文档库 最新最全的文档下载
当前位置:文档库 › 硫酸亚铁沉淀法处理含钒废水

硫酸亚铁沉淀法处理含钒废水

硫酸亚铁沉淀法处理含钒废水
硫酸亚铁沉淀法处理含钒废水

硫酸亚铁沉淀法处理含钒废水

发表时间:2017-12-12T10:48:39.243Z 来源:《建筑科技》2017年第12期作者:许超1 简虎2

[导读] 钒主要以五价存在于废水中,各种价态钒的离子中,五价钒离子的毒性最大,且溶于水。

1.河钢股份有限公司承德分公司钒钛事业部河北省承德市 067000

2.河钢股份有限公司承德分公司板带事业部河北省承德市 067000

摘要:钒主要以五价存在于废水中,各种价态钒的离子中,五价钒离子的毒性最大,且溶于水。可通过饮水、食物等途径进入人体,对人体健康产生影响,导致急、慢性中毒,对呼吸道有明显的刺激作用;钒化物对肾脏、神经系统、造血系统、心血管系统都有严重的损伤并导致明显的病理变化。因此,政府严格控制含钒废水的排放,处理后的废水也必须尽量回用。同时,钒也被列入《污水综合排放标准》中第一类污染物。本文分析了硫酸亚铁沉淀法处理含钒废水。

关键词:硫酸亚铁;沉淀法;含钒废水;

钒是重要合金元素,钒在工业中的广泛应用使得含钒工业废水的处理迫在眉睫。降低成本,使用环保材料己成为废水处理研究领域中重要课题。

概述

钒是一种非常重要的合金元素,随着我国经济的快速发展,许多行业对钒的需求也越来越大。含钒钢具有强度高、韧性大、耐磨性好等优点,因而广泛应用于机械、汽车、造船、铁路、桥梁等行业,各种钒的化合物也被用作化学反应的催化剂、颜料、油漆、玻璃和陶瓷生产用添加剂等。自然界中钒的含量甚至比锌、镍、铜、铅、锡、锑等金属还要高,但以高品位钒的独立矿物形式存在的却很少,通常伴生在钛磁铁矿、含钒热液矿脉、风化堆积残留矿、含钒铁矿、含钒磷矿等矿床中。因此钒矿进行冶炼时,必须用到多种化学试剂,虽然采用了新型的石煤钒矿湿法提钒工艺,仍有大量的含钒废水产生。目前,对含钒废水的处理分物理、生物和化学三种方法,物理法主要采用吸附和离子交换技术,吸附法由于受吸附剂吸附容量和价格的限制,仅仅适用于低浓度含钒废水的处理;离子交换法处理效果较好,但成本较高也导致其应用范围不大。生物法是一种较为理想的处理方法,成本低且无二次污染,但实际应用还有一定的难度。化学沉淀法在处理含钒废水的应用中最为广泛,如硫酸亚铁沉淀法、铁屑沉淀法和铵盐沉淀法等。硫酸亚铁沉淀法生成的沉淀絮体较小,沉降时间较长,需要进行改进;铁屑沉淀法虽然处理效果较好,但处理此种强酸性废水,会耗费大量的铁屑,反应后溶液的pH值会有很大变化,不利沉淀的产生;铵盐沉钒则要求钒溶液在90℃以上,因此,针对此废水的特点,选择硫酸亚铁沉淀法来进行处理。

硫酸亚铁沉淀法处理含钒废水

1.实验。一是试剂与材料。实验所用硫酸亚铁、2-[ 5-溴-2 吡啶基) 偶氮] -5-(二乙氨基)苯酚、硫酸、氢氧化钠、磷酸氢二钠、柠檬酸、无水乙醇。以上试剂均为分析纯。试验废水也用模拟含钒废水,用分析纯的偏钒酸铵配制浓度为100mg/L 储备液稀释而得。溶液的初始pH 值用0.1mol/LNaOH 和0.1mol/LH2SO4溶液调节。

2.方法。一是改性沸石的制备。沸石破碎后过80 目筛,再用去离子水洗涤五次后于102℃下烘干待用。称取

3.33g 七水合硫酸亚铁溶300mL 水中,加入经烘干的沸石125g,搅拌30min,静置浸泡5小时,弃去上部清液,用去离子水洗涤3 次后于102℃下烘干待用。二是钒浓度和溶液pH 的测定。溶液中钒浓度的测定吸取一定量钒(V)溶液于50mL 容量瓶中,溶液pH 测定:利用玻璃电极体系进行,每次测定均用标准溶液校准。三是实验方法。在一定浓度的含钒溶液中,加入一定量的改性沸石吸附剂,置于水浴恒温振荡器上,在一定温度下搅拌一定时间后静置,取适量的上部清液用分光光度法测定清液中钒的浓度,每次实验均作空白对比,并计算废水中钒的吸附率及平衡吸附量。

3.结果与分析。一是pH 值对改性沸石吸附的影响。溶液的pH 值不仅影响到溶质在溶液中的存在形式,而且也影响到吸附剂表面的性质,例如吸附剂表面的电荷正负性及电荷密度等。在钒质量浓度为50 mg/L,溶液体积为100mL,改性沸石0.5g,温度为298K,接触时间为24h 的条件下,考察pH对钒吸附效果的影响。硫酸亚铁改性沸石对钒的吸附率随pH 的变化而发生较大改变,说明溶液pH是影响吸附效果的重要因素。pH 小于2 时,去除率随着pH 的升高而增大,pH=2.63 时达到最大,对钒的吸附率达到91.56%,然后随着pH 升高而去除率有所降低。这和溶液中钒的存在状态有很大关系。在pH 小于等于2 时,溶液中的钒主要以阳离子形式存在,而亚铁离子在酸性环境中带正电,因而存在同性斥力,不利于吸附,吸附率较低。当pH 大于2 时,溶液中的钒主要以钒酸根阴离子存在,与改性沸石上带正电的亚铁离子发生较强的电荷作用,因而钒(Ⅴ)的吸附率较高。二是含钒溶液处理前后pH 的变化。随pH 的增大,处理后含钒溶液的pH 增大。处理后溶液的pH 较处理前均有所提高。在pH 为2.63~5.75 的范围内,处理后溶液的pH值变化并不显著,说明经亚铁盐改性的沸石对溶液的pH 有较强的缓冲性能,有利于对钒的吸收和溶液pH 的控制。这可能是因为改性后沸石表面吸附了大量的二价铁离子,而亚铁离子又结合了改性沸石在吸附钒酸根时同时释放出一部分,使溶液pH 升高。因此在一定pH 的范围内无须调节溶液pH 就可以对钒酸根有较好的去除效果。三是改性沸石投放量。在钒质量浓度为50 mg/L,溶液体积为100mL,pH 为2.63,温度为298K,接触时间为24h 的条件下,考察改性沸石的投加量对钒吸附效果的影响,随着改性沸石投加量的增加,对钒的吸附率也增加。当改性沸石投加量为0.5g时,吸附率达到

91.45%,再继续增加改性沸石投加量,对钒的吸附率已经出现缓慢增大的趋势。,因此,此条件下改性沸石最佳投加量为0.5g。四是吸附时间对钒吸附率的影响在钒质量浓度为50 mg/L 的溶液体积100mL,pH 为2.63,改性沸石的投加量为0.5g,温度为298K 的条件下,考察吸附时间对吸附钒效果的影响。钒的去除率随着吸附时间的增加而提高,改性沸石吸附16h 后,钒的去除率可达到83.15%,24h 后可以达到90%以上,且趋于稳定,这说明改性后的沸石吸附钒24h 时基本上达到最大且恒定,此时在改性沸石表面吸附达到平衡。五是温度对吸附率的影响。在钒质量浓度为50mg/L 的溶液体积100mL,pH 为2.63,改性沸石的投加量为0.5g,接触时间为24h 的条件下,考察温度对除钒效果的影响,随温度的升高,去除率略有下降,说明改性沸石对吸附过程是放热过程,温度升高,对吸附反应不利。但是去除率随温度升高降幅不明显,说明温度对吸附的影响不大。为方便起见,本实验选298K 为溶液温度。

4.机理分析。沸石是一种架状多孔性结构的含水铝硅酸盐天然矿物晶体,铝硅结构本身带负电荷等阳离子平衡,使其具有良好的离子交换能力,由于天然沸石表面带负电荷,因此不能有效的吸附水中的钒酸根阴离子,经过亚铁阳离子改性后,其表面性质发生了很大的改变,使天然沸石表面带正电荷,从而对钒酸根阴离子的吸附能力有了很大的提高。改性后的沸石除钒的作用主要包括三个方面,一是离子

一种含钒钢渣提钒的方法

(10)申请公布号 (43)申请公布日 2013.06.05C N 103131867 A (21)申请号 201310077492.X (22)申请日 2013.03.12 C22B 7/04(2006.01) C22B 3/08(2006.01) C22B 3/26(2006.01) C22B 34/22(2006.01) (71)申请人昆明理工大学 地址650093 云南省昆明市五华区学府路 253号 (72)发明人叶国华 童雄 路璐 何伟 (54)发明名称 一种含钒钢渣提钒的方法 (57)摘要 本发明涉及一种含钒钢渣提钒的方法,属选 矿、湿法冶金、资源综合利用领域。主要包括选矿 预处理、常温常压下不焙烧选择性分段酸浸、含钒 酸浸液的净化与富集三大步骤。本方法通过选矿 预处理、常温常压下不焙烧选择性分段酸浸、溶剂 萃取等单一工序的科学集成,构建常温常压下含 钒钢渣不焙烧酸浸提钒的新工艺,使钒总回收率 达80%以上,与传统工艺从含钒固废中提钒时总 回收率不足70%相比,新工艺提钒指标大幅提升。 (51)Int.Cl. 权利要求书1页 说明书7页 附图1页 (19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书7页 附图1页(10)申请公布号CN 103131867 A *CN103131867A*

1/1页 1.一种含钒钢渣提钒的方法,其特征在于具体步骤包括如下: (1)将含钒钢渣破碎、磨矿后在按照常规工艺在磁场强度为0.08T ~0.25T 的条件下进行弱磁选,得到的磁性物质为磁性铁精矿,其余为磁选尾矿,然后将磁性铁精矿加水调整至矿浆浓度15~30wt%,在冲程6~14mm 、冲次280~440r/min 的条件下按照常规工艺进行重选,得到的比重大的物质为重选精矿,比重小的物质为重选尾矿; (2)在常温常压条件下进行Ⅰ段预浸除杂,将步骤(1)中得到的重选精矿在硫酸溶液中按照固液比1:1~6g/ml 混合并调整混合液的pH 值为3~4,在搅拌强度为100~500转/min 的条件下搅拌浸出0.5~6h ,经固液分离得到Ⅰ段浸渣和含铁酸浸液;在常温常压条件下进行Ⅱ段浸出提钒,将Ⅰ段浸渣在硫酸溶液中按照固液比1:1~6g/ml 混合并调整混合液的pH 值为0.3~2,经固液分离得到Ⅱ段浸渣和含钒酸浸液; (3)首先将步骤(2)中的含钒酸浸液按照常规工艺依次进行萃前氧化、酸度调节和萃取,萃取的上层清液为负载有机相,下层为萃取废液,上下层分离后将负载有机相进行洗涤除杂,在常温条件下,将负载有机相加入活性硫酸盐溶液中,按照相比O/A=1~6的条件下洗涤3~15min ,洗涤完毕后得到的上层清液为载钒有机相,下层为洗涤废液,将上下层分离,即可得到载钒有机相和洗涤废液,洗涤废液按常规工艺处理后返回浸出; (4)将步骤(3)中得到的载钒有机相按照常规工艺进行反萃,反萃后得到的上层液为卸载有机相,下层液为反萃液,卸载有机相返回萃取步骤使用,反萃液按照常规工艺进行铵盐沉钒,将铵盐沉钒得到的沉淀产品按照常规工艺进行煅烧分解,最终制得的精钒产品。 2.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述含钒钢渣产生于含钒铁水的炼钢过程,具体成分包括V 2O 5 1~5wt%,CaO 40%~60wt%,TFe 10%~25wt%。 3.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述含钒钢渣破碎、磨矿后的粒度为小于74μm 的占含钒钢渣的55wt%以上。 4.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述含钒酸浸液在萃取之前按照常规工艺进行萃前氧化是将含钒酸浸液中的钒离子全部氧化为5价,溶液颜色从蓝绿色变成棕黄色,酸度调节是调整含钒酸浸液pH 为1.0~2.5。 5.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述活性硫酸盐为硫酸钠或硫酸铵,浓度为0.2~0.8mol/L 。权 利 要 求 书CN 103131867 A

机械铸造厂废水的处理工艺

2010级毕业生实习报告 学生: 学号: 班级: 学院: 时间:2014年2月24日至3月23日

机械铸造厂废水的处理工艺 一:实习过程简介 市旺源机械铸造厂,于2001年正式成立,公司位于省市解放区瓷路8号,公司资金实力雄厚,生产经营能力强大。加上公司总裁夏胜宝的英明领导,目前已发展成为业一家较具实力的生产型企业。公司主营铸钢件,铸铁件,机加工。我于2014年2月24日至3月23日在该厂进行为期一个月的毕业实习。二:具体实习容 在厂里师傅的带领下了解了铸造厂废水:铸造厂废水是在铸铁融熔时对化铁炉的冷却废水。这种冷却水受污染很小,经对污浊物加以去除并进行冷却处理后,废水即可循环使用。对于铸造车间受灰尘及烧土污染的废水,则常采用凝聚沉淀处理后回用于生产,有时也直接排往堆渣场处置。 1铸造废水回用 铸造水力清砂工艺是利用高压水产生的强烈射流,将铸件表面残存的型砂冲洗干净。其废水中主要含有制造砂型所使用的各种原料,其中SS最高可达几千mg/L,pH值偏高,而COD一般在40—50mg/L之间。 冲洗铸件后所产生的废水先落入地面的砂坑,渗过废砂层后进入地下贮水池中,再用水泵将其抽入废水箱后逐渐排放。 水力清砂工艺对用水水质的要,不损害工艺设备和设施,不影响铸件的质量,对喷枪、高压泵、阀门、管道等设备不造成堵塞。参考国外有关回用水水质的某些规定,并与厂方商定,将清砂回用水水质标准定为,浊度10度,COD20mg/L,其它指标以对生产工艺不产生不良影响为准。 铸造污水处理工艺流程高效污水处理工艺在废水处理污水处理应用效果好稳定,铸造污水处理工艺流程高效污水处理工艺经专家认定是废水处理污水处理领域的高新技术,铸造污水处理工艺流程图高效污水处理净化系统具有污水处理工程投资少、占地面积小、污水处理废水处理反应迅速、运行成本低、广

含钒工业废水中钒的分离回收方法研究

分离富集理论及技术 课程论文 钒的分离回收方法研究 姓名李祝 专业化学工程与技术 学号2111306021 任课教师余倩教授 完成时间2014年5月8日

摘要 伴随着工业的发展,重金属污染的问题越来越严重,同时对重金属处理技术的要求也越来越高,根据工业废水中重金属的性质,采取科学合理的方法分离重金属,提升工业废水处理水平,是水环境污染防治领域的主要课题。本文从多方面来探讨废水中分离回收钒。 关键字 工业废水;钒;微生物处理;分离回收;研究 Abstract: With the development of industry,heavy mental pollution is getting worse,at the meantime the requirement of solving technology is becoming more and more important.Recording to the quality of heavy mental ,we can take different measures to divide them into different part.So,we should improve the level of technology.And this is the main topic of the water pollution field.In this paper,we discussed various aspects of vanadium separation and recovery of waste water. Key words: Industrial waste water;V;Microbial treatment;Separation and recovery;Research

最常见的废水处理工艺一览!

最常见的废水处理工艺一览! 表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理:废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理:废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。 当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理:废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理:废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水

所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。对于含不同类型污染物的电镀废水有不同的处理方法,分别介绍如下: 1.含氰废水 目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程分为两个阶段,第一阶段是将氰氧化为氰酸盐,对氰破坏不彻底,叫做不完全氧化阶段,第二阶段是将氰酸盐进一步氧化分解成二氧化碳和水,叫完全氧化阶段。

含氰污水处理方法

含氰污水处理方法:因科法——二氧化硫—空气氧化法 (2015-05-27 13:36:26) 含氰污水处理方法:因科法——二氧化硫—空气氧化法 在一定pH值范围内,在铜的催化作用下,利用SO2和空气的协同作用氧化废水中的氰化物,称为二氧化硫—空气氧化法,常简写成SO2/Air法。该方法是加拿大国际镍金属公司于1982年发明的。该公司的英文缩写是INCO,所以也把二氧化硫—空气氧化法叫做因科法。二氧化硫—空气氧化法工艺简单,设备不复杂,处理效果一般优于氯氧化法(不考虑硫氰化物的毒性)、药剂来源广、处理成本尚不算高、投资少。因此,近年来,使用该方法的矿山已达三十多个,我国于1984年开始研究二氧化硫—空气氧化法,于1988年完成工业试验,有几个氰化厂曾采用二氧化硫—空气氧化法处理含氰废水,取得了一定的效果。 1 二氧化硫—空气氧化法特点 二氧化硫—空气氧化法是一种纯消耗性的处理含氰废水(浆)方法,无经济效益,因此,人们常常把这种方法与氯氧化法比较。 1.1二氧化硫—空气氧化法的优点 1)能把废水中总氰化物(CNT-)降低到L,而氯氧化法仅能把可释放氰化物降低到L。 2)能去除亚铁氰化物和铁氰化物,使水质大为提高。 3)去除废水中重金属的效果较好,在车间排放口除铜有时超标外,其它重金属均达标。 4)可处理废水,也可处理矿浆。

5)所需设备为氰化厂常用设备,投资少,易于操作、管理和维护。6)工艺过程比较简单,可人工控制,也可自动控制,均可取得满意的处理效果。 7)当催化剂适量时,反应速度较快,可在~小时内完成反应。 8)药剂来源广,对药剂质量要求不高,可利用“三废”做为SO2来源。 9)处理后废水组成简单,对受纳水系影响小,给废水循环使用创造了条件。 10)即可间歇处理,又可连续处理。 11)处理成本通常比氯氧化法低,尚可被矿山接受。 12)不氧化硫氰化物、药耗低,从处理成本方面考虑,也可算是一个优点。 1.2二氧化硫—空气氧化法的缺点 1)不能消除废水中的硫氰化物,处理含硫氰化物的废水时,废水残余毒性大些,因为硫氰化物的毒性是氰化物的千分之几。 2)车间排放口铜离子有时超标,但尾矿库溢流水铜不会超标。 3)产生的氰酸钠水解慢,废水在尾矿库停留时间需长些,否则废水仍具有一定毒性。 4)可能需要加催化剂铜盐—宝贵的有色金属被消耗。 5)电耗高,一般是氯氧化法的3~5倍。 6)影响处理效果的因素多,反应pH值、催化剂加量、二氧化硫加量、充气量及空气弥散程度等,而氯氧化法仅加氯量和pH值两项。

制糖污水处理

制糖污水处理

制糖污水处理 制糖污水是以甜菜或甘蔗为原料制糖过程中排出的污水。主要来自制糖生产过程和制糖副产品综合利用过程。污水中一般含有有机物和糖分,COD、BOD很高,污水色度深、含氮、磷、钾等元素较高,其中主要来自斜槽污水、榨糖污水、蒸馏污水、地面冲洗水等。污水量为每生产1吨糖产生污水0.2-21m3(每吨甜菜排污水约2.5 m3)。 制糖污水的处理首先要清污分流;高浓污水先回收利用再处理;中浓度污水含BOD和COD低于5000-10000mg/L,经净化处理后排放;低浓度水应循环利用。常采用生化法或氧化塘,土壤处理系统方法处理污水。 好氧降解是利用活性污泥在污水中的凝聚、吸附、氧化、分解和沉淀等作用,去除水体中的有机污染物,其最终产物是合成的细胞体、水和CO2。由于好氧降解工艺的投资较低,操作条件简单,所以是有机污染污水处理的首选,但是对于象制糖污水这样的包含高浓度有机物的情况,好氧处理仍然存在着许多原理和工艺上的限制条件,因而在实际应用上不如厌氧处理普遍,但是也有较为成功的研究。充气固定膜生物处理系统(ASFF)用于处理制糖污水是一种

较新的技术,在水利停留时间为6-8h的情况下,处理效果可以达到BOD88.5%-97.9%,COD67.8%-73.6%。 通过对体系中的好氧降解生物种群的研究和筛选,可以进一步提高活性污泥对高浓度有机污水的处理能力。Matsuyama从甜菜制糖厂污水中分离出的棒状杆菌(kitamiensesp sp.nov.)是一种新的多糖分解细菌。对于它的复壮和推广可以明显提高制糖污水的好氧处理效果。Pathade et al.基于甘蔗糖蜜酒精厂产生的大量高浓度有机污水,建议好氧生物处理利用改进的混合微生物菌种接种进行污泥培养。从另一个角度,如生物转盘处理制糖污水时系统中的纤毛虫的差异性比较,制糖污水中绿藻的生长特性,都可以为好氧处理提供一些参性数据。 高浓度有机污水的好氧处理的另一大难题是在二沉池中的活性污泥的特性极差,如何有效地降低污泥的SVI值是处理可行性的一个依据。Prendl et al.用一好氧分离器预防制糖污水污泥膨胀效果非常显著,污泥的SVI值由使用前的300-600ml/g下降到60-90ml/g。 生物接触氧化法是国内外发展得比较成熟的一种工艺。生物接触氧化法,就是在曝气池中安装生物挂膜填料,微生物附着在填料表面,形成生物膜,经曝气的污水流经填料

硫酸亚铁沉淀法处理含钒废水

硫酸亚铁沉淀法处理含钒废水 发表时间:2017-12-12T10:48:39.243Z 来源:《建筑科技》2017年第12期作者:许超1 简虎2 [导读] 钒主要以五价存在于废水中,各种价态钒的离子中,五价钒离子的毒性最大,且溶于水。 1.河钢股份有限公司承德分公司钒钛事业部河北省承德市 067000 2.河钢股份有限公司承德分公司板带事业部河北省承德市 067000 摘要:钒主要以五价存在于废水中,各种价态钒的离子中,五价钒离子的毒性最大,且溶于水。可通过饮水、食物等途径进入人体,对人体健康产生影响,导致急、慢性中毒,对呼吸道有明显的刺激作用;钒化物对肾脏、神经系统、造血系统、心血管系统都有严重的损伤并导致明显的病理变化。因此,政府严格控制含钒废水的排放,处理后的废水也必须尽量回用。同时,钒也被列入《污水综合排放标准》中第一类污染物。本文分析了硫酸亚铁沉淀法处理含钒废水。 关键词:硫酸亚铁;沉淀法;含钒废水; 钒是重要合金元素,钒在工业中的广泛应用使得含钒工业废水的处理迫在眉睫。降低成本,使用环保材料己成为废水处理研究领域中重要课题。 概述 钒是一种非常重要的合金元素,随着我国经济的快速发展,许多行业对钒的需求也越来越大。含钒钢具有强度高、韧性大、耐磨性好等优点,因而广泛应用于机械、汽车、造船、铁路、桥梁等行业,各种钒的化合物也被用作化学反应的催化剂、颜料、油漆、玻璃和陶瓷生产用添加剂等。自然界中钒的含量甚至比锌、镍、铜、铅、锡、锑等金属还要高,但以高品位钒的独立矿物形式存在的却很少,通常伴生在钛磁铁矿、含钒热液矿脉、风化堆积残留矿、含钒铁矿、含钒磷矿等矿床中。因此钒矿进行冶炼时,必须用到多种化学试剂,虽然采用了新型的石煤钒矿湿法提钒工艺,仍有大量的含钒废水产生。目前,对含钒废水的处理分物理、生物和化学三种方法,物理法主要采用吸附和离子交换技术,吸附法由于受吸附剂吸附容量和价格的限制,仅仅适用于低浓度含钒废水的处理;离子交换法处理效果较好,但成本较高也导致其应用范围不大。生物法是一种较为理想的处理方法,成本低且无二次污染,但实际应用还有一定的难度。化学沉淀法在处理含钒废水的应用中最为广泛,如硫酸亚铁沉淀法、铁屑沉淀法和铵盐沉淀法等。硫酸亚铁沉淀法生成的沉淀絮体较小,沉降时间较长,需要进行改进;铁屑沉淀法虽然处理效果较好,但处理此种强酸性废水,会耗费大量的铁屑,反应后溶液的pH值会有很大变化,不利沉淀的产生;铵盐沉钒则要求钒溶液在90℃以上,因此,针对此废水的特点,选择硫酸亚铁沉淀法来进行处理。 硫酸亚铁沉淀法处理含钒废水 1.实验。一是试剂与材料。实验所用硫酸亚铁、2-[ 5-溴-2 吡啶基) 偶氮] -5-(二乙氨基)苯酚、硫酸、氢氧化钠、磷酸氢二钠、柠檬酸、无水乙醇。以上试剂均为分析纯。试验废水也用模拟含钒废水,用分析纯的偏钒酸铵配制浓度为100mg/L 储备液稀释而得。溶液的初始pH 值用0.1mol/LNaOH 和0.1mol/LH2SO4溶液调节。 2.方法。一是改性沸石的制备。沸石破碎后过80 目筛,再用去离子水洗涤五次后于102℃下烘干待用。称取 3.33g 七水合硫酸亚铁溶300mL 水中,加入经烘干的沸石125g,搅拌30min,静置浸泡5小时,弃去上部清液,用去离子水洗涤3 次后于102℃下烘干待用。二是钒浓度和溶液pH 的测定。溶液中钒浓度的测定吸取一定量钒(V)溶液于50mL 容量瓶中,溶液pH 测定:利用玻璃电极体系进行,每次测定均用标准溶液校准。三是实验方法。在一定浓度的含钒溶液中,加入一定量的改性沸石吸附剂,置于水浴恒温振荡器上,在一定温度下搅拌一定时间后静置,取适量的上部清液用分光光度法测定清液中钒的浓度,每次实验均作空白对比,并计算废水中钒的吸附率及平衡吸附量。 3.结果与分析。一是pH 值对改性沸石吸附的影响。溶液的pH 值不仅影响到溶质在溶液中的存在形式,而且也影响到吸附剂表面的性质,例如吸附剂表面的电荷正负性及电荷密度等。在钒质量浓度为50 mg/L,溶液体积为100mL,改性沸石0.5g,温度为298K,接触时间为24h 的条件下,考察pH对钒吸附效果的影响。硫酸亚铁改性沸石对钒的吸附率随pH 的变化而发生较大改变,说明溶液pH是影响吸附效果的重要因素。pH 小于2 时,去除率随着pH 的升高而增大,pH=2.63 时达到最大,对钒的吸附率达到91.56%,然后随着pH 升高而去除率有所降低。这和溶液中钒的存在状态有很大关系。在pH 小于等于2 时,溶液中的钒主要以阳离子形式存在,而亚铁离子在酸性环境中带正电,因而存在同性斥力,不利于吸附,吸附率较低。当pH 大于2 时,溶液中的钒主要以钒酸根阴离子存在,与改性沸石上带正电的亚铁离子发生较强的电荷作用,因而钒(Ⅴ)的吸附率较高。二是含钒溶液处理前后pH 的变化。随pH 的增大,处理后含钒溶液的pH 增大。处理后溶液的pH 较处理前均有所提高。在pH 为2.63~5.75 的范围内,处理后溶液的pH值变化并不显著,说明经亚铁盐改性的沸石对溶液的pH 有较强的缓冲性能,有利于对钒的吸收和溶液pH 的控制。这可能是因为改性后沸石表面吸附了大量的二价铁离子,而亚铁离子又结合了改性沸石在吸附钒酸根时同时释放出一部分,使溶液pH 升高。因此在一定pH 的范围内无须调节溶液pH 就可以对钒酸根有较好的去除效果。三是改性沸石投放量。在钒质量浓度为50 mg/L,溶液体积为100mL,pH 为2.63,温度为298K,接触时间为24h 的条件下,考察改性沸石的投加量对钒吸附效果的影响,随着改性沸石投加量的增加,对钒的吸附率也增加。当改性沸石投加量为0.5g时,吸附率达到 91.45%,再继续增加改性沸石投加量,对钒的吸附率已经出现缓慢增大的趋势。,因此,此条件下改性沸石最佳投加量为0.5g。四是吸附时间对钒吸附率的影响在钒质量浓度为50 mg/L 的溶液体积100mL,pH 为2.63,改性沸石的投加量为0.5g,温度为298K 的条件下,考察吸附时间对吸附钒效果的影响。钒的去除率随着吸附时间的增加而提高,改性沸石吸附16h 后,钒的去除率可达到83.15%,24h 后可以达到90%以上,且趋于稳定,这说明改性后的沸石吸附钒24h 时基本上达到最大且恒定,此时在改性沸石表面吸附达到平衡。五是温度对吸附率的影响。在钒质量浓度为50mg/L 的溶液体积100mL,pH 为2.63,改性沸石的投加量为0.5g,接触时间为24h 的条件下,考察温度对除钒效果的影响,随温度的升高,去除率略有下降,说明改性沸石对吸附过程是放热过程,温度升高,对吸附反应不利。但是去除率随温度升高降幅不明显,说明温度对吸附的影响不大。为方便起见,本实验选298K 为溶液温度。 4.机理分析。沸石是一种架状多孔性结构的含水铝硅酸盐天然矿物晶体,铝硅结构本身带负电荷等阳离子平衡,使其具有良好的离子交换能力,由于天然沸石表面带负电荷,因此不能有效的吸附水中的钒酸根阴离子,经过亚铁阳离子改性后,其表面性质发生了很大的改变,使天然沸石表面带正电荷,从而对钒酸根阴离子的吸附能力有了很大的提高。改性后的沸石除钒的作用主要包括三个方面,一是离子

处理含氰废水的其它方法.

处理含氰废水的其它方法 除了氯氧化法、二氧化硫-空气氧化法、过氧化氢氧化法、酸化回收法、萃取法已独立或几种方法联合使用于黄金氰化厂外,生物化学法、离子交换法、吸附法、自然净化法在国内外也有工业应用,由于报道较少,工业实践时间短,资料数据有限,本章仅对这些方法的原理、特点、处理效果进行简要介绍。 11.1 生物化学法 11.1.1生物法原理 生物法处理含氰废水分两个阶段,第一阶段是革兰氏杆菌以氰化物、硫氰化物中的碳、氮为食物源,将氰化物和硫氰化物分解成碳酸盐和氨: 微生物 Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3 对金属氰络物的分解顺序是Zn、Ni、Cu、Fe对硫氰化物的分解与此类似,而且迅速,最佳pH值6.7~7.2。 细菌 SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3 第二阶段为硝化阶段,利用嗜氧自养细菌把NH3分解: 细菌 NH3+1.5O2→NO2-+2H++H2O 细菌 NO2-+0.5O2→NO3- 氰化物和硫氰化物经过以上两个阶段,分解成无毒物以达到废水处理目的。

生物化学法根据使用的设备和工艺不可又分为活性污泥法、生物过滤法、生物接触法和生物流化床法等等,国内外利用生物化学法处理焦化、化肥厂含氰废水的报导较多。 据报道,从1984年开始,美国霍姆斯特克(Homestake)金矿用生物法处理氰化厂废水,英国将一种菌种固化后用于处理2500ppm的废水,出水CN-可降低到1ppm,是今后发展的方向。 微生物法进入工业化阶段并非易事,自然界的菌种远不能适应每升数毫克浓度的氰化物废水,因此必须对菌种进行驯化,使其逐步适应,生物化学法工艺较长,包括菌种的培养,加入营养物等,其处理时间相对较长,操作条件严格。如温度、废水组成等必须严格控制在一定范围内,否则,微生物的代谢作用就会受到抑制甚至死亡。设备复杂、投资很大,因此在黄金氰化厂它的应用受到了限制。但生物化学法能分解硫氰化物,使重金属形成污泥从废水中去除,出水水质很好,故对于排水水质要求很高、地处温带的氰化厂,使用生物法比较合适。 11.1.2 生物法的应用情况 国外某金矿采用生物化学法处理氰化厂含氰废水。首先,含氰废水通过其它废水稀释,氰化物含量降低到生化法要求的浓度(CN-<10.0mg/L)、温度(10℃~18℃,必要时设空调),pH值(7~8.5)然后加入营养基(磷酸盐和碳酸钠),废水的处理分两段进行,两段均采用Φ3.6×6m的生物转盘,30%浸入废水中以使细菌与废水和空气接触,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸盐和氨,同时重金属被细菌吸附而从废水中除去,第二段包括氨

浅析含钒钢渣湿法提钒生产工艺与发展前景

浅析含钒钢渣湿法提钒生产工艺与发展前景 钒是一种稀有、柔软而黏稠的过渡金属,它的矿物形态一般与其它金属的矿物混合在一起,一般被用于材料工程中作为合金成分,把钒掺进钢里制成钒钢,可使钒钢结构比普通钢更紧密、更有韧性、弹性,机械强度更高。目前全球钒渣、氧化钒、钒铁的主要产地是南非、中国、俄罗斯、美国、澳大利亚、新西兰和日本等七国。南非、俄罗斯和中国一直是三个最大的产钒国,除美国和日本从石油残渣和电厂飞灰中提取钒外,其他各国都是从矿石冶炼过程中提取钒[1]。 中国钒工业的崛起主要得益于攀枝花钒钛磁铁矿的开发利用,目前国内各工厂钒的提取工艺基本相同,均是采用钒渣钠法焙烧、多钒酸铵沉淀焙烧法生产V2O5。具体工艺为钒钛磁铁矿原矿经选矿得到的含钒铁精矿送入烧结、炼铁工序,得到含钒铁水经提钒转炉生产钒渣(含V2O5平均15%)。钒渣经过添加氯化钠或碳酸钠进行钠法焙烧、水浸取、多钒酸铵沉钒等过程获得多钒酸铵,最后经反射炉熔化得到片状V2O5[2]。 本文在此介绍一种钢渣提钒新生产工艺——湿法提钒工艺,并从生产工艺、资源能源利用、经济技术指标、污染物排放等方面与传统钠法焙烧工艺进行比较,分析探讨湿法提钒工艺的发展前景。 1、湿法提钒工艺概况 湿法提钒工艺是以含钒钢渣为原料,而不是传统钠法焙烧生产工艺使用的经提钒转炉生产的标准钒渣,该含钒钢渣是钒钛磁铁矿经过炼钢转炉生产钢水后废弃的钢渣,该钢渣中V2O5平均含量仅为4%。该钢渣的成分见下: 湿法提钒工艺是将钢渣直接酸浸—净化—沉钒—熔化制得片状五氧化二钒,不同于传统钠法工艺需要焙烧,为了区别传统工艺,本文将该新工艺称为湿法提钒工艺。具体工艺流程叙述如下: ①含钒钢渣预处理 含钒钢渣经原料预处理,磨细达到所需粒径并除去所夹带的铁后,送入酸浸工段。 ②酸浸 酸浸工段是该生产工艺的核心。含钒钢渣在蒸汽保温的条件下,用一定浓度的硫酸溶液(添加助浸剂)进行两段逆流酸浸浸取,使钢渣中的钒(也包括其他杂质)融入酸浸液中。浸渣采用两段浸取,每段浸取又分为三级,确保工艺的连续性。第一段通过控制pH在4左右,使钒以钒酸钙沉淀的形态留入渣中,而大部分的铁、铬、锰、硅、磷、硫等杂质被浸出以离子态进入上清液,其中大部分的铁以硫酸亚铁形式存在上清液中,铬在硫酸亚铁的还原作用下主要以六价铬存在于上清液中。经固液分离,底流(钒酸钙以及其它不溶物)进入第二段酸浸阶段,而大部分的铁、铬、锰、硅、磷、硫等杂质随上清液而分离。上清液通过加入氨水使铁以黄铵铁矾(NH4Fe3(SO4)2(OH)6)形态沉淀析出,黄铵铁矾利用真空带式过滤机压滤回收,然后送烧结厂综合利用。沉黄铵铁矾后的废水返回配酸槽配酸回用。 第二段酸浸同样在蒸汽保温条件下用硫酸浸取,通过控制浸出液pH为1左右,钒被浸出进入上清液,并以三价和五价形态共存,同时第一次酸浸后未分离完的铁、铬等杂质也被浸出进入上清液。经固液分离去除不溶物,上清液送往萃前处理罐暂存。 ③氧化 经固液分离后的酸浸液中钒以三价和五价形态存在,为了保证后序净化工段产品质量,

制糖工业废水处理实用工艺设计

1 引言 中国的淡水资源总量占全球水资源的6%,仅次于巴西、俄罗斯和加拿大,居世界第四位,但人均只有2200立方米,仅为世界平均水平的1/4,在世界上名列121位,是全球13个人均水资源最贫乏的国家之一,是一个干旱缺水严重的国家。到20世纪末,全国600多座城市中,已有400多个城市存在供水不足问题,其中比较严重的缺水城市达110个,全国城市缺水总量为60亿立方米。据监测,目前全国多数城市地下水受到一定程度的点状和面状污染,且有逐年加重的趋势。日趋严重的水污染不仅降低了水体的使用功能,进一步加剧了水资源短缺的矛盾,对中国正在实施的可持续发展战略带来了严重影响,而且还严重威胁到城市居民的饮水安全和人民群众的健康。 所以,对于水的可持续利用成为国民发展的必要手段,其中对于污水的处理迫在眉睫,更是被提到重要的日程上来。对于关系到国计民生的食品行业,制糖产业一直占据着不可或缺的重要位置。但是“前门产糖,后门排污”却给环境带来了很大压力。从工业角度看,如果按年榨甘蔗3000万吨计算,全国制糖及其深加工过程中将产生约100万吨废糖蜜,约330万吨蔗渣,约310万立方米酒精废液。这样巨大的数字表明,如果对这些废物的处理不及时,排放到地表水体中,将会对我国的水资源产生很大的影响。对制糖废水进行处理后让其达标排放,可以大大减少向水体排放的污水量,减轻环境负担,实现环境效益与经济效益的统一[1]。 制糖工业废水[2]是以甜菜或甘蔗为原料制糖过程中排出的废水,主要来自斜槽废水、榨糖废水、蒸馏废水、地面冲洗水等制糖生产过程和制糖副产品综合利用过程。我国甘蔗糖厂大多利用制糖生产的副产品糖蜜生产酒精,酒精生产过程中产生的废弃物废醪液为一种色度高(深褐色)、PH低(4.5左右)、污染物浓度高的酸性有机废水,废水中一般含有有机物和糖分,COD、BOD很高,是糖厂对水环境的主要污染源[3]。 2 设计依据及原则 2.1 设计依据 2.1.1 工艺设计主要法律、法规 (1)《中华人民国水法》2002年08月 (2)《中华人民国环境保护法》1989年12月

废水中高价钒、铬的处理技术

2.1废水中高价钒、铬的处理技术 2.1.1活泼金属还原-石灰中和法 国内许多钒厂目前都采用此法,其原理是强酸性废水中的六价铬可被活泼金属如铁还原为三价,待六价铬被还原接近完全时,五价钒也可被还原为三价,其反应方程式如下: Cr2O72-+2Fe+14H+=2Cr3++2Fe3++7H2O 3VO2++2Fe+12H+=3V3++2Fe3++6H2O 然后用石灰中和,使铬以氢氧化铬沉淀,钒以难溶钙盐沉淀,铁以氢氧化铁沉淀,除此以外还有大量硫酸钙[1]。 2.1.2气体还原-中和法 气体还原-中和沉铬-蒸发回收钠盐的原理是: 首先将六价铬还原为三价,六价铬在酸性介质中为强氧化剂 Cr2O72-+14H++6e=2Cr3++7H2O……E0=1.36伏 在冷溶液中Na2Cr2O7可以被、NaHSO3等还原,在含钒、铬溶液中通入SO2便可发生如下反应: Na2Cr2O7+3SO2+H2SO4=Cr2(SO4)3+Na2SO4+H2O (VO2)2SO4+SO2=2VOSO4 六价铬还原为三价铬时,未还原的残余六价铬的数量取决于反应时间、反应混合物的pH值、采用还原剂的浓度和类型。对于沉钒废水来说,本身的pH值足够低,因此,处理时不需另调pH值。 氢氧化铬Cr(OH)3是一种两性氢氧化物,即既溶于酸,又可溶于碱,在溶液中的酸碱平衡可表示如下:Cr3+(紫色)+3OH-←→Cr(OH)3(灰蓝色)←→H2O+HCrO2←→H2O+H++CrO2-(绿色)。 根据平衡移动原理,加酸时平衡向生成Cr3+方向移动;加碱时平衡向CrO2-方向移动;调节至一定的pH值时,则可生成Cr(OH)3沉淀,根据氢氧化铬在pH 值8.5-9.5时溶解度最低,故在此pH值范围内沉淀最为有效。因此在用上述方法还原后呈酸性的废水中,加入碱中和至pH值8.5-9.5,灰蓝色Cr(OH)3即沉淀下来,经过静置,下层沉淀用滚筒过滤、旋转炉中焙烧即可得到三氧化铬产品。 在加热条件下:2Cr(OH)3=Cr2O3+3H2O 沉铬的净化液经蒸发浓缩,即结晶出芒硝,经重溶、真空结晶、干燥后得芒硝产品,结晶后的母液返回浸出工序[2]。

含氰电镀废水的处理方法

含氰电镀废水的处理方法 含氰电镀废水处理的几种方法:一般有碱性氯化法、电解法、活性炭法。 1碱性氯化法 基本原理是在含氰废水中投加氧化剂(如漂白粉),将氰氧化成二氧化碳和氮。氧化分为两个阶段,第一阶段是将氰化物氧化成氰酸盐,第二阶段再将氰酸盐氧化成二氧化碳和氮气。主要水处理构筑物需设氧化反应池两座、沉淀池一座以及相应的投药装置等。反应池中设pH计及ORP计(氧化还原电位计)控制水质及投药量,并设搅拌装置。第一阶段氧化反应时间控制在10~15min,pH值控制在10~11,第二阶段氧化反应时间控制在10~30min,pH值控制在8左右。 2电解法 电解法处理含氰废水的实质就是次氯酸氧化法,其原理同样是基于氧化反应,与碱性氯化法不同的是其所投加的氧化剂是通过电解食盐水所产生的次氯酸根。因此需设一套电解食盐水装置。该方法的优点是处理效果稳定可靠,管理方便,操作简单,无泥渣,可不设沉淀池。缺点是耗电量较大。 3活性炭法 此种方法主要用于氰化镀铜废水处理。基本原理:含有氰化物的废水在有足够的溶解氧和铜离子的条件下,通过活性炭的催化氧化作用,生成NH3及CuCO3·Cu(OH)2等物质,从而破坏氰化物的毒性,同时铜和氰构成的络合离子被活性炭吸附。基本流程:废水→氧化剂

柱→活性炭柱(两级)→排放或回收。活性炭吸附达饱和后,用6%的硫酸铵和含有效氯为8g/L的次氯酸钠再生。此种方法的优点是投资少,操作简单,费用低,水处理效果好。缺点是再生废液难处理,易造成二次污染。 对于含氰废水,除上述处理方法外,还有离子交换法、薄膜蒸发回收法等。离子交换法同样存在再生废液二次污染的问题,且投资大、成本高。而薄膜蒸发回收法设备较复杂,且需消耗蒸气,辅助设备较多,运行管理不易掌握,因此在中小型电镀生产厂中很少使用。

常见污水处理工艺汇总

1物理法: 1.沉淀法:主要去除废水中无机颗粒及SS 2.过滤法:主要去除废水中SS和油类物质等 3.隔油:去除可浮油和分散油 4.气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心分离:微小SS的去除 6.磁力分离:去除沉淀法难以去除的SS和胶体等 2化学法: 1.混凝沉淀法:去除胶体及细微SS 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 3物理化学法: 1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等 2.离子交换法:回收贵重金属,放射性废水、有机废水等 3.萃取法:难生物降解有机物、重金属离子等 4.吹脱和汽提:溶解性和易挥发物质的去除。 重点介绍 (随着各种工艺不断改进,原有缺点不断被修正,因此只列出各种工艺的优点) 4生物法 1.活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种方法的统称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 工艺流程图:

SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。 优点: 1)工艺简单,节省费用 2)理想的推流过程使生化反应推力大、效率高 3)运行方式灵活,脱氮除磷效果好 4)防治污泥膨胀的最好工艺 5)耐冲击负荷、处理能力强 (2)CASS法 CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定。 CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。 工艺流程图: (3)AO法 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。 工艺流程图: 优点: 1)系统简单,运行费低,占地小 2)以原污水中的含碳有机物和内源代谢产物为碳源,节省了投加外碳源的费用 3)好氧池在后,可进一步去除有机物 4)缺氧池在先,由于反硝化消耗了部分碳源有机物,可减轻好氧池负荷 5)反硝化产生的碱度可补偿硝化过程对碱度的消耗 (4)AAO法 AAO法又称A2O法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。 工艺流程图:

含氰电镀废水的处理方法

含氰电镀废水处理的几种方法:一般有碱性氯化法、电解法、活性炭法 1 碱性氯化法 基本原理是在含氰废水中投加氧化剂(如漂白粉),将氰氧化成二氧化碳和氮。氧化分为两个阶段,第一阶段是将氰化物氧化成氰酸盐,第二阶段再将氰酸盐氧化成二氧化碳和氮气。主要水处理构筑物需设氧化反应池两座、沉淀池一座以及相应的投药装置等。反应池中设pH 计及ORP计(氧化还原电位计)控制水质及投药量,并设搅拌装置。第一阶段氧化反应时间控制在10~15min,pH值控制在10~11,第二阶段氧化反应时间控制在10~30min,pH值控制在8左右。 2 电解法 电解法处理含氰废水的实质就是次氯酸氧化法,其原理同样是基于氧化反应,与碱性氯化法不同的是其所投加的氧化剂是通过电解食盐水所产生的次氯酸根。因此需设一套电解食盐水装置。该方法的优点是处理效果稳定可靠,管理方便,操作简单,无泥渣,可不设沉淀池。缺点是耗电量较大。 3 活性炭法

此种方法主要用于氰化镀铜废水处理。基本原理:含有氰化物的废水在有足够的溶解氧和铜离子的条件下,通过活性炭的催化氧化作用,生成NH3及CuCO3·Cu(OH)2等物质,从而破坏氰化物的毒性,同时铜和氰构成的络合离子被活性炭吸附。基本流程:废水→氧化剂柱→活性炭柱(两级)→排放或回收。活性炭吸附达饱和后,用6%的硫酸铵和含有效氯为8g/L的次氯酸钠再生。此种方法的优点是投资少,操作简单,费用低,水处理效果好。缺点是再生废液难处理,易造成二次污染。 对于含氰废水,除上述处理方法外,还有离子交换法、薄膜蒸发回收法等。离子交换法同样存在再生废液二次污染的问题,且投资大、成本高。而薄膜蒸发回收法设备较复杂,且需消耗蒸气,辅助设备较多,运行管理不易掌握,因此在中小型电镀生产厂中很少使用。

糖厂制糖污水处理工程设计文献综述(可编辑)

糖厂制糖污水处理工程设计-文献综述 本科毕业设计论文 论文综述 文献综述 目录 1.前言1 2. 制糖废水的来源和水质 1 3. 制糖废水处理研究的历史 2 4. 制糖废水处理常用的工艺 2 4.1厌氧处理 2 4.2 好氧处理 4 4.3 土地处理 4 5. 适合本设计工艺 5 5.1 工艺的选择 5 5.2 工艺流程图及描述6 6. 结语7 参考文献8 前言 水是生命之源,是人类和其它一切生物生存和发展的物质基础,又是社会经济发展重要而宝贵的资源。随着经济的发展和人口的增长,水资源的短缺已成

为当代社会突出的环境问题。 目前我国有60%以上的水源用于农业,工业用水约占20% ,主要工业产品的平均用水量比发达国家高几十倍甚至上百倍,不仅加剧了用水的紧张,而且产生大量污水污染环境。根据国家环保总局发布的“2002年全国环境统计公报”显示,2002年,全国废水排放总量为439.5亿吨,比上年增加1.5%。其中工业废水排放量207.2亿吨,占废水排放总量的47.1%;废水化学需氧量CODcr排放量1367万吨,其中工业废水中化学需氧量排放量584万吨,占化学需氧量排放总量的42.7%[1]。重金属、砷、氰化物、挥发酚等的排放量也呈上升趋势。 目前制糖废水的治理主要采用物化法和生化法。用物化法对废水进行预处理,然后再进入生化系统,最后依次经物化处理及生物滤池后达标排放。物化法处理包括:沉淀法,吸附法,电化学法。磁分离法,高级氧化法,蒸发浓缩法等。制糖废水的可生化性好,因此国内外对此废水的处理常采用生化法。主要有厌氧处理法UASB法、二段厌氧法、厌氧一好氧处理法、厌氧一光合细菌处理法等。 2. 制糖废水的来源和水质 制糖废水包括生产废水和糖蜜酒精废水两部分。生产废水是指以甜菜和甘蔗为原料加工生产蔗糖过程中产生的废水,一般为中、低浓度废水,包括洗涤流送水、冷凝冷却水、滤泥水、压粕水、洗滤布水亚法糖厂等。糖蜜酒精废水是指以制糖副产品一糖蜜为原料,发酵生产酒精过程中产生的高浓度有机废水。此类废水水量大,每生产1吨酒精约产生7~15吨废水,而且污染物浓度高,含有糖、蛋白质、氨基酸、维生素等有机物以及N、P、K、Ca、Mg等无机盐和较高浓度SO42-。此类废水大多呈酸性,而且色度高,类黑色索等难以降解。这些废水若直接排放会造成水体富营养化、缺氧、鱼虾绝迹、水质恶化、发臭,严重污染地表地

各种污水处理工艺的比较及特点

表4 常用工艺性能简述 工艺 名称 工艺简述优点缺点 AB法工艺AB法工艺即吸附-生物降解工艺, 该工艺不设初沉池,由A、B二级 活性污泥系统串联组成,并分别有 独立的污泥回流系统。A段负荷高, 主要进行吸附去除,B段负荷低, 进行生物氧化降解。 ①抗冲击负荷能力强、运 行稳定性好;②去除COD、 BOD效果好;③具有良好的 脱氮除磷效果;④投资省, 运转费用低。 ①A段负荷太高, 如果控制不好, 很容易产生臭 气;②A段产生 的污泥量较大, 有机物含量高, 不易稳定化处置 [3]。 A/A/O 工艺A/A/O生物脱氮除磷工艺由厌氧 池、缺氧池、好氧池串联而成。在 工艺流程内,BOD5、SS和以各种形 式存在的氮和磷一并出去。系统的 活性污泥中,菌群主要由硝化菌、 反硝化菌和聚磷菌组成。在好氧 段,硝化细菌通过生物硝化作用, 将氨氮及有机氮转化成氮气逸入 大气中,从而达到脱氮目的;在厌 氧段,聚磷菌释放磷,并吸收低级 脂肪酸等易降解的有机物;而在好 氧段,聚磷菌超量吸收磷,并通过 剩余污泥的排放,将磷去除。且以 上三菌均有去除BOD的作用。 ①在同类脱氮除磷的工艺 中,该工艺流程最为简单, 总的水力停留时间也少于 同类其它工艺;②在厌氧- 缺氧-好氧交替运行条件 下,丝状菌不会大量繁殖, SVI一般小于100,污泥易 沉淀,不易发生污泥膨胀; ③污泥中磷含量高,一般 在2.5%以上,污泥肥效好。 ①该工艺适用于 TP/BOD值较低的 污水,当TP/BOD 值很高时,BOD负 荷过低会使得剩 余污泥量少,难 以达到满意的处 理效果②当污水 量变化时(高低 峰)会造成沉淀 池内污水停留时 间长,导致聚磷 菌在厌氧条件下 产生磷的释放, 会降低除磷效 率。 传统SBR工艺SBR活性污泥法又称序批式活性污 泥法、间歇式活性污泥法。此法将 初沉池出水引入SBR反应池,按时 间顺序进行进水、曝气、沉淀、出 水等基本操作。各操作周而复始反 复进行,且在同一池子中完成。此 工艺不需要设置专门的二沉池和 污泥回流系统,但每个池子都需设 ①工艺流程简单,造价低, 占地面积小;②处理效果 良好,出水可靠;③较好 的脱氮除磷效果;④污泥 沉降性能良好。⑤控制灵 活,易于实现脱氮除磷⑥ 对进水水质水量的波动具 有良好的适应性 ①设备的闲置率 较高;②污水提 升水头损失较 大;③不连续出 水时,需要较大 的调节池;④不 适合于大型污水 处理厂[4]。

相关文档