淬火法⑤局部淬火法

4)、回火:钢件淬硬后,再加热至Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。

目的:稳定组织,减少内应力,降低脆性,获得所需性能。

回火工艺:回火温度、回火时间、冷却速度。

种类及应用:

①低温回火:回火后获得以回火马氏体为主的总之,回火马氏体既保持了淬火马氏体的高强度、高硬度和良好的耐磨性,又使当地提高了韧性。主要适用于中、高碳钢制造的各种工模具、机械零件。

②中温回火:回火后获得回火屈氏体组织,它的性能特点是具有一定的韧性并兼有高的弹性和屈服强度。主要用于各种弹簧的热处理。

③高温回火:回火后获得回火索氏体组织,这时钢的强度、塑形、韧性打到比较恰当的配合,具有良好的综合机械性能。用于中碳调质钢制造的各种机械结构零部件。

钢不在250~350℃范围内回火。因为这一范围钢会发生低温回火脆性。

4、热处理的主要作用:①改变工件的内部组织;②改变工件的性能,便于切削加

工,或者满足工件使用性能的要求;③改变工件表层的成分、组织、性能;④热处理可以消除铸造、锻造、焊接等加工工艺过程中所造成的多种缺陷。

七、材料的表面改性

1、表面淬火:主要是通过快速加热与立即淬火冷却相结合的方法来实现的,即利用

快速加热使钢件表面很快地达到淬火的温度。

目的:为了获得高硬度的表面层和有利的残余应力分布,提高工件的硬度和耐磨性。

方法:感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火和电子束加热表面淬火。

感应加热表面淬火:采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。

频率选用:高频:100-500kHz,中小型零件

中频:500-10000Hz,直径较大的轴类和大中等模数的齿轮

工频:50Hz,较大直径零件的透热,大直径零件表面淬火

特点:优点:a、高质高效;

缺点:b、投入较大;

c、专用感应加热圈,中间形状和零件形状相似;

d、灵活性差;

e、零件尺寸较大、数量较小的不适合。

应用:较大批量,零件数量较多,形状规则简单中小尺寸件)。

集肤效应:工件界面上感应电流的分布不均匀,心部电流密度几乎等于零,而表面电流密度极大。

2、化学表面改性(化学热处理):将金属和合金工件置于一定温度的活性介

质中保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理工艺。

种类:渗碳、渗氮(氮化)、碳氮共渗(氰化)、渗硼、渗金属(如渗铝、渗铬)等。

1)、渗碳:把工件置于渗碳介质中加热、保温,使活性碳原子产生并渗入工件表层的化学热处理方法。

适用材料、组织性能:渗碳用钢一般为低碳钢。

表面渗碳整体淬火+回火

表层为高碳回火马氏体,硬而耐磨;

内部为低碳回火马氏体,较好的强韧性。

特点(与表面淬火相比):优点:更硬更耐磨;

缺点:效率低、费用高,并且易变形。

应用:一般应用于受力较大、表面摩擦较大的低碳钢件。如齿轮、轴类、链条、套筒等。

渗碳工艺:气体渗碳、固体渗碳、真空渗碳。

2)、渗氮:向工件表面渗入活性氮原子,在工件表层获得一定深度的富氮硬化层的化学热处理工艺。

适用材料、组织性能:氮化用钢通常是含有Al、Cr、Mo等元素的合金钢。

氮化用钢调制处理表面渗氮

表层:氮化物质,HRC70以上,硬度更高,耐磨性更好,

耐热,耐腐蚀,抗疲劳性都好。

内部:中碳合金回火索氏体,具有更高的强度,

更好的韧性。

特点(和渗C相比):优点:表层性能更优良,变形小;

缺点:效率低,费用高,渗层浅,钢种受限。

应用:在高温腐蚀性介质中工作,受力大,表面摩擦大的重要精密件,如航空齿轮。

渗氮工艺:气体渗氮、离子渗氮

3)、碳氮共渗(氰化):同时向工件表面渗入活性碳原子和活性氮原子的一种化学热处理工艺。

工艺方法:根据氰化温度的不同,气体氰化又分为高温氰化(900~950℃)、中温氰化(800~870℃)和低温氰化(500~600℃)三种。

4)、渗硼

性能:高的表面硬度和耐磨性,好的抗蚀性能。

方法:固体渗硼、气体渗硼、电解盐浴渗硼

3、钢的热处理工艺选用

1)、选用原则:方法简单、费用低、少污染。

2)、考虑因素:工件材料、目的和作用。

3)、预先热处理:预先热处理是在零件制造加工过程中,为改善其加工工艺性或有目的的改善其组织状况而进行的热处理。预先热处理包括退火、正火、调质等。

八、材料的表面防护

1、材料的腐蚀和防护

1)、腐蚀:是材料与环境之间因化学或电化学反应而导致的破坏性侵蚀现象。

2)、腐蚀理论简介:电极电位与材料服饰倾向、极化现象与腐蚀速度、钝化现象。(自己看着办吧……)

3)、钢铁材料腐蚀防护:Ⅰ、自然环境下:①水溶液环境②大气环境

Ⅱ、应力等作用下:①应力腐蚀开裂②腐蚀疲劳③氢腐蚀

④高速运动介质造成的腐蚀

4)、防护技术:①选材及改性②加缓蚀剂③加表面覆盖层④电化学防护Ⅰ、覆盖层技术:

作用:①阻隔作用②阴极保护作用③钝化、缓蚀作用

分类:①金属覆盖层②非金属覆盖层③化学转化膜④暂时保护层

Ⅱ、电化学保护技术:阳极保护与阴极保护。

阳极保护:适合强腐蚀环境的防腐蚀。

阴极保护:应用广泛,应用条件为:①较大的导电性环境:②被保护金属容易阴极极化,且极化后腐蚀速度下降③被保护构件形状和结构不大复杂,无“遮蔽现象”。

2、材料的摩擦、磨损防护

1)、减少摩擦—润滑:流体润滑、边界润滑。

润滑材料:液体润滑剂、固体润滑剂、润滑脂

2)、减少磨损:①电镀②表面喷涂和堆焊耐磨材料③化学热处理(磷化处理、软氮化、低温渗硫、渗碳与渗硼、化学气相沉积、离子注入)

九、薄膜制备技术

薄膜:采用一定方法,使处于某种状态的一种或几种物质(原材料)的基团以物理或者化学方式附着于某种物质(衬底材料)表面,在衬底材料表面形成的一层新的物质。

厚度是薄膜的一个重要参数。

物理成膜:在薄膜沉积过程中不涉及到化学反应,薄膜的生长基本是一物理过程。这类方法以物理气相沉积(PVD)为代表。

物理成膜方法:真空蒸发镀膜、溅射镀膜、脉冲激光沉积(PLD)、离子成膜、分子束外延(MBE)。

化学成膜:有化学反应的使用和参与,通过物质间的化学反应实现薄膜的生长。代表技术有化学气相沉积(CVD)、液相反应沉积(如液相外延)、电化学沉积。

化学气相沉积(CVD):指利用流经衬底表面的气态物料的化学反应,生成固态物质,在衬底表面形成薄膜的方法。

液相反应沉积:通过液相中进行的反映而沉积薄膜的方法。

十、复合材料基础

金属基复合材料

Ⅰ、金属基复合材料制备工艺的研究内容以及选择原则:

1)基体与增强剂的选择,基体与增强剂的结合:

增强剂与基体之间应具有良好的物理相容性和化学相容性。另外,如果在复合材料中使用高强度的纤维,就必须寻找具有高断裂功的基体材料。在这方面,固态法制备方法更好一些,因铸造合金一般具有较低的断裂韧性。

2)界面的形成及机制,界面产物的控制及界面设计;

3)增强剂在基体中的均匀分布:

在选择制备方法时,应选择那些使得增强剂更均匀、均质排布(分布)的方法。在这方面,液态法与固态法相比较差。

4)制备工艺方法及参数的选择和优化;

5)制备成本的控制和降低,工业化应用的前景。

Ⅱ、金属基复合材料制备工艺的分类:

1)固态法:真空热压扩散结合、超塑性成型 / 扩散结合、模压、热等静压、粉末冶金法。

2)液态法:液态浸渗、真空压铸、反压铸造、半固态铸造。

3)喷射成型法:等离子喷涂成型、喷射成型。

4)原位生长法。

后两篇(即只给了重点和概念的两篇……)的内容仅供复习参考,具体内容还需查阅课本及课件。

材料工程基础

1、热处理:将固态金属或合金在一定介质中加热、保温和冷却,以改变材料整体或表面组织,从而获得所需性能的工艺过程。 2、45钢经不同热处理后的性能及组织(可能出应用题) 组织:退火:P+F;正火:S+F;淬火+低回:M回;淬火+高回:S回 性能总结强度硬度:低温回火>高温回火>正火>退火 韧性塑性:高温回火>正火>退火>低温回火 抗冲击能力:高温回火>正火>退后>低温回火 3、热处理的三大要素:加热、保温、冷却 4.常规热处理:退火、正火、淬火及回火 5.预备热处理和最终热处理 预备热处理:零件加工过程中的一道中间工序(也称为中间热处理),其目的是改善锻、铸毛坯件组织、消除应力,为后续的机加工或进一步的热处理作准备。 最终热处理:零件加工的最终工序,其目的是使经过成型工艺达到要求的形状和尺寸后的零件的性能达到所需要的使用性能。 6、奥氏体:C在γ-Fe中的固溶体 7、奥氏体转变的阻力与驱动力:新相形成,会增加表面能和克服弹性能,需要由相变释放 的自由能和系统内能量起伏来补充——自由能差 8、奥氏体的形成机理:扩散方式、非扩散方式基本过程都是形核与长大 9、奥氏体的形成过程:(很重要) (1)、奥氏体晶核的形成(2)、奥氏体晶核的长大 (3)、剩余渗碳体的溶解(4)、奥氏体成分的均匀化 10、为何A晶核优先在F与Fe3C相界产生? F和Fe3C界面两边的C浓度差最大,有利于为A晶核的形成创造浓度起伏条件; F和Fe3C界面上原子排列较不规则,有利于提供A形核所需的结构起伏和能量起伏条件。 F 和Fe3C 界面本来已经存在,在此界面形核时只是将原有界面变为新界面,总的界面能变 化较小。 11、非工析钢与共析钢的相同点与不同点? 亚共析钢与过共析钢的珠光体加热转变为奥氏体过程与共析钢转变过程是一样的,即在Ac1温度以上加热无论亚共析钢或是过共析钢中的P均要转变为A。不同的是还有亚共析钢的F的转变与过共析钢的Fe3CⅡ的溶解。更重要的是F的完全转变要在Ac3以上, Fe3CⅡ的完全溶解要在温度Accm以上。即亚共析钢加热后组织全为奥氏体需在Ac3以上,对过共析钢要在Accm 以上。 12、为什么在奥氏体转变初期和转变后期,转变速度都不大,而在转变达50%左右时转变速度最大?

(完整word版)道路工程材料知识点考点总结

道路工程材料知识点考点 绪论 ● 道路工程材料是道路工程建设与养护的物质基础,其性能直接决定了道路工程质量和服务寿命和结 构形式。 ● 路面结构由下而上有:垫层,基层,面层。 ● 面层结构材料应有足够的强度、稳定性、耐久性和良好的表面特性。 第一章 ● 砂石材料是石料和集料的统称 ● 岩石物理常数为密度和孔隙率 ● 真实密度:指规定条件下,烘干岩石矿质实体单位真实体积的质量。 ● 毛体积密度:指在规定条件下,烘干岩石矿质实体包括空隙(闭口、开口空隙)体积在内的单位毛 体积的质量。 ● 孔隙率:是指岩石孔隙体积占岩石总体积(开口空隙和闭口空隙)的百分率。 ● 吸水性:岩石吸入水分的能力称为吸水性。 ● 吸水性的大小用吸水率与饱和吸水率来表征。 ● 吸水率:是岩石试样在常温、常压条件下最大的吸水质量占干燥试样质量的百分率。 ● 饱和吸水率:是岩石在常温及真空抽气条件下,最大吸水质量占干燥试样质量的百分率。 ● 岩石的抗冻性:是指在岩石能够经受反复冻结和融化而不破坏,并不严重降低岩石强度的能力。 ● 集料:是由不同粒径矿质颗粒组成的混合料,在沥青混合料或水泥混凝土中起骨架和填充作用。 ● 表观密度:是指在规定条件下,烘干集料矿质实体包括闭口空隙在内的表观单位体积的质量。 ● 级配:是指集料中各种粒径颗粒的搭配比例或分布情况。 ● 压碎值:用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,也是石料强度的相对指标。压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分率。1000 1?='m m Q a (1m :试验后通过2.36mm 筛孔的细集料质量) ● 磨光值:是反映石料抵抗轮胎磨光作用能力的指标,是决定某种集料能否用于沥青路面抗滑磨耗层 的关键指标。 ● 冲击值:反映粗集料抵抗冲击荷载的能力。由于路表集料直接承受车轮荷载的冲击作用,这一指标 对道路表层用料非常重要。 ● 磨耗值:用于评定道路路面表层所用粗集料抵抗车轮磨耗作用的能力。 ● 级配参数: ?? ???分率。质量占试样总质量的百是指通过某号筛的式样通过百分率和。筛分级筛余百分率之总分率和大于该号筛的各是指某号筛上的筛余百累计筛余百分率率。量占试样总质量的百分是指某号筛上的筛余质分级筛余百分率i i i A a ρ 沥青混合料 水泥混合料 粗集料 >2.36mm >4.75mm 细集料 <2.36mm <4.75mm

材料工程基础实验指导书

材料工程基础实验指导书王连琪X洁徐兴文 材料科学与工程学院

《材料成形工艺》介绍了铸造、锻压、焊接专业等方面的知识,为配合教材达到教学与实际相结合的目的,使学生能理性认识材料成形的方法,拟定了铸造、锻压、焊接实验。 一铸造性能实验 实验1 铸造合金流动性的测定 1.1实验目的: 1)测定铸造合金成分对该合金流动性的影响。 2)测定浇注温度对该合金流动性的影响。 1.2 实验的基本原理 流动性是铸造合金的重要性能之一,它对铸件质量有较大的影响;如补缩、冷隔、浇不足等。为了获得优质铸件就必须对流动性加以研究。 铸造合金流动性的定义为液态金属本身充满铸型的能力,它与合金的成分、温度、杂质含量及其物理性质有关。 合金的流动性与合金的充型能力是两个概念。合金的充型能力是液态合金充满铸型型腔,获得形状完整,轮廓清晰铸件的能力。由于影响液态金属充型能力的因素很多,很难对各种合金在不同铸造条件下的充型能力进行比较。所以,常常用固定条件下所测得的合金流动性来表示合金的充型能力。 1.3 实验合金与试样 1)纯铝和铸铝102。 2)试样—取一箱一件螺旋形试样如图1.1 通过实验研究成分对流动性的影响。取纯Al和ZL102合金在相同温度下浇注螺旋形试样,进行比较。在实验时,要求铸型相同(透气性、紧实度等)和过热温度相同条件下进行比较。 研究温度对合金流动性的影响,纯Al和ZL102合金分别在不同温度下浇注螺旋形式样,比较螺旋式样的长度。 1.4 实验设备与材料 1)熔化设备:坩埚电阻炉两台或感应电炉石墨坩埚两个 2)合金材料:工业纯Al 铸铝102 3)铸型:三副模板、三副砂箱、造型型砂及制型工具 4)热电偶(镍铬-镍硅)两支及毫伏表 5)去气剂:氯化锌

材料工程基础作业题(2013-09)

第一章工程研究方法 1、(Z10-11)。流体流动的压强降Δp是速度v,密度ρ,线性尺度l、l1、l2,重力加速度g。粘滞系数μ,表面张力ζ,体积弹性模量E的函数。即 ΔP=F(v、ρ、l、l1、l2、g、u、ζ、E) 取v、ρ、l作为基本物理量,利用因次分析法,将上述函数写成无因次式。 2、已知固体颗粒在流体中以等速u沉降,且u与粒径d,颗粒密度ρm(流体密度ρ),动力粘度μ和重力加速度g,试用π定律发和矩阵法求揭示该颗粒沉降的无量纲乘积。 3、试分别用瑞利法和π定理法将压差ΔP、速度w、重度r和重力加速度g组合成无量纲乘积。 4、试证明直径为d的小球在密度为ρ,动力粘度为μ的流体中,以相对速度w运动时流动粘性阻力为: 5、请根据纳维斯托克斯(N-S)方程,分别用量纲分析法和方程分析法得出相似准则数,并写出准则方程。 6、(L5-1)。气流通过一等直径管道,拟用1/4缩小的透明模型中通过水故流的办法进行试验。已知:气体的ρ气=1.2kg/m3。v气=0.15cm2/s;水的ρ水=1000kg/m3,v水=0.01cm2/s。实物的气流速度为24m/s,试确定: 1)相应的模型中之水流速度。

2)若测得模型单位管长的压力降为13.8kN/m2,则原型中单位管长的压力降应为若干? 第二章工程流体力学 1、(L 1-7)。质量为5kg,面积为40×45cm2的—收木板,沿着涂有滑油的斜面等速向下运动。已知v=1m/s,δ=1mm(油膜厚度),求滑油的粘度。 2、(L 1-9)。一套筒长H=20 cm,内径D=5.04cm,重量G=6.8N,套在直径d=5cm的立轴上,如图所示。当套筒与轴之间充以甘油(μ=8P)时求套筒在自重作用下将以多大速度沿立轴下滑?不计空气阻力。 3、(L 2-2)。图示的容器中,水和气达到下平衡状态,求容器内气体的压强,接触大气液面上为标准大气压,水的重度γ=9807N/m3。

机械工程材料基本知识点

晶体缺陷: 点缺陷(空位、间隙原子、异类原子微观影响:晶格畸变)线缺陷(位错;极为重要的晶体缺陷,对金属强度、塑性、扩散及相变有显著影响)面缺陷(晶界、亚晶界) 合金相结构 :相是指系统中均匀的、与其他部分有界面分开的部分。相变:相与相的转变。按结构特点:固溶体、化合物、非晶相。 固溶体:指溶质原子溶入溶剂中所形成的均一结晶相。其晶体结构与溶剂相同。置换固溶体(溶质原子占溶剂晶格结点位置形成的固溶体)间隙固溶体:溶质原子处于溶剂晶格间隙所形成的固溶体 结晶: 材料从液态向固态的凝固成晶体的过程。 基本规律:晶核形成和长大交替进行。包括形核和核长大俩个过程, 影响形核率和成长率的因素:过冷度、不容杂志、振动和搅拌 变质处理:金属结晶时,有意向金属溶液中加入某种难溶物质,从而细化晶粒,改善金属性能 调质处理:淬火和高温回火 同素异构转变;固态金属由一种晶体结构向另一种晶体结构的转变。 合金的组织决定合金的性能 金属材料的强化 本质;阻碍晶体位错的运动 强化途径:形变强化(冷加工变形)、固溶强化(形成固溶体)、第二相强化、细晶强化(晶粒粒度的细化) 钢的热处理 预先热处理:正火和退火 最终热处理:淬火和回火 退火:将钢加热到适当温度,保温一段时间,然后缓慢冷却,以获得接近平衡组织的热处理工艺。目的:降低硬度,提高塑性,改善切削性能;消除钢中内应力;细化晶粒,改善组织,为随后的热处理做组织上的准备。常用:完全退火Ac3以上30-50度(适用亚共析钢和合金钢,不适应低碳钢和过共析钢)得到组织为铁素体和珠光体,等温退火:适用某些奥氏体比较稳定的合金钢,加热和保温同完全退火,使奥氏体转变为珠光体,球化退火:温度略高于Ac1,适用过共析钢和合金工具钢,得到组织球状珠光体,去应力退火:Ac1以下100-200度,不发生组织变化,另外还有再结晶退火和扩散退火。 正火:亚共析钢Ac3以上30-50度,过共析钢Accm以上30-50度,保温后空冷获得细密而均匀的珠光体组织。目的:调整钢的硬度,改善加工性能;消除钢中内应力,细化晶粒,改善组织,为随后的热处理做组织上的准备。主要作用:作为低、中碳钢的预先热处理;消除过共析钢中的网状二次渗碳体,为球化退火做准备;作为普通件的最终热处理。 退火和正火区别:冷却速度不同,正火快,得到珠光体组织细,因而强度和硬度也高。实际中,如果俩者均能达到预先热处理要求时,通常选正火 淬火:加热到Ac1或Ac3以上某个温度,保温后以大于临界冷却速度冷却,使A转变为M 的热处理工艺.目的:获得马氏体或下贝氏体组织。温度:亚共析钢Ac3上30-50度,组织为M+少量A残,共析钢和过共析钢Ac1上30-50度,组织M+粒状Fe3C+少量A残 要求:淬火冷却速度必须大于临界冷却温度Vk.常用方法;单液、双液、分级、等温、局部淬火 回火:淬火以后的工件加热到Ac1以下某个温度,保温后冷却的一种热处理工艺.目的:降

材料工程基础实验指导书

班级: 学号: 姓 名:

实验一金相试样制备与组织观察综合实验 实验学时:6h 实验性质:综合性 一、实验目的 1了解金相显微镜的结构及主要零部件的作用;学会正确使用显微镜,提高物像的质量;了解显微镜的维护方法。 2学习金相试样的制备方法;了解金相试样质量对金相分析的影响。 3掌握二元铸态合金的固溶体,共晶(包括亚共晶和过共晶)和包晶组织的特征,能识别这些组织;掌握Fe—C合金平衡和非平衡组织的特征。 二、实验内容 本次实验为综合实验,要求综合运用金相显微镜和各种金相制样设备学会各种不同试样的金相制样要点,并能分析合金尤其是铁碳合金的典型组织。 实验分三阶段进行,首先熟悉金相显微镜的结构、操作方法和维护要求,再进行具体试样的金相试样制备,第三步观察分析常见二元合金和铁碳合金的组织。实验中各阶段每位同学独立完成。通过预习了解显微镜结构、维护要求以及金相制样方法和不同合金的组织特征,写出实验步骤,然后到实验室通过自己的操作体会各个过程。 三、实验仪器、设备及材料 3.1实验仪器、设备 砂轮机、预磨机、抛光机、电吹风、金相显微镜 3.2实验材料试样:铁碳合金试样及有色金属合金试样(用于组织观察);制备试样材料选用碳 钢。制样材料:砂纸、抛光剂、抛光布、3-4%硝酸酒精、滤纸 四实验原理 4.1 金相显微镜结构与使用 4.1.1成像原理 简单地说,成像原理就是将物像两级放大。如图1—1 所示。物AB 经物镜放大成一倒立的实像 A ′ B′,再经目镜放大成虚像A ″B″。 1)显微镜的放大倍数 显微镜的放大倍数等于物镜与目镜放大倍数的乘积: 1 250 M M物?M目 f 物f目 f 物,f 目——物镜和目镜的焦距;l——显微镜的光镜筒长度放大倍数的选择决定于组织的粗细和观察的目的。放大倍数大,则组织清晰,但视域小,不能观察全貌,代表性受局限,放大倍数低,则效果完全相反,如图1-2 所示。在金相分析时,根据需要,往往高、低倍变换使用。

材料工程基础总结

1 铝合金强化途径有哪些?答:固溶处理 +时效强化、细晶强化 2.铜合金强化机制主要有几种? 答:固溶强化、时效强化、过剩相强化 3.铝镁合金配料计算? 例1:为了获得以下成分铸造铝合金1Kg,熔炼时应如何配料? 8.0wt%Si,2.8wt%Cu,0.5wt%Mg,0.15wt%Ti,其余为Al; 注:1)可供选择的原材料包括:纯铝,Al-30wt%Si 中间合金,Al-25wt%Cu 中间合金,Al-30wt%Mg 中间合金和Al-10wt%Ti 中间合金;2)不考虑铝、硅和铜元素的烧损;3)镁元素的烧损率为15wt%,钛元素的烧损率为5wt%。 ●1000g×8.0%=XAl-30Si×30% ?XAl-30Si =266.7g ●1000g×2.8%=XAl-25Cu×25%?XAl-25Cu =112g ●1000g×0.5%= XAl-30Mg×30%×(1-15%)? XAl-30Mg =19.6g ●1000g×0.15%=XAl-10Ti×10%×(1-5%) ? XAl-10Ti=15.8g ●1000×(1-0.08-0.028-0.005-0.0015) = XAl +266.7× (1-0.3) -112×(1-0.25)-19.6×(1-0.3)-15.8×(1-0.1) ?XAl = 586.9g 例2、为了获得以下成分的铸造镁合金1Kg:熔炼时应如何配料?8.5wt%Al,1.2wt%Zn,1.20wt%Si,0.25wt%Mn,0.15wt%Sr,其余为Mg 注:1)可供选择的原材料包括:纯镁,纯铝,纯锌,Al-30wt%Si 中间合金,Mg-2wt%Mn 中间合金,Mg-10wt%Sr 中间合金;2)不考虑镁、铝、锌、硅和锰元素的烧损;3)Sr 元素的烧损率为15wt%。 1000g×1.20%=X Al-30Si×30% ?X Al-30Si =40g 1000g×1.2%=X Zn?X Zn=12g 1000g×0.25%=X Mg-2Mn×2%?X Mg-2Mn=125g 1000g×0.15%=X Mg-10Sr×10%×(1-15%) ?X Mg-10Sr=17.6g 1000g×8.5%=X Al+ X Al-30Si×70%?X Al =57g X Mg =1000-40-12-125-17.6-57=748.4g 1000×(1-1.2%-1.2%-0.25%-0.15%-8.5%) = X Mg + X Mg-2Mn× (1-2%)+ X Mg-10Sr×(1-10%) ?X Mg =748.6g 4.为了获得高质量的合金,在合金熔炼时一般要进行哪些工艺处理? 答:变质处理,细化处理,精炼处理。 5.镁合金阻燃抗氧化方法有哪几种? 答:熔剂保护阻燃法、气体保护阻燃法、添加合金元素阻燃法。 6.根据石墨存在形态不同,灰口铸铁可分为哪几种? 答:灰铸铁、可锻铸铁、蠕墨铸铁、球墨铸铁。 7.什么是金属的充型能力?充型能力影响因素有哪些?答:液态金属充满铸型型腔,获得形状 完整、轮廓清晰的铸件的能力称为金属的充型能力 液态金属的充型能力主要取决于金属自身的流动能力,还受外部条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。

材料科学与工程基础实验讲义全

华南农业大学材料与能源学院 现代材料科学与工程基础实验讲义 供材料科学专业本科生使用 胡航 2016-02-30

实验一 金属纳米颗粒的化学法制备 一、实验容与目的 1. 了解并掌握金属纳米颗粒的化学法制备过程并制备Au 或Ag 纳米颗粒。 2. 了解金属纳米颗粒的光学特征。 二、实验原理概述 化学制备法是制备金属纳米微粒的一种重要方法,在基础研究和实际应用中被广泛采用。贵金属纳米颗粒的化学法制备主要有溶胶凝胶法、电镀法、氧化还原法等。其中氧化还原法又包括热分解和辐照分解等。贵金属纳米颗粒具有广泛的应用,如生物医学领域的杀菌,物理化学领域的催化等。本实验以金胶为例介绍交替法制备贵金属纳米颗粒,并以硝酸银在烷基胺中的热分解为例介绍表面活性剂中氧化还原法制备贵金属纳米颗粒。 1. 胶体金属(Au 、Ag )的成核与生长 总的来说,化学法制备金属纳米粒子都是让还原剂提供电子给溶液中带正电荷的金属离子形成金属原子。如,对于制备胶体金,如果采用柠檬酸三钠作为还原剂,其反应过程如下: 2H O -42223222222Δ HAuCl + HOC(CH )(CO )Au +Cl +CO +HCO H+CO(CH )(CO )+......??→粒子 2. 硝酸银热分解法制备银纳米粒子 热分解法制备金属纳米颗粒原理简单,实验过程易操作。对制备数纳米到数十纳米尺寸围的纳米颗粒有较大优势。硝酸银在烷基胺中加热搅拌可形成澄清透明溶液。温度上升到150~200 °C 时,溶液颜色由浅色到深色快速变化,生成的银纳米颗粒被烷基胺包裹,稳定在溶液中。通过对样品洗涤、离心沉淀,可获得烷基胺包裹的银纳米粒子。 三、实验方法与步骤 (一)实验仪器与材料 硝酸银,柠檬酸三钠,油胺或十八胺,十八烯(ODE ),无水乙醇,配有温度调控和磁力搅拌的油浴加热器,三颈瓶,抽气头,滤膜,温度计套管,10 mL 量筒,分析天平,玻璃滴管,离心管,离心机,电热干燥箱 (二)实验方法与操作步骤

材料工程基础复习资料(全)

材料工程基础复习要点 第一章粉体工程基础 粉体:粉末质粒与质粒之间的间隙所构成的集合。 *粉末:最大线尺寸介于0.1~500μm的质粒。 *粒度与粒径:表征粉体质粒空间尺度的物理量。 粉体颗粒的粒度及粒径的表征方法: 1.网目值表示——(目数越大粒径越小)直接表征,如果粉末颗粒系统的粒径相等时 可用单一粒度表示。 2.投影径——用显微镜测试,对于非球形颗粒测量其投影图的投影径。 ①法莱特(Feret)径D F:与颗粒投影相切的两条平行线之间的距离 ②马丁(Martin)径D M:在一定方向上将颗粒投影面积分为两等份的直径 ③克伦贝恩(Krumbein)径D K:在一定方向上颗粒投影的最大尺度 ④投影面积相当径D H:与颗粒投影面积相等的圆的直径 ⑤投影周长相当径D C:与颗粒投影周长相等的圆的直径 3.轴径——被测颗粒外接立方体的长L、宽B、高T。 ①二轴径长L与宽B ②三轴径长L与宽B及高T 4.球当量径——把颗粒看做相当的球,并以其直径代表颗粒的有效径的表示方法。(容 易处理) *粉体的工艺特性:流动性、填充性、压缩性和成形性。 *粉体的基本物理特性: 1.粉体的能量——具备较同质的块状固体材料高得多的能量。 分体颗粒间的作用力——高表面能,固相颗粒之间容易聚集(分子间引力、颗粒间异性静电引力、固相侨联力、附着水分的毛细管力、磁性力、颗粒表面不平滑引起的机械咬合力)。 3.粉体颗粒的团聚。 第二章粉体加工与处理 粉体制备方法: 1.机械法——捣磨法、切磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法。 ①脆性大的材料:捣磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法 ②塑性较高材料:切磨法、涡旋磨法、气流喷射粉碎法 ③超细粉与纳米粉:气流喷射粉碎法、高能球磨法 2.物理化学法 ①物理法(雾化法、气化或蒸发-冷凝法):只发生物理变化,不发生化学成分的 变化,适于各类材料粉末的制备 ②物理-化学法:用于制备的金属粉末纯度高,粉末的粒度较细 ③还原法:可直接利用矿物或利用冶金生产的废料及其他廉价物料作原料,制的 粉末的成本低 ④电解法:几乎可制备所有金属粉末、合金粉末,纯度高 3.化学合成法——指由离子、原子、分子通过化学反应成核和长大、聚集来获得微细 颗粒的方法

智慧树知到《材料工程基础》章节题答案

智慧树知到《材料工程基础》章节题答案 第1章单元测试 1、高炉炼铁时,炉渣具有重要作用。下面哪项不属于炉渣的作用? 答案:添加合金元素 2、常用的脱氧剂有锰铁、硅铁、( ) 答案:铝 3、为什么铝的电解在冰晶石的熔盐中进行? 答案:降低电解温度 4、冰铜的主要成分是( ) 答案:FeS和Cu2S 5、( )是炼钢的最主要反应 答案:脱碳 第2章单元测试 1、通过高压雾化介质,如气体或水强烈冲击液流或通过离心力使之破碎、冷却凝固来实现的粉末的方法称为( ) 答案:雾化法 2、粉末颗粒越小,流动性越好,颗粒越容易成形。 答案:错 3、国际标准筛制的单位“目数”是筛网上( )长度内的网孔数 答案:1英寸

4、粉体细化到纳米粉时会表现出一些异常的功能,主要是由于粉体的总表面积增加所导致的结果。 答案:对 5、雾化法制粉增大合金的成分偏析,枝晶间距增加。 答案:错 第3章单元测试 1、高分子材料之所以具备高强度、高弹性、高粘度、结构多样性等特点,是由( )结构所衍生出来的。 答案:长链 2、高分子聚合时,用物理或化学方法产生活性中心,并且一个个向下传递的连续反应称为( ) 答案:连锁反应 3、悬浮聚合的主要缺点是( ) 答案:产品附有少量分散剂残留物 4、聚合物聚合反应按反应机理分为加聚和缩聚反应。 答案:错 5、工业上悬浮聚合对于悬浮分散剂一般的要求是( ) 答案:聚合后都可以清洗掉 第4章单元测试 1、将液态金属或半液态金属浇入模型内,在高压和高速下充填铸型,并在高压下结晶凝固获得铸件的方法是( ) 答案:压力铸造

2、铸铁的充型能力好于铸钢。 答案:对 3、在易熔模样表面包覆若干层耐火材料,待其硬化干燥后,将模样熔去制成中空型壳,经浇注而获得铸件的一种成形工艺方法是( ) 答案:熔模铸造 4、下列不属于铸造缺陷的是( ) 答案:收缩 5、熔融合金的液态收缩和凝固收缩表现为液体体积减小,是应力形成的主要原因。 答案:错 第5章单元测试 1、冷变形过程中,材料易产生( ) 答案:加工硬化 2、轧辊的纵轴线相互平行,轧制时轧件运动方向、延伸方向与轧辊的纵轴线垂直,这种轧制方法为( ) 答案:纵轧 3、挤压变形时,( ) 答案:金属在变形区处于三向压应力状态 4、缩尾是挤压工艺容易出现的缺陷,它出现在挤压过程的哪个阶段? 答案:终了挤压

工程材料知识点总结

第一章 1.三种典型晶胞结构: 体心立方: Mo 、Cr 、W 、V 和 α-Fe 面心立方: Al 、Cu 、Ni 、Pb 和 β-Fe 密排六方: Zn 、Mg 、Be 体心立方 面心立方 密排六方 实际原子数 2 4 6 原子半径 a r 4 3= a r 4 2= a r 21= 配位数 8 12 12 致密数 68% 74% 74% 2.晶向、晶面与各向异性 晶向:通过原子中心的直线为原子列,它所代表的方向称为晶向,用晶向指数表示。 晶面:通过晶格中原子中心的平面称为晶面,用晶面指数表示。 (晶向指数、晶面指数的确定见书P7。) 各向异性:晶体在不同方向上性能不相同的现象称为各向异性。 3.金属的晶体缺陷:点缺陷、线缺陷、面缺陷 4.晶体缺陷与强化:室温下金属的强度随晶体缺陷的增多而迅速下降,当缺陷增多到一定数量后,金属强度又随晶体缺陷的增加而增大。因此,可以通过减少或者增加晶体缺陷这两个方面来提高金属强度。 5..过冷:实际结晶温度Tn 低于理论结晶温度To 的现象称为过冷。 过冷度 n T T T -=?0 过冷度与冷却速度有关,冷却速度越大,过冷度也越大。 6.结晶过程:金属结晶就是晶核不断形成和不断长大的过程。 7.滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿着原子排列最密的晶面和晶向发生了相对滑移,滑移面两侧晶体结构没有改变,晶格位向也基本一致,因此称为滑移变形。 晶体的滑移系越多,金属的塑性变形能力就越大。 8.加工硬化:随塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度显著提高,塑性和韧性显著降低,这称为加工硬化。 9.再结晶:金属从一种固体晶态过渡到另一种固体晶态的过程称为再结晶。 作用:消除加工硬化,把金属的力学和物化性能基本恢复到变形前的水平。 10.合金:两种或两种以上金属元素或金属与非金属元素组成的具有金属特性的物质。 11.相:合金中具有相同化学成分、相同晶体结构并有界面与其他部分隔开的均匀组成部分称为“相”。 分类:固溶体和金属间化合物 第二章 1.铁碳合金相图(20分) P22

材料科学与工程实验室建设规划

成都理工大学材料与化学化工学院实验室“十二·五”建设规划 系、部、室名称:材料科学与工程 编制日期:2010年3月

一、“十一·五”期间学院实验室建设概况 1、实验室设臵情况 经过多年的建设,目前本学科点基本具备课程实验教学条件,初步建立了材料组成与结构表征、材料加工与制备、材料性能测试等三大类11个专业教学实验室,总面积360m2,各实验室功能及承担教学科研工作具体情况见下表1。 表1 专业实验室设臵情况 2、实验仪器设备投入情况 除学院公用大型仪器设备外,材料科学与工程专业实验室现有设备见附表2。总价值

为2137929元。其中2006-2009年投入占70%左右,约150万元。 3、主要成绩 十一五期间,按照材料科学与工程专业内涵及我校材料科学与工程专业办学特色,构建了材料科学与工程专业实验教学体系,规划和建立了材料组成与结构表征、材料加工与制备、材料性能测试等三大类教学实验室,重点建设了材料制备实验室,材料力学性能实验室,材料显微结构实验室。 材料制备实验室主要购臵了用于无机非金属材料烧成的高温电阻电炉、微波烧结炉、气氛炉,热压烧结炉等,用于金属材料熔制的真空熔炼炉、电阻炉,以及用于金属热处理改性的真空热处理炉、渗碳炉等,基本能满足金属材料工程、无机非金属材料工程教学需要。 材料力学性能实验室主要购臵了液压万能试验机、冲击试验机、蠕变试验机、疲劳试验机、各类硬度仪等设备,基本满足结构材料教学需要。 材料显微结构实验室主要购臵了金相显微镜及金相制备相关设备,可以同时满足一个自然班的教学实验,是十一五期间建设较好的一个实验室。 这些实验室共承担结晶学与矿物学、材料科学基础、材料科学研究方法与测试技术、材料设计与制备、金属学、金属热处理原理与工艺、合金熔炼原理、材料物理性能、材料力学性能,课程设计、现代金相实验技术、材料显微组织与结构实验、特色与创新实验等专业基础和专业综合实验教学课程,同时承担每年约150名专业毕业生的毕业设计、毕业实习教学任务、每年50名左右研究生的教学和科研任务。 十一五期间,依托金刚石薄膜实验室、材料科学与技术研究所及现有专业实验室,承担项国家自然科学基金项目3项、国家科技攻关、科技支撑项目和四川省等省部级项目16项,发表论文100余篇,被3大检索收录40余篇。 总之,较好地完成了上一个五年规划中提出的各项实验室建设任务。 4、教学队伍 专业实验室设有管理人员3名(初级2名、中级1名),专职实验教师1名(热分析实验室),所有实验课程教学完全由专业教师执行。 5、存在的问题 尽管通过多年建设,材料科学与工程专业实验教学平台建设取得了明显成效, 但是随着本科教学模式改革的不断深化,工程化教育理念的不断深入,对本科生工程能力、创新能力要求的不断提高,现有实验室很难满足新的培养方案对于学生实验能力培养的要求,存在突出问题主要表现在以下几个方面:

【成都理工】】材料工程基础-重点

炼铁:还原过程,使铁在铁的的氧化物中还原,并使还原出的铁与脉石分离。炼钢:氧化过程,以生铁为原料,通过冶炼降低生铁中的碳及其他杂质元素的含量。 炼铁原料(1)铁矿石的要求a:含铁量愈高愈好b:还原性要好c:粒度大小合适d:脉石成分SiO2,Al2O3、CaO、MgO e:杂质含量要少。(2)溶剂的作用:a降低脉石熔点b去硫(3)燃料:焦炭作用:作为发热剂提供热量;还原剂;高炉料柱的骨架。要求:含碳量要高,确保它有高的发热量和燃烧温度;有害杂事硫、磷及水分、灰分、挥发分的含量要低;在常温及高温下有足够的机械强度;气孔率要大,粒度要均匀,以保证高炉的有良好的透气性。 高炉冶炼的理化过程1燃料的燃烧2氧化铁的还原3铁的增碳4非铁元素的还原5去硫6造渣 减少生铁中硫的措施:采取优质炉料,基本措施;提高炉温和炉渣的碱度。生铁铸造生铁:含硅量高(2.75~3.25%)碳以石墨形式存在灰口生铁;炼钢生铁:含碳量高(4~4.4%)含硅量较低碳以fe3c形式存在白口生铁炼钢过程的物理化学原理:1脱碳2硅、锰的氧化3脱磷和回磷过程4脱硫5脱氧 脱磷的基本条件:低温;适量增加渣中CaO的含量;渣中必须含有足够数 1

量的FeO。 回磷现象:在炼钢过程中的某一时期,当脱磷的基本条件得不到满足时,则已氧化进入渣中的的磷会重新被还原,并返回到钢液中,称此为回磷过程。经常发生在炼钢炉内假如铁合金或出钢的过程中。防止措施:控制炼钢后期的钢液的温度;减少钢液在盛钢桶内的停留时间,向盛钢桶中炉渣加石灰提高碱度,采用碱性衬层的盛钢桶。 脱硫:[FeS]+(CaO)=(CaS)+(FeO)(吸热)必须在碱性炉内冶炼脱硫剂:石灰或石灰石生产中采取的措施:1在渣内加入碱;2增加石灰或石灰石的量;3扒掉含硫量高的初期渣,造成无硫的新渣;4加入CaP2、MnO 等能降低炉渣粘度的造渣材料,提高炉渣的流动性;5搅拌钢液,以增加钢液与炉渣的接触面积。 当钢中杂质元素被除去到规定要求后,应采取一定方法来降低钢液中的氧含量。称为脱氧,脱氧是炼钢过程的量后过程,在很大程度上影响着钢的质量。脱氧剂:硅铁、锰铁、铝 脱氧方式:扩散脱氧(硅铁和炭粉)、沉淀脱氧(锰铁、硅铁、铝),加在渣面 沉淀脱氧与扩散脱氧相结合:用锰铁进行沉淀预脱氧;用碳粉和硅铁进行扩散脱氧;用硅进行沉淀脱氧。 镇静钢:经过充分脱氧处理的钢;沸腾钢:未经完全脱氧处理的钢;半镇静 2

材料工程基础考试必备

材料工程基础 1.材料科学与材料工程研究的对象有何异同? 材料科学侧重于发现和揭示组成与结构、性能、使用效能,合成与加工等四要素之间的关系,提出新概念、新理论。而材料工程指研究材料在制备过程中的工艺和工程技术问题,侧重于寻求新手段实现新材料的设计思想并使之投入使用,两者相辅相成。 2.材料的制备技术或方法主要有哪些? 金属:铸造(砂型铸造、特种铸造、熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、连续铸造、消失模铸造),塑性加工(锻造、板料冲压、轧制和挤压、拉拔),热处理,焊接(熔化焊、压力焊、钎焊) 橡胶:塑炼、混炼、压延、压出、硫化五部分 高分子:挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型 3.如何区分传统材料与先进材料? 传统材料指已经成熟且已经在工业批量生产的材料,如水泥、钢铁,这些材料量大,产值高,涉及面广,是很多支柱产业的基础,先进材料是正在发展,具有优异性能和应用前景的一类材料。二者没有明显界限,传统材料采用新技术,提高技术含量、性能,大幅度增加附加值成为先进材料;先进材料长期生产应用后成为传统材料,传统材料是发展先进材料和高技术基础,先进材料推动传统材料进一步发展。

4.纳米材料与纳米技术的异同?它们对科技发展的作用? 纳米材料指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。纳米技术:能操作细小到1-100nm物件的一类新发展的高技术。作用:对于高端的技术,如在超导的应用方面,集成电路的发展方面纳米技术有重要作用。 5.简述芯片的主要制备工艺步骤? 步骤如下:1、氧化;2、光刻;3、浸蚀;4、扩散;5、离子注入; 6、互连; 7、封装; 8、装配。 6.简述熔体法生长单晶的特点以及主要方法? 答:特点:液相是均匀的单相熔体,熔点以下不发生相变。方法:提拉法,坩埚下降法,水平区熔法,浮区法,尖端形核法。 7.为什么纤维通常具备高强度、高模量且韧性好的特点? 当纤维材料制成时,拉伸强度变大是因为物体愈小,表面和内部包含一个能导致其脆性断裂的危险裂纹的可能性越小。对高聚物材料,在成纤过程中高分子链沿纤维轴向高度取向,而强度大大减少。 8.简述纤维的主要制备方法? 抽丝:使高聚物熔体或是高聚物溶液通过一个多孔的喷丝头并使之冷却或通过凝固浴凝固形成细丝。 牵挂:将丝轴向拉伸形成纤维。 定型:使合成纤维在某一温度下作极短时间的处理,使纤维具有良好的柔软性和弹性。

材料科学基础第一章习题答案

材料科学基础第一章习题答案 1. (P80 3-3) Calculate the atomic radius in cm for the following: (a) BCC metal with a 0=0.3294nm and one atom per lattice point; and (b) FCC metal with a 0=4.0862? and one atom per lattice point. Solution: (a) In BCC structures, atoms touch along the body diagonal, which is 3a 0 in length. There are two atomic radii from the center atom and one atomic radius from each of the corner atoms on the body diagonal, so 340r a = 430a r ==0.14263nm=1.4263 810-?cm (b) In FCC structures, atoms touch along the face diagonal of the cube, which is

02a in length. There are four atomic radii along this length —two radii from the face-centered atom and one radius from each corner, so 240r a =, 420 a r ==1.44447 ?=1.44447810-?cm 2.(P80 3-4) determine the crystal structure for the following: (a) a metal with a0=4.9489?, r=1.75?, and one atom per lattice point; and (b) a metal with a0=0.42906nm, r=0.1858nm, and one atom per lattice point. Solution: We know the relationships between atomic radii and lattice parameters are 430 a r =

《工程材料基础》知识点汇总

1.工程材料按属性分为:金属材料、陶瓷材料、碳材料、高分子材料、复合材料、半导体材料、生物材料。 2.零维材料:是指亚微米级和纳米级(1—100nm)的金属或陶瓷粉末材料,如原子团簇和纳米微粒材料; 一维材料:线性纤维材料,如光导纤维; 二维材料:就是二维薄膜状材料,如金刚石薄膜、高分子分离膜; 三维材料:常见材料绝大多数都是三位材料,如一般的金属材料、陶瓷材料等; 3.工程材料的使用性能就是在服役条件下表现出的性能,包括:强度、塑性、韧性、耐磨性、耐疲劳性等力学性能,耐蚀性、耐热性等化学性能,及声、光、电、磁等功能性能;工程材料按使用性能分为:结构材料和功能材料。 4.金属材料中原子之间主要是金属键,其特点是无方向性、无饱和性; 陶瓷材料中的结合键主要是离子键和共价键,大多数是离子键,离子键赋予陶瓷材料相当高的稳定性; 高分子材料的结合键是共价键、氢键和分子键,其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能; 半导体材料中主要是共价键和离子键,其中,离子键是无方向性的,而共价键则具有高度的方向性。 5.晶胞:是指从晶格中取出的具有整个晶体全部几何特征的最小几何单元;在三维空间中,用晶胞的三条棱边长a、b、c(晶格常数)和三条棱边的夹角α、β、γ这六个参数来描述晶胞的几何形状和大小。 6.晶体结构主要分为7个晶系、14种晶格; 7.晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[uvw]; 晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为(hkl)。 8.实际晶体的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷,其中体缺陷有气孔、裂纹、杂质和其他相。 9.实际金属结晶温度Tn总要偏低理论结晶温度T0一定的温度,结晶方可进行,该温差ΔT=T0—Tn即称为过冷度;过冷度越大,形核速度越快,形成的晶粒就越细。 10.通过向液态金属中添加某些符合非自发成核条件的元素或它们的化合物作为变质剂来细化晶粒,就叫变质处理;如钢水中常添加Ti、V、Al等来细化晶粒。 11.加工硬化是指随着塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度明显提高,塑性和韧性明显降低,也即形变强化;加工硬化是一种重要的强化手段,可以提高金属的强度并使金属在冷加工中均匀变形;但金属强度的提高往往给进一步的冷加工带来困难,必须进行退火处理,增加了成本。 12.金属学以再结晶温度区分冷加工和热加工:在再结晶温度以下进行的塑性变形加工是冷加工,在再结晶温度以上进行的塑性变形加工即热加工;热加工可以使金属中的气孔、裂纹、疏松焊合,使金属更加致密,减轻偏析,改善杂质分布,明显提高金属的力学性能。 13.再结晶是指随加热温度的提高,加工硬化现象逐渐消除的阶段;再结晶的晶粒度受加热温度和变形度的影响。 14.相:是指合金中具有相同化学成分、相同晶体结构并由界面与其他部分隔开的均匀组成部分; 合金相图是用图解的方法表示合金在极其缓慢的冷却速度下,合金状态随温度和化学成分的变化关系; 固溶体:是指在固态下,合金组元相互溶解而形成的均匀固相; 金属间化合物:是指俩组元组成合金时,产生的晶格类型和特性完全不同于任一组元的新固相。 15.固溶强化:是指固溶体的晶格畸变增加了位错运动的阻力,使金属的塑性和韧性略有下降,强度和硬度随溶质原子浓度增加而略有提高的现象; 弥散强化:是指以固溶体为主的合金辅以金属间化合物弥散分布,以提高合金整体的强度、硬度和耐磨性的强化方式。 16.匀晶反应:是指两组元在液态和固态都能无限互溶,随温度的变化,形成成分均匀的液相、固相或满足杠杆定律的中间相的固溶体的反应; 共晶反应:是指由一种液态在恒温下同时结晶析出两种固相的反应; 包晶反应:是指在结晶过程先析出相进行到一定温度后,新产生的固相大多包围在已有的固相周围生成的的反应; 共析反应:一定温度下,由一定成分的固相同时结晶出一定成分的另外两种固相的反应。 17.铁素体(F):碳溶于α-Fe中形成的体心立方晶格的间隙固溶体;金相在显微镜下为多边形晶粒;铁素体强度和硬度低、塑性好,力学性能与纯铁相似,770℃以下有磁性; 奥氏体(A):碳溶于γ-Fe中形成的面心立方晶格的间隙固溶体;金相显微镜下为规则的多边形晶粒;奥氏体强度和硬度不高,塑性好,容易压力加工,没有磁性; 渗碳体(Fe3C):含碳量为6.69%的复杂铁碳间隙化合物;渗碳体硬度很高、强度极低、脆性非常大; 珠光体(P):铁素体和渗碳体的共析混合物;珠光体强度较高,韧性和塑性在渗碳体和铁素体之间; 莱氏体(Ld):奥氏体和渗碳体的共晶混合物;莱氏体中渗碳体较多,脆性大、硬度高、塑性很差。 18.包晶反应:1495℃时发生,有δ-Fe(C=0.10%)、γ-Fe(C=0.17%或0.18%,图中J点)、液相(C=0.53%或0.51%,图中B点)三相共存;δ-Fe(固体)+L(液体)=γ-Fe(固体) 共晶反应:1148℃时发生,有A(C=2.11%)、Fe3C(C=6.69%)、液相L(C=4.3%)三相共存;Ld→Ae+Fe3Cf(恒温1148℃) 共析反应:727℃时发生,有A(C=0.77%)、F(C=0.0218%)、Fe3C(C=6.69%)三相共存;As→Fp+Fe3Ck(恒温727℃)

材料科学与工程基础实验讲义

材料科学与工程基础实验讲义

华南农业大学材料与能源学院 现代材料科学与工程基础实验讲义 供材料科学专业本科生使用 胡航 2016-02-30

实验一 金属纳米颗粒的化学法制备 一、实验内容与目的 1. 了解并掌握金属纳米颗粒的化学法制备过程并制备Au 或Ag 纳米颗粒。 2. 了解金属纳米颗粒的光学特征。 二、实验原理概述 化学制备法是制备金属纳米微粒的一种重要方法,在基础研究和实际应用中被广泛采用。贵金属纳米颗粒的化学法制备主要有溶胶凝胶法、电镀法、氧化还原法等。其中氧化还原法又包括热分解和辐照分解等。贵金属纳米颗粒具有广泛的应用,如生物医学领域的杀菌,物理化学领域的催化等。本实验以金胶为例介绍交替法制备贵金属纳米颗粒,并以硝酸银在烷基胺中的热分解为例介绍表面活性剂中氧化还原法制备贵金属纳米颗粒。 1. 胶体金属(Au 、Ag )的成核与生长 总的来说,化学法制备金属纳米粒子都是让还原剂提供电子给溶液中带正电荷的金属离子形成金属原子。如,对于制备胶体金,如果采用柠檬酸三钠作为还原剂,其反应过程如下: 2H O -42223222222Δ HAuCl + HOC(CH )(CO )Au +Cl +CO +HCO H+CO(CH )(CO )+......??→粒子 2. 硝酸银热分解法制备银纳米粒子 热分解法制备金属纳米颗粒原理简单,实验过程易操作。对制备数纳米到数十纳米尺寸范围的纳米颗粒有较大优势。硝酸银在烷基胺中加热搅拌可形成澄清透明溶液。温度上升到150~200 °C 时,溶液颜色由浅色到深色快速变化,生成的银纳米颗粒被烷基胺包裹,稳定在溶液中。通过对样品洗涤、离心沉淀,可获得烷基胺包裹的银纳米粒子。 三、实验方法与步骤 (一)实验仪器与材料 硝酸银,柠檬酸三钠,油胺或十八胺,十八烯(ODE ),无水乙醇,配有温度调控和磁力搅拌的油浴加热器,三颈瓶,抽气头,滤膜,温度计套管,10 mL 量筒,分析天平,玻璃滴管,离心管,离心机,电热干燥箱 (二)实验方法与操作步骤

相关文档