文档库 最新最全的文档下载
当前位置:文档库 › 浅谈数形结合思想在解题中的应用

浅谈数形结合思想在解题中的应用

浅谈数形结合思想在解题中的应用
浅谈数形结合思想在解题中的应用

浅谈数形结合思想在解题中的应用

摘 要:本文主要探讨了数形结合思想在中学学生思维中的形成过程以及在中学数学的几方面的应用,如集合、函数、解方程与不等式、解析几何以及三角函数. 关健词:数形结合;数学思想

所谓数形结合,就是根据数与形之间的对应关系,来解决一类数学问题的一种思想方法.数形结合的实质是将抽象的数学语言与直观的图像结合起来,也就是代数与图形之间的相互转化,使代数问题几何化,几何问题代数化.同时把握好数形结合思想,有助于中学生空间思维的形成.

数形结合是数学解题中常用的思想方法,无论是在平时的数学应用中,还是在高考都起到了重要的指导作用.因此中学生掌握好数形结合思想是有重要意义的.

既然如此,那中学生要如何掌握这种思想方法呢?在哪些地方可以用数形结合呢?本文就围绕这两个方面展开,进行谈讨. 一、如何在中学生的思维中建立数形结合思想

这部分内容是在我们老师在平时的授课过程中完成的.首先,就是在我们平时老师的授课时,对于一些概念的几何意义要让学生彻底理解,要让学生达到能要自己的大脑中根据几何意义把图形画出来的效果,同时也能在不同的条件下准确地将图形画出.其次,是在平时练习中,凡是能用数形结合思想来解决的问题,老师都应提出并引导学生用这种思维方法去解决,从而加深学生对相应知识的掌握,进一步步在学生的思维中建立数形结合的思想模型.最后,就是在学生平时自己做练习时,若出现了此类问题的,则要求学生试着用数形结合思想方法来解决问题,从而更进一步地在学生思维中树立数形结合思想. 二、下面就分析数形结合思想在几个知识面上的应用. 1. 数形结合思想解决集合问题上的应用

此类问题在平时的练习中都会出现,而数形结合思想却是解题中所使用的重要思想,往往能够提高我们做题的速度和正确率.对于选择题中的集合问题往往我们都用数轴和维恩图结合”数”来解决;而对于后面的解答题,常常都会出现较为复杂的图形,但都会借助坐标轴、图形以及题意,即数形结合来解决问题.如:

例1:(2005年天津高考)设集合S={}8|{},3|2||+<<=>-a x a x T x x R T S = ,则a 的取值范围是( )

A -3

B -3

C a ≤-3 或a ≥-1

D a<-3 或 a>-1 解析:

因为 32>-x

所以 -1}

x 5|{<>=或x x S 又 }8|{+<<=a x a x T 所以有

由图可知:要使R T S = 只需???-<>+15

8a a

即 13-<<-a

例2:集合}x 10|{+∈≤=N x x S 且,S A ? S B ?且}5,4{=B A }3,2,1{)(=A B C s

}8,7,6{)()(=B C A C s s 求集

A 和

B .

解析:如图1—2所示

1—2

因为 }5,4{=B A

所以 B A ,

∈54 因为 }321{,,A B )(C s =

所以 A ,,

∈321 a -1 a+8 5

1—1

因为

}8,7,6{)s s =A (C B )(C

所以 之外中的写在B A ,S ,,

876 因为 109)()(C )s s ,B C A A A (C s 中均与 所以9,10在B 中

故A={1,2,3,4,5} B={4,5,9,10} 例3:(2005年湖南省高考)高集合()}22

1

|,{-≥

=x y y x A ()}|,{b x y y x B +-≤=且Φ=B A

(1) 求 b 的取值范围

(2) 若(x,y )B A ∈且x+3y 的最大值为9,求b 的值.

解析:(1)函数b x y +=-=x -y 22

1

与的图象是两条射线, 如1-3所示

由图可知:[)+∞∈,1b

(2)可知,当φ=≥B A 1 时b 由线性规化的相交知识,易知2

9

=

b 故:(1)),1[+∞ (2)29

2.数形结合思想在解函数问题在于的应用

借助于图象来研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形的特征与方法.

例(1)(2006年天津高考)在R 上定义的函数)(x f 是偶函数且)2()(x f x f -=,若)(x f 在区间[-2,-1]上是增函数,则)(x f ( )

A 、 在区间[-2,-1]上是增函数,在区间[3,4]上是增函数

+x 22

1

-=

x y b

B 、 在区间[-2,-1]上是增函数,在区间[3,4]上是减函数

C 、 在区间[-2,-1]上是减函数,在区间[3,4]上是增函数

D 、 在区间[-2,-1]上是减函数,在区间]3,4]上是减函数 解析:

)2()()(x f x f x f -=-=

所以)(x f 是以2为周期的函数 画出)(x f 的草图如2-1

由图可知: B 正确

例2(2010年全国卷I )已知函数()1ln 1)(+-+=x x x x f ,若1)(2++≤'ax x x f x ,求a 的取值范围

解析:由 ()1ln 1)(+-+=x x x x f

则 1ln 1

)

1()(-++='x x

x x f =1+x x ln

由 1)(2++≤'ax x x f x 有 ax x x x +≤2ln 又R x ∈,则 a x x +≤ln 在同一坐标系中作出a x y ln +==和x y

如图2—2易知当在点()0,1时,两图象相切,此时a=-1 则

[)+∞-∈,1a

例3:(2006年浙江高考)???<≥=?b a b,b

a a,b}max{a,.,记R

b a

函数)(2,`max{)(R x x x x f ∈++=}的最小值.

解析:令 1+=x y ,2-=x y 在同一坐标系中分别作出其图像,如图2-3: 2-=x y

根据题意可知:函数)(x f 的图像是由图中的射线PB PA ,构成,

由 ???+=+-=12

x y x y

解得 2

3

=y , 即为函数)(x f 的最小值,故填

2

3. 3.数形结合思想在解决三角函数问题中的运用

有关三角函数单调区间的确定或比较三角函数值的大小问题以及最值问题,一般将函数化成基本三角函数的形式,借助于单位圆或三角函数的图像来解决,即数形结合.与三角函数的有关的定义域、值域以及方程的根的个数等问题,也可以借助于三角函数图像来处理.

例1(2009年辽宁高考)已知函数()x x x x x f cos sin 2

1

cos sin 21)(--+=,则)(x f 的定义域是

( )

1

+x

A .[]1,1- B.???

???-1,22 C .??????-22,1 D.??

?

???--22,1

解析:当x x cos sin ≥时,x x f cos )(=; 当x x cos sin <时,x x f sin )(=

所以 ???<≥=)cos (sin ,sin )

cos (sin ,cos )(x x x x x x x f

图像如图

3-1

3-1

由图象可知值域为: ??

?

???-22,1

故选C

例2 (2006年天津高考)设函数()R x x x f ∈??? ?

?

+=3sin )(π,则)(x f ( )

A . 在区间??

?

???67,32ππ是增函数

B . 在区间?????

?

--2,ππ是减函数

C . 在区间???

???4,8ππ是增函数

D . 在区间??

?

???65,3ππ是减函数

解析:作出函数(

)π3sin +=x y 的图像,如图3-2,可知正确答案为A

4.数形结合思想在处理不等式与方程问题上的应用

在利用数形结合思想来处理不等式时最主要的是要把握一个思想,就是哪一部分图象在上面,则在这部分图象所对的区间上,在上面的图象的函数值就要大于在下面的图象的函数值:另一种情况就是反之;对于方程的话现正好是两个图象相交的问题.此外,还可以利用数形结合来解决高次不等式的问题,即我们平时所说的穿针引线法,而且方便快捷.但这些简单的判断都是建立在比较准确的图形上的.所以能准确地画出图象是解题的关健. 例1:解不等式152+>+x x

解: 设 52+=x y

即 ??

? ??≥-≥??? ??+=0,252522y x x y

对应的曲线是以??

?

??-0,25A 为顶点,开口向右的抛物线的上半支.而函数1+=x y 的图

象是一直线.(如图4-1)

解方程 152+=+x x 可求出抛物线上半支与直线交点的横坐标为2,取抛物线位

于直线上方的部分,故得原不等式的解集是:

1

4-

?

????

?<≤-225|x x 例2.若方程()

()lg lg -+-=-x x m x 233在()x ∈03,内有唯一解,求实数m 的取值范围.

解析:(1)原方程可化为 ()()--+=<

设 ()()y x x y m 12

22103=--+<<=,

在同一坐标系中画出它们的图象(如图4—2).由原方程在(0,3)内有唯一解,知21y y 与 的图象只有一个公共点,可见m 的取值范围是

-<≤10m 或m =1.

4—2

5.数形结合思想在解决解析几何上的应用

数形结合是解决此类问题的基本思想.在应用时要将图象与相关定义与性质结合起来,因此要求对圆、椭圆、双曲线、抛物线以及一些空间图形的性质与几何意义理解.同时,在每年的高考中解析几何与立体几何是必出的题目,因此,数形结合思想在本处的应用具有重要的实际意义.虽然,在解此类题时,有时并没有画出图形来,但在进行的过程中是离不开图象的,或在草纸或在脑中进行.

例1 已知圆()()C ,,12:22

为圆y x P y x C =++上任一点.

(1)求

1

-x 2

-y 的最大值,最小值 (2)求y x 2-的最大值与最小值

分析:(1)由

1

-x 2

-y 容易联想到其几何意义是点()()1,2,与点y x 所确定的直线的斜率

(2)由y x 2-可联想到“目标函数”,可视为动直线截距最值问题 解:(1)如图5-1,

设()2,1Q ,由()得y x P ,:

k 1

-x 2

-y = ○1 的最大、最小值分别为过Q 点的圆C 的两条切线的斜率.

将○1整理得 02=-+-k y kx

所以 1k

1k 22d 2

=+-+-=

k

所以 4

3

3±=

k 所以

1-x 2-y 的最大值为433+,最小值为4

3

3- (2)令u y x =-2,则可视为一组平行直线系,当直线与圆C 有公共点时,u 的范围可求,最值必是直线与圆C 相切时

5—1

所以 15

2=--=

u d

所以 52±-=u

所以y x 2-的最大值是52+-,最小值是52--

例2 (2006年上海高考)若曲线2y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件是 .

解析:作出函数21,0

||11,0

x x y x x x +≥?=+=?-+

5—2

数形结合是一种重要思想方法,在运用的时候往往需要我们理解相应的知识点的几何含义,这样才能做到事办公倍.而且在平时的教学中也能运用数形结合思想,如在我们平时的引入中就可有以将学生感觉枯燥乏味的数学知识与我们生活在实际存在的“形”结合起来.这样更可以提高学生的学习兴趣.常常使用不仅可以提高做题效率,还可以提高我们的数学素养.

参考文献:

[1]薛金星.怎样解题高中数学解题方法与技巧[M].北京.北京教育出版社,2007,5 [2] 最新五年高考真题汇编详解[M].天利全国高考命题研究组.西藏人民出版社,2010 [3] 全日制普通高级中学教科书(数学)[M].第一册(下).人民教育出版社,2007 [4] 普通高中数学课程标准(实验).北京:人民教育出版社,2008,4

y

x

o

1

1

[5]钟山.高考备考工具书[M].辽宁;辽宁教育出版社,2010,3

[6]沈思奇.高中名师互动教案数学A版必修一[M].陕西;陕西旅游出版社,2009,8

[7]沈思奇.高中名师互动教案数学A版必修二[M].陕西;陕西旅游出版社,2009,8

关于数形结合思想的教学方式浅谈

关于数形结合思想的教学方式浅谈 资料来源:大学生教育资源 我有幸参加了由省教科所组织的四川省教育教学共同体举办的关于“小学生数形结合能力的研究”论坛,全省30个共同体研究单位进行了三年级和六年级数形结合能力调查与分析,共同体学校对此项工作非常重视,都给出了分析报告。论坛中来自7所学校的一线教师带来了七堂精彩的数形结合课,有以形来揭示数的《路程速度时间》、《相遇问题》、《合理安排提高效率》、《比赛场次》,有以数来表示形的《点阵中的规律》、《组合图形》、《方向与位置》等,七节课为此次论坛数形结合能力研究提供了很多研究素材,特别是经过小组讨论、专家点评、专家讲座后,给我的教学方法提供了启发。 通过本次论坛,通过与专家面对面的评课、议课结合自己的教学实际和本次对三、六年级的数形能力的调查与分析,主要对以下问题提出了质疑: ●数形结合中“数”与“形”谁先谁后? ●教师在数学教学中如何充分渗透数形结合的思想? ●通过直观的图形揭示数,是否影响了学生的抽象思维能力? ●如何在教学中很好地通过数抽象出图形,看图提问题、解决问题? ●数学课堂中能否建立一种数一形一数或形一数一形的数

学教学模式? ●在高段教学中,数形怎样结合才能促进学生主动发展? 在这次论坛中,通过专家对课例的点评和对数形结合的理解,结合课例对一线教师提出的质疑作出了解答,使一线教师对数形结合在实际教学中要注意的问题有了更深入的理解和认识,使我由最初的迷茫发展至现在的茅塞顿开,达到了参与这次论坛的目的。 一、数形结合是一种数学思考方法 数形结合是数学思考、数学研究、数学应用、数学教学的基本方式,数形结合是双向过程,要处理好数与形的结合,要根据教材的特点和学生的思维水平而定。 1.就教材内容而言,对于较新、较难的教学内容、对于学习较困难的学生可先形后数,用形来表示数,学生通过形来表示数量之间的关系;对于后继教材和较容易理解的内容可先数后形,通过数来揭示形。 2.就学生的年龄特征而言。中低段学生是以具体形象思维为主,实施先形后数,让学生从形中读懂重要的数学信息,并整理信息,提出数学问题并加以解决,对于逻辑思维能力较强的中高段学生,应该逐步过渡到先数后形,如在教学分数的乘、除法意义,教学长方体、正方体、圆柱体的拼、截引起的面积变化时,让学生通过画出直观图形,能让学生很快找出面的变化,

数形结合思想方法

八、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合一是一个数学思想方法,应用主要是借助形的直观性来阐明数之间的联系,其次是借助于数的精确性来阐明形的某些属性。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化。 Ⅰ、再现性题组: 1. 设命题甲:0b>1 D. b>a>1 3. 如果|x|≤π4 ,那么函数f(x)=cos 2x +sinx 的最小值是_____。 (89年全国文) A. 212- B. -212+ C. -1 D. 122 - 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 5. 设全集I ={(x,y)|x,y ∈R},集合M ={(x,y)| y x --32 =1},N ={(x,y)|y ≠x +1},那么M N ∪等于_____。 (90年全国) A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y =x +1 6. 如果θ是第二象限的角,且满足cos θ2-sin θ2=1-sin θ,那么θ2 是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7. 已知集合E ={θ|cos θ-+-=-???x x x m x 即:30212->-=-???x x m () 设曲线y 1=(x -2)2 , x ∈(0,3)和直线y 2=1-m ,图像如图所示。由图 可知:① 当1-m =0时,有唯一解,m =1; ②当1≤1-m<4时,有唯一解,即-3

浅谈数形结合思想在小学数学教学中的渗透

浅谈数形结合思想在小学数学教学中的渗透 摘要:“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。 关键词:数形结合;小学数学;数学思想 美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法中“数形结合”思想尤为重要。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。 数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。 本文先解读“数形结合”思想,浅谈其历史性及重要意义,后结合实践重点探讨“数形结合”在小学数学教学中的实际应用和实施途径。 一.了解小学数学教材中蕴涵的主要数学思想方法 数学思想:符号思想,集合思想,对应思想,化归思想。 数学方法: (1)思维方法:分析、综合、抽象、概括、归纳、演绎 (2) 一般方法:观察、实验、比较、分类、联想、类比、化归、猜想 (3)数学特点较强的方法:函数法、数学模型法、数形结合法、统计法、变换法、分析法、综合法 (4)数学技能:换元法、代入法、系数比较法、合并同类项法、因式分解法、判别式法、配方法、加减消元法、代入消元法、待定系数法、恒等变形法、公式法、构造法、通分母、去括号 在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。、 二、“数形结合”,由来已久?早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用 摘要 数学是研究现实世界的空间形式和数量关系的学科,数和形是数学研究的两个重要方面,在研究过程中,一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常的直观形象,另一方面,一些图形的属性又可以通过数量关系的研究使得图形的性质更丰富、更精确、更深刻,这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。 数形结合包含“以形助数”和“以数助形”两个方面,在高中阶段用的较多的是以形助数。数量关系如果能有效地结合图形,往往会使抽象问题直观化,复杂问题简单化,巧妙地应用数形结合的思想方法来处理一些抽象的数学问题,可起到事半功倍的效果,达到优化解题途径的目的,在选择题,填空题中,数形结合更能显示出其简捷的优越性。 关键词:数形结合思想方法应用解题

第一章 绪论 数学是研究现实世界中空间形式与数量关系的一门学科,故数学的研究是围绕数和形展开的,而数形结合的实质在于数量关系决定着几何图形属性,几何图形的属性反映着数量关系[1]。在现代数学研究中,数形结合既是一种常用的数学方法又是一种数学思想。由此可见,在高中阶段,掌握并熟练运用这一思想是十分必要的。本文针对数形结合思想的形成和演进,数形结合思想解题能力的培养,以及在高中数学解题中的应用范围和数形结合思想在解题中的实际应用做了浅显成述。

第二章数形结合思想的概述和历史演进 2.1数形结合思想的概述 数学的两个最古老、最普遍的研究对象是数、形,在某些条件的作用下,两者可以相互转化。中学数学研究的对象可以分为数和形两大部分,数与形的联系则称作数形结合,它包含“以形助数”和“以数助形”两个方面[1]。以形助数,即借助形的直观性来阐明数之间的关系;以数助形,即借助数的精确性来阐明形的某些属性。 2.2数形结合思想的历史演进 随着时间的推移,数学得到了不断的拓展和充实,数学中最原始的研究对象数与形也在不断地变化,从最初因需要而产生数到欧几里德撰写的《几何原本》,再到从笛卡尔创立平面直角坐标系到近、现代数学研究,数形结合一直伴随其行。在古希腊数学时期,毕达哥斯拉学派在研究数学时,就借助形来归纳数的性质,这便是早期的“数”与“形”结合的体现。 数轴的建立使人类对数与形的统一有了初步的认识,把实数与数轴上的点一一对应起来,数可视为点,点可当作数,点在直线上的位置关系可以数量化,而数的运算可以几何化。1637年,笛卡尔在其《几何学》中,首次提出了点的坐标和变数的思想,并借助坐标系用含有数的代数方程来表示和研究曲线[2]。笛卡尔把数轴(一维)扩展到平面直角坐标系,把有序数对) P与平面上的点 x , (y 一一对应起来,从而使得平面曲线的点集与二元方程组的解集一一对应起来。于是就可以用代数方法来研究几何图形的性质,把几何研究转换成对应的代数的研究。

三种数学思想方法教案

课题:中职常见的三种数学思想方法 教学目标:1.理解数形结合思想,分类讨论思想,转化与化归思想; 2.学会用数形结合思想,分类讨论思想,转化与化归思想 等三种思想解答实际数学问题。 教学重点:帮助学生树立数形结合思想,分类讨论思想,转化与化归思想。 教学难点:数形结合思想,分类讨论思想,转化与化归思想在实际数学问题中的应用。 教学方法:讲练结合及世界大学城空间网络教学 教学设计: Ⅰ.新课讲授 (一)专题一:数形结合思想 1.数形结合的含义 (1)数形结合,就是根据数与形之间的对应关系,通过数与形 的相互转化来解决数学问题的一种重要思想方法. 数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化, 抽象问题具体化,能够变抽象思维为形象思维,有助于把握数 学问题的本质,它是数学的规律性与灵活性的有机结合. (2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大 致可以分为两种情形:一是借助形的生动性和直观性来阐明数 形之间的联系,即以形作为手段,数作为目的,比如应用函数

的图像来直观地说明函数的性质;二是借助于数的精确性和规 范严密性来阐明形的某些属性,即以数作为手段,形作为目的, 如应用曲线的方程来精确地阐明曲线的几何性质. 角度一:利用数形结合讨论方程的解或图像交点 [例1]函数f(x)=x 1 2 - ? ? ? ? ?1 2 x 的零点的个数为( ) A.0 B.1 C.2 D.3 方法规律:讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. 强化训练:1.方程log3(x+2)=2x解的个数为 角度二:利用数形结合解不等式或求参数问题 [例2]使log2(-x)

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

数形结合思想解题

一 利用数形结合思想讨论方程的根 例1 (2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12) B .(1 2,1) C .(1,2) D .(2,+∞) 答案 B 解析 先作出函数f (x )=|x -2|+1的图象,如图所示, 当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为1 2 ,故f (x )= g (x )有两个不相等的实根时,k 的范围为(1 2,1). 思维升华 用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数. 设函数f (x )=? ???? x 2+bx +c ,x ≤0, 2, x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ) A .1 B .2 C .3 D .4 答案 C 解析 由f (-4)=f (0),f (-2)=-2, 解得b =4,c =2,∴f (x )=??? ? ? x 2 +4x +2,x ≤0,2, x >0.

作出函数f (x )=? ?? ?? x 2 +4x +2, x ≤0, 2, x >0与y =x 的图象,如图, 由图知交点个数有3个,故选C. 热二 利用数形结合思想解不等式、求参数范围 例2 (1)已知奇函数f (x )的定义域是{x |x ≠0,x ∈R },且在(0,+∞)上单调递增,若f (1)=0,则满足x ·f (x )<0的x 的取值范围是________. (2)若不等式|x -2a |≥1 2 x +a -1对x ∈R 恒成立,则a 的取值范围是________. 答案 (1)(-1,0)∪(0,1) (2)? ????-∞,12 解析 (1)作出符合条件的一个函数图象草图即可,由图可知x ·f (x )<0的x 的取值范围是(-1,0)∪(0,1). (2) 作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤1 2 . 思维升华 求参数范围或解不等式问题时经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免烦琐的运算,获得简捷的解答. (1)设A ={(x ,y )|x 2 +(y -1)2 =1},B ={(x ,y )|x +y +m ≥0},则使A ?B 成立 的实数m 的取值范围是__________. (2)若不等式9-x 2 ≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________. 答案 (1)[2-1,+∞) (2) 2 解析 (1) 集合A 是一个圆x 2 +(y -1)2 =1上的点的集合,集合B 是一个不等式x +y +m ≥0

浅谈小学数形结合思想

浅谈小学数形结合思想方法 摘要:数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,本文介绍相关概念并结合人教版小学数学教材,初步整理了数形结合思想方法在各教学领域的渗透与应用,提出培养数形结合思想方法的策略。 关键词:小学数学;数形结合 1.数形结合思想方法的概念 数形结合思想就是通过数和形之间的对应关系和互相转化来解决问题的思想方法。1数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,包含“以形助数”和“以数解形”两个方面:前者借助形的直观性来阐明抽象的数之间的关系;后者是利用数的精确性、规范性与严密性来阐明形的某些属性。数形结合思想方法使数与形两种信息互相转换并且优势互补,从而能够将复杂的问题简单化,抽象的问题具体化。2 2.数形结合思想在各个学习领域的渗透与应用 小学数学分为“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”这四个学习领域,数形结合思想在这四个领域中都得到了广泛的应用。我通过对教材的分析,初步整理了数形结合思想方法在各教学领域的渗透与应用。 2.1数形结合思想方法在“数与代数”知识领域中的渗透与应用 数是十分抽象的,教材在编排上充分利用了数形结合,帮助孩子理解数的含义。如,一年级上册1~5的认识这一课时: 教材的内容与目标体现以下两方面:(1)体会“形”的直观性。借助各种实物图作为直观工具,帮助学生理解数字的含义。(2)了解可以用数来描述几何图形。通过让学生用相应数量的小棒摆一摆图形的过程,引导学生数一数,增强用数的量化来描述形,让学生初步感受数中有形、形中有数的思想。 除此之外,在加减法的计算学习中,利用画图来直观呈现各种信息,帮助学生分析数量关系;在乘法口诀的学习中,利用各种图形(点子图、数轴、表格)帮助学生理解乘法的意义和口诀的推导;在分数的学习中,为了让学生能够理解分数的含义,教材运用了大量的图形作为直观手段;在小数的学习中,利用尺子、线段、正方形等直观手段帮助学生理解小数的意义与性质;在方程的学习中,利用天平图作为直观手段,理解等式的性质,利用画线段图帮助学生理解数量关系……可以说,数形结合思想在“数与代数”的学习中无处不在,应用十分广泛。 2.2数形结合思想方法在“图形与几何”知识领域中的渗透与应用 1王永春.小学数学与数学思想方法[M].上海:华东师范大学出版社,2014:65. 2毕保洪,贺家兰.数形结合思想的应用[J].中学教与学,2017,1:15-16.

数形结合解决问题

第课时总课时 数形结合解决问题 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。 【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗?学生思考后举例。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现? 学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 三、拓展延伸。 师:同学们,我们在解决问题中常常用到的线段图,也是数形结合思想的一个重要应用。例如前面学过的相遇问题、百分数应用题等等。下面我们就做两个题目,体会画线段图解决问题的优越性。 1、育才小学2000年有60台计算机,2006年以达到150台。2006年比2000年增加了百分之几? 2、有两根蜡烛,一根长8厘米,另一根长6厘米。把两根都燃掉同样长的一部分后,短的一根剩下的长度是长的一根剩下的3/5。每段燃掉多少厘米? (学生独立解答,体会用线段图解决问题的优越性。) 集体交流,引导学生陈述自己的解题思路。 四、归纳梳理。 师:这节课我们主要研究了利用数形结合的方法来解决问题,你能谈 谈自己的收获吗? 学生谈自己收获,提出尚存疑惑的问题。

数形结合在高考解题中的应用

数形结合在高考解题中的应用 摘 要: 数学中两大研究对象“形”与“数”的矛盾统一是数学发展的内在因素。数形结合是推动数学发展的动力。数形结合不应仅仅作为一种解题的方法,而应作为一种基本的,重要的数学思想来学习,研究和掌握运用。数形结合能力的提高,有利于从数与形的结合上深刻认识数学问题的实质,有利于扎实打好数学的基础,有利于数学素质的提高,同时必然促进数学能力的发展。 数形结合是中学数学中重要的思想方法,每年高考中都有一定量的考题采用此法解决,可起到事半功倍的效果。 在高考试题中,选择题、填空题由于不要求写出解答过程,命题时常对掌握及应用数形结合的思想方法解决问题的能力提出较高的要求,要求考生应用数形结合思想,通过数与形的转化,找到简捷的思路,快速而准确地做出判断,从而得出结果;对于要求完整写出解题过程的解答题,由于包含的知识量大、涉及的概念多,数形结合的思想主要用于思路分析、化简运算及推理的过程,以求快速准确地分析问题、解决问题。 其基本模型有: 1 距离函数 2、 y a x b -- 斜率函数 3、Ax +By 截距函数 4、22(cos ,sin )x y 1(cos ,sin )F θθθθ+单位圆=上的点 5、2 2 a a b b ±+余弦定理 6、 ax b cx d ++ 双曲线 a .数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解, 且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 b .实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的 对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 c .数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,

数学思想方法专题数形结合思想

数学思想方法专题:数形结合思想 【教学目标】 知识目标 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 能力目标 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 情感目标 在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。 【教学重难点】 重点:对数形结合思想方法的考查包含“以形助数”和“以数辅形”两个方面,代数问题几何化,几何问题代数化。 难点:一些概念和运算的几何意义及常见曲线的代数特征,关键在于恰当应用图形来体现数的几何意义,巧妙运用数的精确性和严密性,来揭示形的某些属性。 【考情分析】 在高考中,利用客观题的题型特点来考查数形结合的思想方法,突出考查考生将复杂的数量关系转化为直观的几何图形来解决问题的意识,而在解答题中对数形结合思想的考查是由“形”到“数”的转化为主。高考题对数形结合思想方法的考查,一方面是通过解析几何或平面向量考查一些几何问题,如何用代数方法来处理,另一方面,有一些代数问题则依靠几何图形的构造和分析辅助解决,历年来高考试卷中的许多试题都富有鲜明的几何意义,运用数形结合思想可迅速做出正确的判断。 【知识归纳】 数形结合思想包含“数形结合”和“形数结合”两方面,“数形结合”就是将代数的问题转化为图形形式的问题,利用图形形式解决问题;“形数结合”就是将图形的问题转化为代数的问题,利用代数的方法解决问题。 应用数形结合的思想,可实现以下类型的数与形的转化: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围,求零点的个数; (3)构建解析几何中的斜率、截距、距离等模型研究最值问题; (4)构建函数模型并结合其几何意义研究函数的最值问题、比较大小关系和证明不等式; (5)构建立体几何模型将代数问题几何化; (6)建立坐标关系,研究图形的确定形状、位置关系、性质等. 【考点例析】 题型1:数形结合思想在集合中的应用 例1.设平面点集{ } 22 1(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则B A ?所表示的平 面图形的面积为( D ) A . 34π B . 35π C . 47π D . 2 π

浅谈数形结合思想的应用

浅谈数形结合思想的应用 ——蒋海朋摘要:数学是在客观上研究数量关系和空间形式的一门科学,用通俗易懂的话来概括就是数学是研究“数”和“形”的一门科学。数相对于形来说更为抽象,形相对于数来说较为直观,在研究学习中,数与形是相辅相成、息息相关的。对于这个问题,本人在结合自己学习的总结以及前人所提供的经验,并且查阅相关资料,对于这个话题做一个简单的分析。文中的例子都是本人在学习中总结的历年高考、中考的试题以及模拟题,有很强的代表性。 关键词:数形结合数学思想应用 1 引言 1.1问题提出的背景 纵观数学发展的历史进程,数学家们早已把“数”和“形”联系在一起。早在公元300年之前,欧几里得的著作《几何原本》,他从几何的角度出发去研究和处理等价的代数问题;笛卡尔利用坐标为根基,通过代数为途径来研究几何问题,进而创立了解析几何学;化圆为方、三等分角、立方倍积这些几何难题都通过代数的方法得以完美解决。 数学往往被分为两大类:代数、几何。虽然他们被分为两类,但他们绝不是相互独立的,反而是密切相关的。很多代数上的问题计算量很大,看似非常复杂,甚至无从下手,但是利用了图形之后就会发现问题迎刃而解,直观的图形很容易反映图形的性质;很多几何问题因为辅助线相对复杂想不到,导致无法进一步研究,但是往往我们利用坐标系能够把几何问题转化成代数问题,同样也做到了化 繁为简。这就是数学上常用的数形结合思想。 1.2问题研究的意义 伟大的数学家华罗庚就曾说过:“数形结合百般好,割裂分家万事休。”这两句诗充分直观得反映了“数”与“形”这两者密不可分的联系。应用数形结合思想来思考问题就是要求我们结合代数的准确论证和图形的直观描述来发现问题的解决途径的一种思想方法。由此可见,数形结合思想对于数学解题方面的应用来说是十分重要的,但老师往往仅仅把它当做一种思想一谈而过,照着课本讲课,没有引导学生进一步思考,导致很多学生都不能具体有序地应用这种思想。 2 数形结合思想的重要地位 2.1使用数形结合思想的意义 数形结合思想无疑是连接“数”和“形”的桥梁,几何的直观形象和数量关系的严谨他们各有优点,在应用过程中有目的有计划地将“数”与“形”结合在一起,根据题目的已知条件,整合“数”和“形”的相关信息,巧妙结合,从而建起它们中间的桥梁,兼取两者之优,能让我们的解题更为轻松。

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

用数形结合的方法解题

1引言 数与形是数学中最古老最基本的研究对象。华罗庚教授说过:“数缺形时少直观,形缺数时难入微。”数与形各有特定的含义、但他们之间相辅相成、相互渗透、相互转化。数形结合思想是重要的解题方法,是每年高考必考的重要内容,数形结合应用解题能力与学生成绩呈显着的正相关。解题时将问题转化为与之等价的图形问题,可以直观的使问题简捷获解。实现数形结合常与以下内容有关:①实数与数轴上的点的对应关系;②所给的等式或代数式的结构含有明显的几何意义;③以几何元素和几何条件为背景建立起的概念;④函数与图像的对应关系;⑤曲线与方程的对应关系。应用数形结合思想不仅直观易发现解题途径,而且能避免复杂的计算推理,大大简化解题过程,这在解选择、填空题中更为显着,培养这种思想意识能开拓自己的思维视野。 2文献综述 国内外研究现状 数形结合作为高中数学中非常重要的思想方法,很早就引起了许多专家学者的关注。自笛卡尔创造了平面直角坐标系,数形结合的思想得到了突飞猛进的发展。文献[1]中叶立军谈到:“数缺形时少直观,形少数时难入微。数形结合百般好,隔离分家万事休。”近些年来,国内外仍有许多学者发表了对数形结合思想的应用研究,文献[2-3]中介绍了数形结合在概率统计和数列中的应用。文献[4-6]通过总结图形结构与数式结构提出了数形结合的两个主要途径。文献[7-10]认为数形结合可以直观快速解决很多问题,但转化时要遵循转化等价原则。不过由于数形结合思想应用范围极其广泛,所以我认为目前对数形结合思想的研究仍有很大的空间。 国内外研究现状评价 文献[11-13]中介绍了许多数形结合的途径和方法,其中研究解决函数各类文章最多,集中于判断两函数图像交点个数及其他函数性质。对于数形结合在高中数学各种问题的研究并不够全面。 提出问题 如今数形结合有着广泛的应用,即把数学与几何图形相结合,化繁为简,化抽象为具体,直观快速地抓住问题的本质与要害,可使解题起到事半功倍的效果。然而一个不争的事实

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

浅谈数形结合思想方法的渗透

浅谈数形结合思想方法的渗透 数形结合思想是数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法,数形结合思想是数学中最重要、最基本的思想,是解决许多数学问题的有效思想,利用数形结合能使“数”和“形”统一起来。以形助数,以数辅形,可以使许多数学问题变得简易化。华罗庚教授对此有精辟概述:“数无形,少直观;形无数,难入微”。那么如何在教学中渗透数形结合的思想。下面谈谈自己的看法: 一、教师要深入研究教材,有效渗透数形结合 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法①?在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、对比、分析、抽象、概括的过程中看到数学知识蕴涵的思想。如一年级下册“两位数加减一位数和整十数“35-2和35-20内容时,教师可提出问题,这两题怎么计算?让学生说出算法,再根据学生的回答分别写出支形图,并写出想的过程,然后进一步追问:“有没有不同的算法?”激发学生思考,开拓学生的学习思维。最后进一步问:计算35-2,能不能先用十位上的3减2等于1,结果35-2等于15对吗?让学生思考讨论,产生思维的碰撞,让学生的思维碰撞出智慧的火花。接下来让学生用摆小棒验证,教师可充分利摆小棒,使学生明白:因为35中的3表示3个十,5表示5个1,计数单位不同,所以不能用十位上的3减2,可以用5个1减2个1等于3个1,它们的计数单位都是1,再和3个十合并起来等33。通过摆小棒有效地渗透数形结合,使问题简明直观。教师要深入研究教材,弄清编排的意图,吃透教材,才能用好教材,有效渗透数形结合思想,彰显了数学学习的价值,通过摆小棒这个活动让学生感受到简单推理的过程,获得一些简单推理的经验就可以了。在教师的引导下,让学生明白这两题是把相同数位相加减的算理,这是教材编排的意图,也是本节课的重点。学生不明白道理又怎么能更好的掌握计算方法?在教学时,应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然,知其所以然”。渗透数学思想,路漫漫兮,任重而道远,作为孩子们的导师,我们应该充分根据孩子们的发展规律,适当地利用教材,在教学过程中巧妙地渗透思想,培

相关文档
相关文档 最新文档