文档库 最新最全的文档下载
当前位置:文档库 › 抗癌药物作用机理及作用靶点

抗癌药物作用机理及作用靶点

抗癌药物作用机理及作用靶点
抗癌药物作用机理及作用靶点

抗癌药物作用机理及作用靶点

一、常见抗癌药物总作用机理

二、常见抗癌药物作用机理

1. 氮芥

氮芥是最早用于临床并取得突出疗效的抗肿瘤药物。为双氯乙胺类烷化剂的代表,它是一高度活泼的化合物。

【药理作用】本品进入体内后,通过分子内成环作用,形成高度活泼的乙烯亚胺离子,在中性或弱碱条件下迅速与多种有机物质的亲核基团(如蛋白质的羧基、氨基、巯基、核酸的氨基和

羟基、磷酸根)结合,进行烷基化作用。氮芥最重要的反应是与鸟嘌呤第7位氮共价结合,产生DNA 的双链内的交叉联结或DNA 的同链内不同碱基的交叉联结。G1期及M 期细胞对氮芥的细胞

毒作用最为敏感,由G1期进入S 期延迟。

【适应症】主要用于恶性淋巴瘤及癌性胸膜、心包及腹腔积液。目前已很少用于其他肿瘤,对急性白血病无效。与长春新碱(VCR)、甲基卡肼(PCZ)及泼尼松(PDN)合用治疗霍奇金病有较高

的疗效,对卵巢癌、乳腺癌、绒癌、前列腺癌、精原细胞瘤、鼻咽癌(半身化疗法)等也有一定疗效;腔内注射用以控制癌性胸腹水有较好疗效;对由于恶性淋巴瘤等压迫呼吸道和上腔静脉压

迫综合征引起的严重症状,可使之迅速缓解。

2.环磷酰胺

环磷酰胺为氮芥与磷酰胺基结合而成的化合物,是临床常用的烷

化剂类免疫剂。

【药理作用】该品在体外无抗肿瘤活性,进入体内后先在肝脏中经微粒体功能氧化酶转化成醛磷酰胺,而醛酰胺不稳定,在肿瘤细胞内分解成酰胺氮芥及丙烯醛,酰胺氮芥对肿瘤细胞有细

胞毒作用。环磷酰胺是双功能烷化剂及细胞周期非特异性药物,可干扰 DNA 及 RNA 功能,尤以对前者的影响更大,它与DNA 发生交叉联结,抑制DNA 合成,对S 期作用最明显。

【适应症】该品为最常用的烷化剂类抗肿瘤药,进入体内后,在肝微粒体酶催化下分解释出烷化作用很强的氯乙基磷酰胺(或称磷酰胺氮芥),而对肿瘤细胞产生细胞毒作用,此外本品还具

有显着免疫作用。临床用于恶性淋巴瘤,多发性骨髓瘤,白血病、乳腺癌、卵巢癌、宫颈癌、前列腺癌、结肠癌、支气管癌、肺癌等,有一定疗效。也可用于类风湿关节炎、儿童肾病综合

征以及自身免疫疾病的治疗。

3. 塞替派

本品为20 世纪50 年代初期合成的抗肿瘤药,是乙烯亚胺类烷化剂的代表。

【药理作用】塞替派为细胞周期非特异性药物,在生理条件下,形成不稳定的亚乙基亚胺基,具有较强的细胞毒作用。塞替派是多功能烷化剂,能抑制核酸的合成,与DNA 发生交叉联结,

干扰DNA 和RNA 的功能,改变DNA 的功能,故也可引起突变。体外试验显示可引起染色体畸变,在小鼠的研究中可清楚看到有致

癌性,但对人尚不十分清楚。近年来证明本品对垂体促卵泡

激素含量有影响。

【适应症】本品对卵巢癌、乳腺癌、膀胱癌、消化道肿瘤、肺癌及癌性胸腹水均有较好疗效。1、卵巢癌:适用于卵巢癌非根治术后、腹腔播散伴有腹水、小骨分转移、肺转移伴有胸水等,

有效率可达40%。2、乳腺癌:适用于非根治术后,皮肤转移、肺转移伴胸水及根治性手术辅助治疗,有效率为60%。3、膀胱癌:对膀胱癌晚期或手术后患者,可以此进行膀胱灌注。4、其他肿

瘤:胃肠道腺癌、恶性淋巴瘤、子宫颈癌、恶性黑色素瘤、胰腺癌、肺癌、甲状腺癌等。

4.卡莫司汀

卡莫司汀属于亚硝脲类代表药。

【药理作用】本品及其代谢物可通过烷化作用与核酸交链,亦有可能因改变蛋白而产生抗癌作用。在体内能与DNA 聚合酶作用,对增殖期细胞各期都有作用,对兔子及小鼠有致畸性。

【适应证】因能够通过血脑屏障,故对脑瘤(恶性胶质细胞瘤、脑干胶质瘤、成神经管细胞瘤、星形胶质细胞瘤、室管膜瘤)、脑转移瘤和脑膜白血病有效,对恶性淋巴瘤、多发性骨髓瘤,

与其它药物合用对恶性黑色素瘤有效。

5. 白消安片

本药为三甲基磺酸酯类代表药。

【药理作用】属双甲基磺酸酯类的双功能烷化剂,为细胞周期非

特异性药物。进入人体内磺酸酯基团的环状结构打开,通过与细胞的DNA 内鸟嘌呤起烷化作用而破坏DNA 的结构与功能。本

品的细胞毒作用几乎完全表现在对造血功能的抑制,主要表现在对粒细胞生成的明显抑制作用。其次是血小板和红细胞的抑制,对淋巴细胞的抑制很弱。

【适应证】主要适用于慢性粒细胞白血病的慢性期,对缺乏费城染色体 Ph1 病人效果不佳。也可用于治疗原发性血小板增多症,真性红细胞增多症等慢性骨髓增殖性疾病。

6. 5-氟尿嘧啶

氟尿嘧啶是目前临床上应用最广的抗嘧啶类药物,对多种肿瘤如消化道肿瘤、乳腺癌、卵巢癌、子宫颈癌、绒毛膜上皮癌、肝癌、膀胱癌等均有一定疗效。体内转化为 5-氟脱氧尿嘧啶核

苷酸,抑制胸腺嘧啶核苷酸合成酶而抑制 DNA 的合成。对 RNA 的合成也有一定抑制作用。

【药理作用】本品在体外有较强的细胞毒作用,在体内对多种移植性肿瘤有明显的抗肿瘤作用。在体内经酶转变为 5-氟尿嘧啶脱氧核苷,与胸腺嘧啶核苷合成酶的活动中心形成共价结合

,使该酶的活性受到抑制,使胸腺嘧啶核苷生成减少,导致DNA 的生物合成受阻; 此外,它还可变成三磷酸氟尿嘧啶核苷,以伪代谢物形式掺入 RNA 中,从而干扰 RNA 的正常生理功能,影

响蛋白质的生物合成。近年来研究发现,本品的活性代谢物 5-氟尿嘧啶脱氧核苷及甲撑基四氢叶酸可与胸腺嘧啶核苷合成酶形成

三联复合物,阻止胸腺嘧啶核苷合成酶的活性发挥,从而抑

制DNA 的合成。本品对增殖细胞有明显杀灭作用,对S 期细胞特别明显,但它同时又可延缓G1 期细胞向S 期移行,因而出现自限现象。

【适应证】较广谱。消化系癌(胃癌、结肠癌、肝癌、胰腺癌、食管癌等)、乳腺癌、卵巢癌、宫颈癌、绒毛膜上皮癌、恶性葡萄胎、膀胱癌、肺癌、皮肤癌、头颈部癌。

7. 顺铂

【药理作用】本品为铂的金属络合物,作用似烷化剂,主要作用靶点为 DNA,作用于 DNA 链间及链内交链,形成DDP~DNA 复合物,干扰DNA 复制,或与核蛋白及胞浆蛋白结合。属周期非特

异性药。

【适应证】为治疗多种实体瘤的一线用药。与 VP-16 联合(EP 方案)为治疗 SCLC 或 NSCLC 一线方案,联合MMC、IFO(IMP 方案),或NVB 等方案为目前治疗NSCLC 常用方案,以DDP 为主的

联合化疗亦为晚期卵巢癌、骨肉瘤及神经母细胞瘤的主要治疗方案,与ADM、CTX 等联用对多部位鳞状上皮癌、移行细胞癌有效,如头颈部、宫颈、食管及泌尿系肿瘤等。“PVB”(DDP、VLB

、BLM)可治疗大部分IV 期非精原细胞睾丸癌,缓解率 50%~80%。此外,本品为放疗增敏剂,目前国外广泛用于 IV 期不能手术的NSCLC 的局部放疗,可提高疗效及改善生存期。

8.卡铂

【药理作用】本品为周期非特异性抗癌药,直接作用于 DNA,主要与细胞 DNA 的链间及链内交联,破坏DNA 而抑制肿瘤的生长。【适应证】主要用于卵巢癌、小细胞肺癌、非小细胞肺癌、头颈部鳞癌、食管癌、精原细胞瘤、膀胱癌、间皮瘤等。

9. 奥沙利铂

【药理作用】本品出现铂类化合物的一般毒性反应。出现种属特异的心脏毒性。本品未出现顺铂的肾脏毒性,亦无卡铂的骨髓毒性。本品属于新的铂类衍生物,本品通过产生烷化结合物作

用于DNA,形成链内和链间交联,从而抑制DNA 的合成及复制。本品与DNA 结合迅速,最多需15 分钟,而顺铂与DNA 的结合分为两个时相,其中包括一个48 小时后的延迟相。在人体内给药

一小时之后,通过测定白细胞的加合物,可显示其存在。复制过程中的DNA 合成,其后DNA 的分离、RNA 及细胞蛋白质的合成均被抑制,某些对顺铂耐药的细胞系,本品治疗有效。

【适应证】用于经氟脲嘧啶治疗失败后的结直肠癌转移的患者,可单独或联合氟尿嘧啶使用。

10. 卡培他滨

【药理作用】正常细胞和肿瘤细胞都能将 5-FU 代谢为 5-氟-2-脱氧尿苷酸单磷酸 (FdUMP)和 5-氟尿苷三磷酸(FUTP)。这些代谢产物通过二种不同机制引起细胞损伤。首先,FdUMP 及叶酸

协同因子N5,10-亚甲基四氢叶酸与胸苷酸合成酶(TS)结合形成共价结合的三重复合物。这种结合抑制2’-脱氧尿[嘧啶核]苷酸形

成胸核苷酸。胸核苷酸是胸腺嘧啶核苷三磷酸必需的前体,

而后者是DNA 合成所必需的,因此该化合物的不足能抑制细胞分裂。其次,在RNA 合成过程中核转录酶可能会在尿苷三磷酸(UTP)的部位错误地编入FUTP。这种代谢错误将会干扰RNA 的加工

处理和蛋白质的合成。

【适应证】主要用于晚期乳腺癌、大肠癌,及紫杉醇和蒽环类化疗方案治疗无效的晚期原发性或转移性乳腺癌的进一步治疗。适用于不能手术的晚期或者转移性胃癌的一线治疗,适用于结

肠癌辅助化疗,适用于结肠直肠癌的化疗、乳腺癌单药化疗或者联合化疗。

11. 雷替曲塞

【药理作用】新一代水溶性胸苷酸合酶抑制剂,能在细胞内潴留,长时间发挥作用,它对结肠直肠癌细胞系的抑制作用强于 5-氟尿嘧啶。药通过细胞膜外还原型叶酸盐载体系统将本品主

动摄入细胞内,而后迅速代谢为多谷氨酸类化合物抑制胸苷酸合酶的活性,并能在细胞内潴留,长时间发挥作用。

【适应证】临床用于晚期直肠结肠癌的一线治疗。

12. 阿糖胞苷

【药理作用】本品为主要作用于细胞S 增殖期的嘧啶类抗代谢药物,通过抑制细胞DNA 的合成,干扰细胞的增殖。阿糖胞苷进入人体后经激酶磷酸化后转为阿糖胞苷三磷酸及阿糖胞苷二磷

酸,前者能强有力地抑制DNA 聚合酶的合成,后者能抑制二磷酸

胞苷转变为二磷酸脱氧胞苷,从而抑制细胞DNA 聚合及合成。本品为细胞周期特异性药物,对处于S 增殖期细胞的作用最为

敏感,对抑制RNA 及蛋白质合成的作用较弱。

【适应证】适用于急性白血病的诱导缓解期及维持巩固期。对急性非淋巴细胞性白血病效果较好,对慢性粒细胞白血病的急变期,恶性淋巴瘤。

13. 吉西他滨

【药理作用】本品是一种破坏细胞复制的二氟核苷类抗代谢物抗癌药,是去氧胞苷的水溶性类似物,对核糖核苷酸还原酶是一种抑制性的酶作用物的替代物,这种酶在DNA 合成和修复过程

中,对所需要的脱氧核苷酸的生成是至关重要的。

【适应证】用于胰腺癌、非小细胞肺癌、乳腺癌、卵巢癌、膀胱癌,用于抗天花病毒处临床前。

14. 培美曲塞

【药理作用】抗叶酸代谢药物,它通过干扰细胞复制过程中叶酸依赖性代谢过程而发挥作用。体外试验可以抑制胸苷酸合成酶、二氢叶酸还原酶、甘氨酸核糖核苷甲酰基转移酶等叶酸依赖

性酶,这些酶参与胸腺嘧啶核苷和嘌呤核苷的生物合成。

【适应证】联合顺铂用于治疗不可切除的恶性胸膜间皮瘤。

15. 羟基脲

【药理作用】周期特异性药物,选择性杀灭 S 期细胞。本品是一种核苷二磷酸还原酶抑制剂,可阻止核苷酸还原为脱氧核苷酸,干

扰嘌呤及嘧啶碱基生物合成,选择性地阻碍 DNA 合成

,对RNA 及蛋白质合成无阻断作用。

【适应证】要用于慢性粒细胞性白血病,转移性黑色素瘤,可作为同步化药物提高肿瘤对放化疗的敏感性。

16. 6-巯嘌呤

【药理作用】6-MP 的化学结构与次黄嘌呤相似,唯一不同的是分子中6 位C 上由巯基取代了羟基。6-MP 通过竞争性抑制次黄嘌呤-鸟嘌呤磷酸核糖转移酶,使PRPP 分子中的磷酸核糖不能

向鸟嘌呤及次黄嘌呤转移,阻断嘌呤核苷酸的补救合成途径。6-MP 可在体内经磷酸核糖化而生成6-MP 核苷酸,并以这种形式抑制IMP 转变为AMP 及GMP 的反应。由于6-MP 核苷酸结构与

IMP 相似,还可以反馈抑制PRPP 酰胺转移酶而干扰磷酸核糖胺的形成,从而阻断嘌呤核苷酸的从头合成。

【适应证】急性白血病、绒毛膜癌和恶性葡萄胎有效。

17.阿霉素(ADM)

【药理作用】干扰转录过程,抑制 RNA 的合成也抑制 DNA 的合成,对细胞周期各阶段均有作用。

【适应证】广谱抗肿瘤抗生素,对急性白血病、淋巴瘤、乳腺癌、肺癌及多种其他实体肿瘤均有效。

18.柔红霉素

【药理作用】本品为第一代蒽环类抗肿瘤抗生素。其作用机制酷似阿霉素。作为一种周期非特异性化疗药,柔红霉素的抗瘤谱远

较阿霉素为窄,对实体瘤疗效大不如阿霉素和表阿霉素。

【适应证】主要用于对常用抗肿瘤药耐药的急性淋巴细胞或粒细胞白血病,缓解期短,需与其他药物合并应用。

19. 吡柔比星

【药理作用】作用机制酷似阿霉素。

【适应证】用于头颈部癌、乳腺癌、膀胱癌、输尿管癌、肾盂癌、卵巢癌、宫颈癌、恶 8 性淋巴瘤和急性白血病等。

20. 羟喜树碱(HCPT)

【药理作用】喜树碱的羟基衍生物,抑制拓扑异构酶 I,主要作用于 DNA 合成期,对多种动物肿瘤有抑制作用。

【适应证】抗瘤谱较广,与常用抗肿瘤药物无交叉耐药性。

21. 伊立替康

【药理作用】伊立替康是喜树碱的半合成衍生物。喜树碱可特异性地与拓扑异构酶 I 结合,后者诱导可逆性单链断裂,从而使DNA 双链结构解旋;伊立替康及其活性代谢物SN -38 可与拓扑异

构酶 I-DNA 复合物结合,从而阻止断裂单链的再连接。现有研究提示,伊立替康的细胞毒作用归因于DNA 合成过程中,复制酶与拓扑异构酶I-DNA 一伊立替康 (或 SN-38)三联复合物相互作

用,从而引起 DNA 双链断裂。哺乳动物细胞不能有效地修复这种DNA 双链断裂。

【适应证】用于晚期大肠癌患者的治疗。与 5-氟尿嘧啶和亚叶酸联合治疗既往未接受化疗的晚期大肠癌患者,或作为单一用药,

治疗经含5-氟尿嘧啶化疗方案治疗失败的患者。

22.拓扑替康

【药理作用】本药为拓扑异构酶Ⅰ的抑制剂。拓扑异构酶Ⅰ可诱导DNA 单链可逆性断裂,使 DNA 螺旋链松解,本药可与拓扑异构酶Ⅰ-DNA 复合物结合并阻止这些单股断链的重新连接,其

细胞毒作用是在DNA 的合成中,是S 期细胞周期特异性药物。【适应证】对化疗敏感,一线化疗失败的小细胞肺癌病人。

23. 长春新碱

【药理作用】作于微管蛋白,干扰蛋白质代谢,抑制RNA 多聚酶的活性,抑制细胞膜类脂质的合成和氨基酸在细胞膜的运转。【适应证】用于恶性淋巴瘤、急慢性白血病、小细胞肺癌及乳腺癌,也用于卵巢癌、睾丸肿瘤、消化道癌及恶性黑色素瘤等。

24. 长春地辛

【药理作用】抗瘤谱较广,与长春碱和长春新碱无交叉耐药性。作用机制与长春新碱相似。

【适应证】抗瘤谱较广,与长春碱和长春新碱无交叉耐药性。用于肺癌、恶性淋巴瘤、食管癌、乳腺癌、恶性黑色素瘤等。对白血病、头颈部癌、生殖细胞肿瘤和软组织肉瘤也有一定疗效

25. 长春瑞滨

【药理作用】作用机制与长春新碱相似。

【适应证】主要用于非小细胞肺癌、乳腺癌、卵巢癌、淋巴瘤等。

26.紫杉醇

【药理作用】本品是新型抗微管药物,通过促进微管蛋白聚合抑制解聚,保持微管蛋白稳定,抑制细胞有丝分裂。体外实验证明紫杉醇具有显着的放射增敏作用,可能是使细胞中止于对放疗

敏感的G2 和M期。

【适应证】用于卵巢癌、乳腺癌、非小细胞肺癌。对头颈部癌、食管癌、胃癌等也有一定的疗效。

27. 多西紫杉醇

【药理作用】促进小管聚合成稳定的微管并抑制其解聚,使小管的数量显着减少,并可破坏微管网状结构。在细胞内浓度高,且潴留时间长。

【适应证】用于晚期乳腺癌、卵巢癌、非小细胞肺癌,对头颈部癌、胃癌、小细胞肺癌、胰腺癌、黑色素瘤、软组织肉瘤也有一定的疗效。

28. 托瑞米芬

【药理作用】绝经后乳癌患者应用托瑞米芬后引致血清总胆固醇和低密度脂蛋白(LDL) 中度下降。枸橼酸托瑞米芬与雌激素竞争性地与乳腺癌细胞浆内雌激素受体相结合,阻止雌激素诱导的

癌细胞DNA 的合成及增殖。一些试验性肿瘤应用大剂量枸橼酸托瑞米芬,显示出枸橼酸托瑞米芬有非雌激素依赖的抗肿瘤作用。枸橼酸托瑞米芬的抗乳腺癌作用主要是抗雌激素作用,还可能

有其它抗癌机制(改变肿瘤基因表达、分泌生长因子、诱导细胞凋

亡及影响细胞动力学周期)。

【适应证】适用于治疗绝经后妇女雌激素受体阳性/或不详的转移性乳腺癌。

29.他莫昔芬

【药理作用】该药为雌二醇竞争性拮抗剂,能与乳腺细胞的雌激素受体结合,不刺激转录或作用微弱。药物-受体复合物不易解离,组织受体的循环应用,也是作用机制之一。他莫昔芬能上

调转化生长因子β 生成,此因子减少与恶性肿瘤的发展有关。还对蛋白激酶 C 有特异性抑制作用。这些作用都对依赖雌激素才能继续生长的肿瘤细胞有抑制作用。

【适应证】多用于绝经期前雌激素(ER+)和孕激素受体(PR+)呈进行性发展的乳癌的治疗。他莫昔芬对血浆脂代谢、子宫内膜和骨的作用则仍是雌激素性质,不呈拮抗作用。他莫昔芬的抗骨

质疏松作用也可能与上调转化生长因子β 有关,因为此因子能够控制成骨细胞和破骨细胞间的平衡。

30. 雷洛昔芬

【药理作用】选择性雌激素受体调节剂( SERM)。作为一种选择性雌激素受体调节剂 ( SERM ),雷洛昔芬对雌激素作用的组织有选择性的激动或拮抗活性。它是一种对骨骼和部分对胆固醇

代谢(降低总胆固醇和 LDL- 胆固醇)的激动剂,但对下丘脑、子宫和乳腺组织无作用。

【适应证】目前正在研究雷洛昔芬可能具有的预防和治疗乳腺癌的

作用。

31. 依西美坦

【药理作用】乳腺癌细胞的生长可依赖于雌激素的存在,女性绝经期后循环中的雌激素 (雌酮和雌二醇)主要由外周组织中的芳香酶将肾上腺和卵巢中的雄激素(雄烯二酮和睾酮) 转化而来。

通过抑制芳香酶来阻止雌激素生成是一种有效的选择性治疗绝经后激素依赖性乳腺癌的方法。依西美坦为一种不可逆性甾体芳香酶灭活剂,结构上与该酶的自然底物雄烯二酮相似,为芳香

酶的伪底物,可通过不可逆地与该酶的活性位点结合而使其失活(该作用也称"自毁性抑制"),从而明显降低绝经妇女血液循环中的雌激素水平,但对肾上腺中皮质类固醇和醛固醇的生物合

成无明显影响。在高于抑制芳香酶作用浓度的600 倍时,对类固醇生成途径中的其他酶不产生明显影响。

【适应证】绝经后妇女激素依赖型乳腺癌。

32. 来曲唑

【药理作用】来曲唑是新一代代芳香化酶抑制剂,为人工合成的苄三唑类衍生物,来曲唑通过抑制芳香化酶,使雌激素水平下降,从而消除雌激素对肿瘤生长的刺激作用。体内外研究显示

,来曲唑能有效抑制雄激素向雌激素转化。

【适应证】绝经后晚期乳腺癌,多用于抗雌激素治疗失败后的二线治疗。

33.比卡鲁胺

【药理作用】康士得属于非甾体类抗雄激素药物,没有其它激素的作用,它与雄激素受体结合而使其无有效的基因表达,从而抑制了雄激素的刺激,导致前列腺肿瘤的萎缩。康士得是消旋

物,其抗雄激素作用仅仅出现在(R)-结构对应体上。

【适应证】与黄体生成素释放激素(LHRH)类似物或外科睾丸切除术联合应用于晚期前列腺癌的治疗。

34. 贝伐单抗

【药理作用】贝伐单抗(商品名阿瓦斯汀)是一种重组的人类单克隆IgG1 抗体,通过抑制人类血管内皮生长因子的生物学活性而起作用。也就是说阿瓦斯汀可结合 VEGF 并防止其与内皮细

胞表面的受体(Flt-1 和KDR)结合。在体外血管生成模型上,VEGF 与其相应的受体结合可导致内皮细胞增殖和新生血管形成。在接种了结肠癌的裸(无胸腺)鼠模型上,使用阿瓦斯汀可减少

微血管生成并抑制转移病灶进展。

【适应证】适用于NSCLC、转移性结直肠癌。

35. 西妥昔单抗

【药理作用】本品可与表达于正常细胞和多种癌细胞表面的 EGF 受体特异性结合,并竞争性阻断EGF 和其他配体,如α 转化生长因子(TGF-α)的结合。本品是针对EGF 受体的 IgG1 单克

隆抗体,两者特异性结合后,通过对与 EGF 受体结合的酪氨酸激酶(TK)的抑制作用,阻断细胞内信号转导途径,从而抑制癌细胞的增殖,诱导癌细胞的凋亡,减少基质金属蛋白酶和血管内

皮生长因子的产生。

【适应证】适用于NSCLC、转移性结直肠癌。

36. 曲妥珠单抗

【药理作用】曲妥珠单抗(赫赛汀)在体外及动物实验中均显示可抑制HER2 过度表达 12 的肿瘤细胞的增殖。另外,曲妥珠单抗是抗体依赖的细胞介导的细胞毒反应(ADCC)的潜在介质。在体

外研究中,曲妥珠单抗介导的 ADCC 被证明在HER2 过度表达的癌细胞中比 HER2 非过度表达的癌细胞中更优先产生。

【适应证】适用于治疗HER2 过度表达的转移性乳腺癌 :作为单一药物治疗已接受过 1 个或多个化疗方案的转移性乳腺癌 ;与紫杉类药物合用治疗未接受过化疗的转移性乳腺癌。

37. 利妥昔单抗

【药理作用】大约 90%的非霍奇金淋巴瘤是由不正常的 B 细胞引起的。传统的非霍奇金淋巴瘤治疗方式除了破坏肿瘤细胞,还会损伤身体中的健康组织,而美罗华?只特异性针对B 细胞。

利妥昔单抗(美罗华)与正常的和恶性的 B 细胞表面粘合,通过这种粘合,来帮助人体的免疫系统识别并杀死癌细胞。

【适应证】复发或化疗抵抗性B 淋巴细胞型的非霍奇金淋巴瘤的病人。

38. 伊莫单抗

【药理作用】伊莫单抗(泽娃灵)由放射性同位素钇90 和CD20 单抗组成,与其他放射性同位素相比,钇90 放射纯β 射线,具有

更强的射线能量。同时由于钇90 不产生γ 射线,对医护人

员及患者家属非常安全,因此FDA 批准Zevalin?可用于门诊病人,并无需隔离防护。

【适应证】于难治复发 B 细胞非霍奇金淋巴瘤的治疗。 39. 尼妥珠单抗

【药理作用】EGFR 在多种实体瘤中过度表达,如头颈癌、肺癌、结直肠癌中,都存在 EGFR 过度表达现象。EGFR 的过度表达与肿瘤的高侵袭力、高转移性及不良预后高度相关。泰欣生(尼

妥珠单抗,Nimotuzumab),是全球第一个以表皮生长因子受体(EGFR)为靶点的单抗药物,中国第一个治疗恶性肿瘤的人源化单克隆抗体。泰欣生能够竞争性结合EGFR,阻断由 EGFR 与其介

导的下游信号转导通路,从而抑制肿瘤细胞增殖、诱导分化、促进细胞凋亡、抑制肿瘤血管生成、增强放化疗疗效。

【适应证】鼻咽癌、头颈部肿瘤、神经胶质瘤、结直肠癌、胰腺癌、食管癌、肝癌、非小细胞肺癌等实体瘤。

40. 阿伦珠单抗

【药理作用】阿伦珠单抗(Campath)识别表达于正常与异常B 淋巴细胞的CD52 抗原。

【适应证】用以治疗 B 细胞恶性肿瘤,对 NHL 有效;对复发性慢性淋巴细胞白血病 (CLL),即使对嘌岭类药物无效者,亦可诱导出分子缓解。

41. 托西莫单抗

【药理作用】托西莫单抗(百克沙)通过放射性碘131 以Tositumaomab 抗体为载体,与NHL 癌变的B-淋巴细胞表面特有白蛋白CD-20 结合。放射性碘 131 杀死癌细胞。

【适应证】化疗无效,CD20 阳性,分化低的非霍奇金淋巴瘤。

42. 依决洛单抗

【药理作用】依决洛单抗是鼠源性的IgG2a 单克隆抗体,靶向结合表达于上皮细胞表面的细胞粘附分子糖蛋白17-1A。依决洛单抗通过CDC 及ADCC 效应导致靶细胞死亡。

【适应证】结肠癌、直肠癌、乳腺癌、非小细胞肺癌及前列腺癌。

43. 帕尼单抗

【药理作用】EGFR 在正常情况下可帮助调节人体内细胞的生长,但其也会刺激癌细胞生长。EGFR 存在于癌细胞的表面,当体内出现蛋白质与EGFR 相结合时,EGFR 会被激活,如表皮生长

因子(EGF)或转化生长因子a(TGF-alpha)。结合改变了EGFR 的形态,刺激肿瘤细胞的生长。Panitumumab 与 EGFR 相结合,可阻止其与 EGF 或 TGF-alpha 结合,从而阻断癌细胞生长。

【适应证】结直肠癌。

44. 吉非替尼

【药理作用】(1)竞争EGFR-TK 催化区域上Mg-ATP 结合位点,阻断其信号传递;(2) 抑制有丝分裂原活化蛋白激酶的活化,促进细胞凋亡;(3)抑制肿瘤血管生成。

【适应证】临床主要用于治疗既往接受过化学治疗的局部晚期或

转移性非小细胞肺癌,尤其对肺腺癌疗效确切,对鳞癌的疗效较腺癌和肺泡癌的低,但临床大量资料表明:根据肺癌患者的

实际情况选用易瑞沙(吉非替尼)治疗后,仍有部分肺鳞癌和其它非小细胞肺癌的患者效果比较明显,且具有良好的耐受性。

45. 厄洛替尼

【药理作用】厄洛替尼(特罗凯)的作用途径与化疗不同,是一种靶向治疗药物,可特异性地针对肿瘤细胞作用,抑制肿瘤的形成和生长。它是一种小分子化合物,可抑制人表皮生长因子受

体(EGFR)的信号传导途径;是表皮生长因子(又可称 HER1)信号传导通路的关键组分,在多种肿瘤细胞的形成及生长中都扮演了重要的角色。特罗凯的通过抑制酪氨酸激酶的活性的方式来抑

制肿瘤生长,酪氨酸激酶是EGFR 细胞内的重要组成部分之一。【适应证】特罗凯用于两个或两个以上化疗方案失败的局部晚期或转移的非小细胞肺癌的三线治疗。一线治疗晚期非小细胞肺癌时需检测 EGFR 突变情况,有突变可以使用。特罗凯联合吉

西他滨治疗进展性胰腺癌。

46. 拉帕替尼

【药理作用】拉帕替尼是小分子 4-苯胺基喹唑啉类受体酪氨酸激酶抑制剂,抑制表皮生长因子受体(ErbB1)和人表皮因子受体2(ErbB2)。4 种乳腺癌细胞株中BT474 和 SKBr3 对拉帕替尼敏感,半抑制浓度为25 和32 nmol/L,MDA-MB-468 和T47D 细胞株不敏感,半抑制浓度在微摩尔级别级别,对于膀胱癌的2 种细胞

株,RT112(ErbB1 和ErbB2 高度表达)和 J82(ErbB1 和

ErbB2 低度表达),增强顺铂的疗效。在多种动物均能抑制表皮因子驱动的肿瘤生长。拉帕替尼对曲妥单抗耐药的肿瘤细胞株有效。【适应证】主要用于联合卡培他滨治疗ErbB-2 过度表达的,既往接受过包括蒽环类,紫杉醇,曲妥珠单抗(赫赛汀)治疗的晚期或转移性乳腺癌.服用时需注意不良反应。

47.伊马替尼

【药理作用】伊马替尼(格列卫)竞争性抑制三磷酸腺苷(ATP)与胸苷激酶(TK)受体如KIT 的结合位点,阻滞TK 磷酸化,从而抑制信号传导,并可抑制与激酶活性相关的KIT 突变(引起KIT 受

体活化)和野生型的KIT。其作用靶位主要有 3 种:Abelson(ABL)蛋白、 KIT 蛋白和血小板衍生生长因子(PDGF)受体。伊马替尼可通过功能获得性KIT 突变引起不依赖干细胞因子的激活作用来

减少来自GIST 的细胞系(GIST882)的激酶磷酸化,当浓度达到1umol/L 时,可完全抑制激酶磷酸化。

【适应证】用于治疗慢性髓性白血病和恶性胃肠道间质肿瘤。

48. 索拉菲尼

【药理作用】索拉非尼(多吉美)是多种激酶抑制剂,在体外可抑制肿瘤细胞增殖。索拉非尼抑制肿瘤细胞增殖,包括小鼠肾细胞癌、RENCA 模型和无胸腺小鼠移植多种人肿瘤模型,并抑制

肿瘤血管生成。

【适应证】治疗不能手术的晚期肾细胞癌。治疗无法手术或远处

抗肿瘤药物的作用机制

抗肿瘤药物的作用机制 1.细胞生物学机制 几乎所有的肿瘤细胞都具有一个共同的特点,即与细胞增殖有关的基因被开启或激活,而与细胞分化有关的基因被关闭或抑制,从而使肿瘤细胞表现为不受机体约束的无限增殖状态。从细胞生物学角度,诱导肿瘤细胞分化,抑制肿瘤细胞增殖或者导致肿瘤细胞死亡的药物均可发挥抗肿瘤作用。 2.生化作用机制 (1)影响核酸生物合成:①阻止叶酸辅酶形成;②阻止嘌呤类核苷酸形成;③阻止嘧啶类核苷酸形成;④阻止核苷酸聚合;(2)破坏DNA结构和功能;(3)抑制转录过程阻止RNA 合成;(4)影响蛋白质合成与功能:影响纺锤丝形成;干扰核蛋白体功能;干扰氨基酸供应;(5)影响体内激素平衡。 烷化剂烷化剂可以进一步分为: 氮芥类:均有活跃的双氯乙基集团,比较重要的有氮芥、苯丁酸氮芥、环磷酰胺(CTX)、异环磷酰胺(IFO)等。其中环磷酰胺为潜伏化药物需要活化才能起作用。目前临床广泛用于治疗淋巴瘤、白血病、多发性骨髓瘤,对乳腺癌、肺癌等也有一定的疗效。 该药除具有骨髓抑制、脱发、消化道反应,还可以引起充血性膀胱炎,病人出现血尿,临床在使用此药时应鼓励病人多饮水,达到水化利尿,减少充血性膀胱炎的发生。还可以配合应用尿路保护剂美斯纳。 亚硝脲类:最早的结构是N-甲基亚硝脲(MNU)。以后,合成了加入氯乙集团的系列化合物,其中临床有效的有ACNU、BCNU、CCNU、甲基CCNU等,链氮霉素均曾进入临床,但目前已不用。其中ACNU、BCNU、CCNU、能通过血脑屏障,临床用于脑瘤及颅内转移瘤的治疗。主要不良反应是消化道反应及迟发性的骨髓抑制,应注意对血象`的观测,及时发现给予处理。 乙烯亚胺类:在研究氮芥作用的过程中,发现氮芥是以乙烯亚胺形式发挥烷化作用的,因此,合成了2,4,6-三乙烯亚胺三嗪化合物(TEM),并证明在临床具有抗肿瘤效应,但目前在临床应用的只有塞替派。此药用于治疗卵巢癌、乳腺癌、膀胱癌,不良反应主要为骨髓抑制,注意对血象定期监测。 甲烷磺酸酯类:为根据交叉键联系之复合成的系列化合物,目前临床常用的只有白消安(马利兰)。临床上主要用于慢性粒细胞白血病,主要不良反应是消化道反应及骨髓抑制,个别病人可引起纤维化为严重的不良反应。遇到这种情况应立即停药,更换其它药物。 其他:具有烷化作用的有达卡巴嗪(DTIC)、甲基苄肼(PCZ)六甲嘧胺(HHN)等。环氧化合物,由于严重不良反应目前已被淘汰。 抗代谢药物抗代谢类药物作用于核酸合成过程中不同的环节,按其作用可分为以下几类药物: 胸苷酸合成酶抑制剂:氟尿嘧啶(5-FU)、呋喃氟尿嘧啶(FT-207)、二喃氟啶(双呋啶FD-1)、优氟泰(UFT)、氟铁龙(5-DFUR)。 抗肿瘤作用主要由于其代谢活化物氟尿嘧啶脱氧核苷酸干扰了脱氧尿嘧啶苷酸向脱氧胸腺嘧啶核苷酸转变,因而影响了DNA的合成,经过四十年的临床应用,成为临床上常用的抗肿瘤药物,成为治疗肺癌、乳腺癌、消化道癌症的基本药物。 不良反应比较迟缓,用药6-7天出现消化道粘膜损伤,例如:口腔溃疡、食欲不振、恶心、呕吐、腹泻等,一周以后引起骨髓抑制。而连续96小时以上粘腺炎则成为其主要毒性反应。临床上如长时间连续点滴此类药物应做好病人的口腔护理,教会病人自己学会口腔清洁的方法,预防严重的粘膜炎发生。

肿瘤药物的分类及作用机制

肿瘤药物地分类及作用机制 烷化剂 氮芥类:氮芥、苯丁酸氮芥、环磷酰胺()、异环磷酰胺() 目前广泛用于治疗淋巴瘤、白血病、多发性骨髓瘤、对乳腺癌、肺癌有一定地疗效. 副作用:骨髓以致、脱发、消化道反应,可引起出血性膀胱癌,故使用此药时应鼓励患者多饮水. 抗代谢药物 胸苷酸合成酶抑制剂:氟尿嘧啶又称(我科代表使用). 不良反应:用药天出现消化道黏膜损伤.例如口腔溃疡、食欲减退、恶心、呕吐、腹泻等,一周后引起骨髓抑制.个人收集整理勿做商业用途 临床上比如我科恶性葡萄胎、长时间连续点滴此类药物应做好患者地口腔护理,指导患者口腔清洁地方法,预防严重地口腔黏膜炎发生.个人收集整理勿做商业用途 二氢叶酸还原酶抑制剂:甲氨蝶呤() 一般用甲酰四氢叶酸()解除地毒性. 不良反应:口腔炎、溃疡性胃炎、出血性肠炎甚至肠穿孔而死亡. 抗肿瘤抗生素 我科常用药物:放线菌素、博莱霉素、红霉素 红霉素:心脏毒性、骨髓抑制 此药外渗引起组织溃疡坏死.临床上使用时注意静脉地选择,加药时护士要守侯床旁,保证药物顺利输入,发现药物外渗时,及时拔针,给予局部封闭,金黄散中药外敷,预防组织坏死.个人收集整理勿做商业用途 放线菌素:用药注意事项同上. 博莱霉素:可引起皮肤反应,表现为色素沉着,皮炎、角化增厚、皮疹.还可引起肺组织地纤维化,用药期间应注意检查肺部.本药临床上可致高热,用药前一般前分钟口服消炎痛可缓解.个人收集整理勿做商业用途 抗肿瘤植物药 . 长春新碱和紫杉醇 长春新碱:不良反应为血液毒性、消化道反应、恶心、呕吐、周围神经毒性,表现为之间麻木、四肢疼痛、肌肉震颤.个人收集整理勿做商业用途紫杉醇:过敏反应,用药前询问过敏史.用药时应预防过敏反应地发生,使用中慢滴小时,同时监测生命体征,发现过敏反应应立即停药,静脉输入紫杉醇应使用聚丙烯输液管,不可使用聚乙烯输液管.个人收集整理勿做商业用途铂类抗肿瘤药 顺铂,卡铂,奥沙利铂 . 顺铂:消化道反应,肾脏毒性,其次还有骨髓抑制、听毒性均与剂量无关,故用药前先检查肾功能及听力,并注意鼓励患者多饮水或输液强迫利尿.并做好患者地饮食宣教,以少食多餐,清淡饮食为主.个人收集整理勿做商业用途 . 卡铂:髓抑制较重,而且禁用生理盐水,应使用葡萄糖,否则会引起比顺铂更严重地肾脏毒性. 奥沙利铂:外周毒性表现为遇冷痉挛,所以患者在用药一周内禁冷,以防喉挛引起窒息.

常用抗肿瘤药物大全

.抗肿瘤药物大全 15.1.烷化剂 苯丙氨酸氮芥L~Phenylalanine Mustard (D) 【别名】美法仑,爱克兰。Melphalan,Alkeran。【医保】乙 【应用】能进入肿瘤细胞,抑制肿瘤细胞和一切增生迅速的组织如骨髓、淋巴组织的细胞核分裂,适用于多发性骨髓瘤、乳腺癌、卵巢癌、慢性淋巴细胞和粒细胞白血病、恶性淋巴瘤、恶性黑色素瘤、软组织肉瘤、骨肉瘤等。 【用法用量】口服:每日8~10mg/m2,每日1次,连用4~6日,每隔6周重复1次。 【副作用】消化道反应和骨髓抑制。 【规格】片剂:2mgx25片/瓶,¥¥¥。 环磷酰胺Cyclophosphamide (D) 【别名】环磷氮芥。ENDOxAN,CTx。【医保】甲 【应用】在体内被活化,释放出氮芥基,从而抑制肿瘤生长。亦通过杀伤多种免疫细胞而抑制抗体形成,排斥反应,移植物抗宿主反应和迟发性超敏反应。用于恶性淋巴瘤、急、慢性淋巴细胞白血病、多发性骨髓瘤、乳腺癌、晚期肺癌、晚期鼻咽癌、神经母细胞瘤、骨肉瘤及睾丸肿瘤。 【用法用量】口服:50~100mg/次,2~3次/日,1疗程总量10~15g。静注:联盒用药1次500mg/m2,每周1次,连用2次,3~4周为1疗程。 【副作用】骨髓抑制、脱发、胃肠道反应、口腔炎、膀胱炎等。 【注意事项】(1)盒用巴比妥或皮质激素、别嘌醇等肝药酶诱导剂时需注意。(2)肾功能异常慎用。(3)本品代谢物对尿路有刺激,应用时应多喝茶水。 【规格】粉针剂:0.2g/瓶,¥。 异环磷酰胺Ifosfamide (D) 【别名】匹服平。Isofamide,Iphosphamide。【医保】乙 【应用】环磷酰胺同分异构体,对造血系统毒性较环磷酰胺低。用于骨及软组织肉瘤、非小细胞肺癌、乳腺癌、头颈部癌、子宫癌、食管癌。 【用法用量】静滴:常用剂量每次1.2~2.0g/m2,每日1次,连续5日,每3~4周重复1次。 【副作用】同环磷酰胺。 【注意事项】(1)对本品过敏、严重骨髓抑制、肾功能不良、双侧输尿管阻塞者禁用。(2)注意骨髓、肝、肾功能改变情况。(3)本品应与泌尿系统保护剂美司那(见19.解毒药)盒用。 【规格】粉针剂:1.0g/瓶,¥¥¥¥。 甲环亚硝脲MeCCNU 【别名】司莫司丁。Semustine。【医保】甲 【应用】在体内其氯乙基部分使DNA链断裂,RNA及蛋白质受到烷化发挥抗肿瘤作用。用于恶性黑色素瘤、恶性淋巴瘤、脑瘤、肺癌。 【用法用量】口服:单用100~200mg/m2,每6~8周给药1次,亦可36mg/m2 ,1次/周,6周为1疗程。盒用其他药物可75~150mg/m2 ,1次/6周或30mg/m2,1次/周,连给6周。 【副作用】迟发性骨髓抑制,血小板、白细胞减少,亦有恶心、呕吐、食欲下降等胃肠道反应和口腔炎、脱发、肝损等。 【规格】胶囊剂:50mgx5粒/瓶,¥¥¥。 尼莫司汀NIMUSTINE 【别名】丁禾青。【医保】乙 【应用】脑肿瘤、消化道癌(胃癌、肝癌、结肠癌、直肠癌),肺癌、恶性淋巴瘤、慢性白血病等。 【用法用量】通常,本剂按每5mg溶于注射用水1ml的比例溶解下述剂量,供静脉或动脉给药。1.以盐酸尼莫司汀计,按体重给药,1次给2~3mg/kg,其后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。2. 以盐酸尼莫司汀计,将1次量2mg/kg,隔1周给药,2~3次后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。 【副作用】 1.重大不良反应:(1)骨髓抑制:出现白细胞减少、血小板减少、贫血,有时出现出血倾向、骨髓抑制、全血细胞减少等,因此每次给药后至少6周应每周进行周围血象检查,若发现异常应作适当处理。(2)间质性肺炎及肺纤维症:偶出现间质性肺炎及肺纤维症。2.其他不良反应:(1)过敏症:有时出现皮疹,若出现此类过敏症状,应停药。(2)肝脏:有时出现AST、ALT等上升。(3)肾脏:有时出现BUN上升、蛋白尿。(4)消化道:出现食欲不振、恶心、欲吐、呕吐,有时出现口内炎、腹泻等。(5)其他:有时出现全身乏力感、发热、头痛、眩晕、痉挛、脱发、低蛋白血症。禁忌:(1)骨髓功能患者禁用;(2)对本品有严重过敏症既往史患者。 【注意事项】 1.下列患者慎用:(1)肝功能损害患者。(2)合并感染患者。(3)水痘患者。2.会引起迟缓性骨髓功能抑制等严重不良反应,因此每次给药后至少6周应每周进行临床检验(血液检查\肝功能及肾功能检查等),充分观察患者状态。若发现异常应作减量或停药等适当处理。另外,长期用药会加重不良反应呈迁延性推移,因此应慎重给药。3.应充分注意感染症及出血倾向的出现及恶化。4.小儿用药应慎重,尤应注意不良反应的出现。5.小儿及育龄患者用药时,应考虑对性腺的影响。给药途径:不得用于皮下或肌肉注射。7.本品与其他药物配伍有时会发生变化,故应避免与其他药物混盒使用。8.本品溶解后应迅速使用,因遇光易分解,水溶液不稳定。9.静脉内给药时,若药液漏于管外,会引起注射部位硬结及坏死,故应慎重给药以免药液漏于管外。 【规格】粉针剂:25mg/瓶,¥¥¥¥¥。 15.2.抗代谢药 甲氨蝶呤Methotrexate (x)

2015年非小细胞肺癌小分子靶向药物耐药处理共识

2015年非小细胞肺癌小分子靶向药物耐药处理共识 小分子靶向药物是肺癌治疗史上的里程碑事件,但其无可避免的原发性和继发性耐药现象,成为进一步提高靶向药物疗效的瓶颈。2013 年3 月8~9 日,中国抗癌协会肺癌专业委员会和中国抗癌协会临床肿瘤学专业委员会(Chinese Society of Clinical Oncology,CSCO)联合主办了第十届“中国肺癌高峰共识会”,最终形成了非小细胞肺癌(non-small cell lung cancer,NSCLC)小分子靶向药物耐药处理共识[1]。近两年新的研究不断出现,对这一共识有了新的更新 共识一:EGFR 突变型肺癌,建议检测BIM 治疗前应检测EGFR 突变型肺癌的BIM 以判断是否出现原发性耐药。BIM 是BCL-2 蛋白家族成员,是活性最强的促凋亡蛋白之一。表皮生长因子受体(epidermal growth factor receptor,EGFR)酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)通过BIM 上调引起带有EGFR 突变的肺癌细胞的凋亡. 其中编码的BH3(the pro.apoptotic BCL-2 homology domain 3)被称为唯一的促凋亡蛋白。东亚人群中BIM 基因的2 号内含子存在缺失多态性。导致这一人群表达的是缺乏促凋亡活性的BIM 亚型(BH3 缺失),从而引起对EGFR TKI 的原发耐药或削弱TKI 的临床疗效。上海市肺科医院研究发现,12.8% (45/352)的患者缺乏BIM 的多态性,并且其对EGFR 的ORR 为25%,PFS 4.7m,多因素分析显示,BIM 多态性的缺失是EGFR 突变者预后差的一个独立预后因子[2]。韩国的团队也报道原发性耐药患者中有19% 的患者具有BIM 多态性[3]。Wu 等的研究显示,桩蛋白介导细胞内信号调节激酶ERK 活化,可通过BIM 的69 位丝氨酸和Mcl-1 的163 位苏氨酸磷酸化从而调节蛋白的稳定性,下调BCL-2 的表达和上升Mcl-1,从而克服EGFR 的耐药性[4]。 共识二:根据分子标志物的个体化管理策略:对EGFR TKI 耐药的突变型肺癌,建议再活检明确耐药的具体机制 Camidge 将EGFR TKI 耐药分为4 类,包括:①出现耐药突变,如T790M 突变;②旁路激活,如c-MET 扩增;③表型改变,如腺癌向小细胞肺癌转化,上皮细胞向间叶细胞转化(epithelial to mesenchymal transformation,EMT);④下游信号通路激活,如BIM 的多态性导致EGFR-TKI 的原发耐药,通过MAPK1 扩增直接激活下游增殖信号通路产生EGFR-TKI 的获得性耐药[5]。 50% 的耐药机制是EGFR20 号外显子第790 位点上的苏氨酸为蛋氨酸所取代(T790M),从而改变了ATP 的亲和性,导致EGFR TKI 不能有效阻断信号通路而产生耐药。也有一些研究支持T790M 突变具有选择性,经TKI 治疗敏感的克隆被杀灭,而含有T790M 突变的耐

靶向抗肿瘤药物的研究进展

【药学动态】 靶向抗肿瘤药物的研究进展 近年来,随着肿瘤生物学及相关学科的飞速发展,人们逐渐认识到细胞癌变的本质是细胞信号转导通路的失调导致的细胞无限增生,随之而来的是抗肿瘤药物研发理念的重大转变。研发焦点正从传统细胞毒药物向针对肿瘤发生发展过程中众多环节的新药方向发展,这些靶点新药针对正常细胞和肿瘤细胞之间的差异, 可达到高选择性、低毒性的治疗效果,从而克服传统细胞毒药物的选择性差、毒副作用强、易产生耐药性等缺点,为此,肿瘤药物进入了一个崭新的研发阶段。 目前发现的药物靶点主要包括蛋白激酶、细胞周期和凋亡调节因子、法尼基转移酶(FTase)等,现就针对这些靶点的研发药物做一综述。 1、蛋白激酶 蛋白激酶是目前已知的最大的蛋白超家族。蛋白激酶的过度表达可诱发多种肿瘤。蛋白激酶主要包括丝氨酸/苏氨酸激酶和酪氨酸激酶,其中酪氨酸激酶主要与信号通路的转导有关,是细胞信号转导机制的中心。蛋白激酶由于突变或重排,可引起信号转导过程障碍或出现异常,导致细胞生长、分化、代谢和生物学行为异常,引发肿瘤。 研究表明,近80%的致癌基因都含有酪氨酸激酶编码。抑制酪氨酸激酶受体可以有效控制下游信号的磷酸化,从而抑制肿瘤细胞的生长。酪氨酸激酶受体分为表皮生长因子受体(EGFR)、血管内皮细胞生长因子受体(VEGFR)、血小板源生长因子受体(PDGFR)等,针对各种受体的酪氨酸激酶抑制剂目前已开发上市的主要为表皮生长因子受体酪氨酸激酶(EGFR-TK)抑制剂、血管内皮细胞生长因子受体酪氨酸激酶(VEGFR-TK)抑制剂和血小板源生长因子受体酪氨酸激酶(PDGFR-TK)抑制剂等。基于多靶点的酪氨酸激酶抑制剂目前已成为研究重点,具有广阔的发展前景,其中,包括舒尼替尼和索拉芬尼在内的几个上市新药均获得了良好的临床评价结果。 1.1EGFR-TK抑制剂 许多实质性肿瘤均高度表EGFR,EGFR-TK抑制剂是目前抗肿瘤药研发的热点之一。EGFR 家族成员包括EGFR、ErbB2、ErbB3、ErbB4等,其家族受体酪氨酸激酶以单体形式存在,在结构上由胞外区、跨膜区、胞内区3个部分组成,胞外区具有2个半胱氨酸丰富区,胞内区有典型的ATP结合位点和酪氨酸激酶区,其酪氨酸激酶活性在调节细胞增生及分化中起着至关重要的作用。目前已有多个EGFR-TK抑制剂上市,且有不少品种处于研发后期。 1.1.1代表品种 1.1.1.1吉非替尼(易瑞沙) 本品是一种选择性EGFR-TK抑制剂,由阿斯利康公司开发。2002年7月在日本首次上市,用于治疗非小细胞肺癌(NSCLC)。本品也是首个获准上市的EGFR-TK抑制剂,属于苯胺喹钠唑啉化合物(anilinoquinazoline),为小分子靶向抗肿瘤药物。本品最常见不良反应是痤疮样皮疹和腹泻,最严重不良反应是间质性肺病,发生率为3%-5%。目前,本品用于前列腺癌、食管癌、肝细胞癌(HCC)、胰腺癌、膀胱癌、肾细胞癌(RCC)、卵巢癌、头颈部癌、恶性黑色素瘤等多种治疗适应证处于Ⅱ期临床研究阶段。 1.1.1.2厄洛替尼(特罗凯) 本品由OSI制药公司开发,2004年11月在美国首次上市,用于治疗NSCLC。本品为口服小分子EGFR-TK抑制剂,是目前世界上惟一已明确能提高NSCLC患者生存期的靶向药物。

小分子靶向药物简述题库

小分子靶向药物简述 摘要:根据肿瘤细胞中分子的生物学特征与正常细胞中分子生物学特征的区别而研发的药物统称为分子靶向药物,是随着当代分子生物学、细胞生物学的发展产生的高科技药物。靶向药物治疗癌症,不仅效果好,而且副作用要比常规的化疗方法小得多。使用靶向药物的治疗方法称为靶向治疗(targeted therapy)。靶向药物(targeted medicine)是随着当代分子生物学、细胞生物学的发展产生的高科技药物,是目前(2012年)最先进的用于治疗癌症的药物,它通过与癌症发生、肿瘤生长所必需的特定分子靶点的作用来阻止癌细胞的生长。 关键词:药物靶向治疗 正文 一、作用机制 靶向药物与常规化疗药物最大的不同在于其作用机理:常规化疗药物通过对细胞的毒害发挥作用,由于不能准确识别肿瘤细胞,因此在杀灭肿瘤细胞的同时也会殃及正常细胞,所以产生较大的毒副作用。而靶向药物是针对肿瘤基因开发的,它能够识别肿瘤细胞上由肿瘤细胞特有的基因所决定的特征性位点,通过与之结合(或类似的其他机制),阻断肿瘤细胞内控制细胞生长、增殖的信号传导通路,从而杀灭肿瘤细胞、阻止其增殖。由于这样的特点,靶向药物不仅效果好,而且副作用要比常规的化疗方法小得多。使用靶向药物的治疗方法称为“靶向治疗”(targeted therapy)。分子靶向药物通过阻断肿瘤细胞或相关细胞的信号转导,来控制细胞基因表达的改变,而产生抑制或杀死肿瘤细胞。 二,代表药物 1. 具有靶向性的表皮生长因子受体(EGFR)阻断剂,如吉非替尼(Gefitinib,Iressa, 易瑞沙);埃罗替尼(Erlotinib, Tarceva) ZD1839(Iressa)可以增加PDD、CBP、Taxol、Docetaxel及ADM等药物的抑瘤效果,但不增加Gemzar的抑瘤作用;OSI-774(Tarceva, erlotinib)也是一种表皮生长因子受体-酪氨酸激酶( EGFR-TK)拮抗剂,属小分子化合物。2002年9

化疗药物的作用机理

化疗药物的作用机理 抗肿瘤药物种类繁多,其作用机理各不相同,根据药物的作用点不同可以将其作用机理归纳如下。 一、干扰核酸的合成代谢:大多数化疗药物主要是通过阻碍核酸特别是DNA成分的形成和利用,而起到杀伤细胞的作用。这类药物的化学结构和核酸代谢的必需物质相似。 1.抑制脱氧胸苷酸合成酶:阻止胸腺嘧啶核苷酸的合成:氟尿嘧啶、脱氧氟尿苷等药物在体内的衍生物可抑制脱氧胸嘧啶核苷酸合成酶,阻止脱氧脲嘧啶核苷酸的甲基化,从而影响DNA合成。 2.抑制二氢叶酸还原酶:甲氨蝶呤与二氢叶酸还原酶结合,使二氢叶酸不能被还原成四氢叶酸,导致5,10-二甲基四氢叶酸缺乏,使脱氧脲苷酸不能接受来自5,10-二甲基四氢叶酸的碳单位形成脱氧胸苷酸,DNA合成受阻。 3.阻止嘌呤核苷酸合成:巯嘌呤进入体内转变成活性型硫代肌苷酸,抑制磷酸腺苷琥珀酸合成酶和肌苷酸合成酶,阻止肌苷酸(IMP)转变为鸟苷酸和腺苷酸,又可反馈抑制磷酸核糖焦磷酸(PRPP)转变为磷酸核糖胺(PRA),从而影响RNA和DNA合成。 二、直接与DNA作用干扰其复制等功能:氮芥、环磷酰胺、苯丁酸氮芥、白消安、卡莫司汀等烷化剂和博莱霉素、丝裂霉素等抗生素,这类此物具有活泼的烷化基团,能与核酸、蛋白质中的亲核基团(羧基、氨基、巯基、磷酸根等)发生烷化反应,以烷基取代亲核基团中的氢原子,引起DNA双链间或同一链G、G 间发生交叉联结,使核酸、酶等生化物质结构和功能损害,不能参与正常代谢。 三、阻止防锤丝形成,抑制有丝分裂:抗肿瘤植物药如长春碱类和秋水仙碱能与微管蛋白结合,阻止微管蛋白聚合,使防锤丝形成障碍,结果是染色体不能向两极移动,有丝分裂停留于中期,最终细胞核结构异常导致细胞死亡。 四、抑制蛋白质合成:放线菌素D、玫瑰树碱等能嵌入到DNA双螺旋链间形成共价结合,破坏DNA模板功能,阻碍mRNA和蛋白质的合成;L-门冬酰胺酶可将门冬酰胺水解,使肿瘤细胞合成蛋白质的原料L-门冬酰胺缺乏,限制了蛋白质的合成;三尖杉酯碱使核蛋白体分解,抑制蛋白质的合成的起始阶段。 许多学者致力于开发不同作用机理的新药,取得了可喜的成果,相继提出了

CDK激酶抑制剂靶向抗癌药LS-007

CDK激酶抑制剂靶向抗癌药LS-007 发表日期:2013-06-04 打印【中大】【关闭】浏览次数:965 类别:小分子化学药、1.1类国内首创 研究阶段:新药临床前研究 适应症、功能主治:白血病、淋巴癌,肺癌、卵巢癌、结肠癌等 希望合作方式:合作开发/转让 项目简介:目前国际市场上还没有CDK作为靶标的药物出售,进展最快的为处于临床II-III期抗癌药Flavopiridol(美国)和R-roscovitine (英国),CDK9激酶抑制剂创新型抗癌药LS-007具有比Flavopiridol和R-roscovitine更好的综合治疗指数,具有多种明显优势,包括: (1) 对人细胞内转录细胞周期蛋白CDK9 有明显的选择性; (2) 能有效下调人癌细胞里的短半衰期反细胞凋亡基因和蛋白如Mcl-1,BCL-2,XIAP 等的表达,从而导致癌细胞凋亡; (3) 对DNA 无损伤; (4) 对人非癌细胞低毒性,对健康人T 细胞和B 细胞低毒性, 具有优良的治疗窗(见下图); (5) 与临床抗淋巴白血病标准用药氟达拉滨具有协同作用,可消除氟达拉滨的耐药性; (6) 口服生物利用率高,成药性强,抗癌药效高。LS-007将具有极强国际市场竞争力。 该项目已进入全面临床前研究,目标2014年申报并获得临床研究批件,尽快进入临床及产业化阶段。根据我们的研究数据,LS-007的临床成功可能性极大,是具有极强国际竞争力,填补国内空白的1.1类创新型抗癌药物。该药物可用于治疗白血病、淋巴癌,肺癌、卵巢癌、结肠癌等百万以上病人,创造巨大的社会影响力和经济效益。 LS-007及有关化合物己申请了多项专利,已获欧美及中国知识产权保护,可在中国开发、转让和生产此专利药物。

新型抗肿瘤药物临床应用指导原则(2019年版)

新型抗肿瘤药物临床应用 指导原则(2019年版) 为规范新型抗肿瘤药物临床应用,提高肿瘤合理用药水平,保障医疗质量和医疗安全,维护肿瘤患者健康权益,特制定新型抗肿瘤药物临床应用指导原则。本指导原则涉及的新型抗肿瘤药物是指小分子靶向药物和大分子单克隆抗体类药物。 目录 抗肿瘤药物临床应用的基本原则 (2) 一、病理组织学确诊后方可使用 (2) 二、靶点检测后方可使用 (2) 三、严格遵循适应证用药 (5) 四、体现患者治疗价值 (5) 五、特殊情况下的药物合理使用 (6) 六、重视药物相关性不良反应 (7) 抗肿瘤药物临床应用管理 (7) 一、医疗机构建立抗肿瘤药物临床应用管理体系 (7) 二、抗肿瘤药物临床应用实行分级管理 (10) 三、细胞或组织病理学诊断 (11) 四、培训、评估和督查 (12)

抗肿瘤药物临床应用的基本原则 抗肿瘤药物的应用涉及临床多个学科,合理应用抗肿瘤药物是提高疗效、降低不良反应发生率以及合理利用卫生资源的关键。抗肿瘤药物临床应用需考虑药物可及性和患者治疗价值两大要素。抗肿瘤药物临床应用是否合理,基于以下两方面:有无抗肿瘤药物应用指征;选用的品种及给药方案是否适宜。 一、病理组织学确诊后方可使用 只有经组织或细胞学病理确诊、或特殊分子病理诊断成立的恶性肿瘤,才有指征使用抗肿瘤药物。单纯依据患者的临床症状、体征和影像学结果得出临床诊断的肿瘤患者,没有抗肿瘤药物治疗的指征。但是,对于某些难以获取病理诊断的肿瘤,如胰腺癌,其确诊可参照国家相关指南或规范执行。 二、靶点检测后方可使用 现代抗肿瘤药物的一个显著特征,是出现一批针对分子异常特征的药物——即靶向药物。最具代表性的药物是针对表皮生长因子信号通路异常的酪氨酸激酶抑制剂。目前,根据是否需要做靶点检测,可以将常用的小分子靶向药物和大

抗癌药物分类

1.传统抗肿瘤药物 抗恶性肿瘤药物按作用机制分类: 干扰核酸生物合成的药物 ?抗嘌呤药:即嘌呤核苷酸合成抑制剂,如巯嘌呤、硫鸟嘌呤、喷司他丁等。 ?抗嘧啶药:主要靠抑制嘧啶的生物合成而起到抗瘤作用,如:氟尿嘧啶。 ?抗叶酸药:为二氢叶酸还原酶抑制剂,如甲氨蝶呤。 ?核苷酸还原酶抑制剂,如羟基脲。 ?DNA多聚酶抑制剂,如阿糖胞苷。 破坏DNA结构和功能的药物,烷化剂、丝裂霉素、顺铂、丙卡巴肼等可与DNA交叉联结;博莱霉素靠产生自由基破坏DNA结构。 嵌入DNA中干扰转录DNA的药物,如放线菌素类、柔红霉素、阿霉素等。 影响蛋白质合成的药物,如门冬酰胺酶、紫杉醇、秋水仙碱、长春花生物碱类等。 影响体内激素平衡的药物,如雌激素、孕激素和肾上腺皮质激素等。

2.新型抗肿瘤药物 传统抗肿瘤药物都是通过影响DNA 合成和细胞有丝分裂而发挥作用的,这些肿瘤药物的作用比较强,但缺乏选择性,毒副作用也比较大。人们希望能提高抗肿瘤药物的靶向性,高度选择地打击肿瘤细胞而不伤害正常组织。 随着生命科学学科的发展,有关肿瘤发生和发展的生物学机制逐渐被人们所认识,抗肿瘤药物的研究开始走向靶向合理药物设计的研究途径,产生了一些新的高选择性药物。 药物分类及作用机制: 靶向药物。从抗肿瘤药物靶向治疗的角度看,可将其分为三个层次: 第一层次:把药物定向地输入到肿瘤发生的部位,如临床上已采用的介入治疗,这是器官水平的靶向治疗,亦称为被动靶向治疗。 第二个层次:利用肿瘤细胞摄取或代谢等生物学上的特点,将药物定位到要杀伤的肿瘤细胞上,即细胞靶向,它带有主动定向的性质。 如利用瘤细胞抗原性质的差异,制备单克隆抗体与毒素、核素或抗癌物的偶联物,定向地积聚在肿瘤细胞上,进行杀伤,效果较好。 第三个层次:分子靶向,利用瘤细胞与正常细胞之间分子生物学上的差异,包括基因、酶、信号传导、细胞周期、细胞融合、吞饮及代谢上的不同特性,将抗癌药定位到靶细胞的生物大分子或小分子上,抑制肿瘤细胞的生长增殖,最后使其死亡。 血管抑制剂药物的发展。肿瘤生长必须有足够的血液供应,在癌发展和转移的过程中新的血管生长是必要的条件。新的血管生成涉及到多种环节,例如在血管内皮基底膜降解时金属蛋白酶活性增加。血管内皮细胞增殖、重建新生血管及形成新的基底膜时有许多生长调节因子参与,包括纤维生成因子(FGF)、血管内皮细胞生长因子(VEGF)、血小板源性生长

常用药物的药理作用

常用药物的药理作用 15、去甲肾上腺素 1 )兴奋心脏 2)收缩血管 3)升高血压 16、盐酸肾上腺素 1)兴奋心脏 2)对皮肤、粘膜及内脏血管有收缩作用;对骨骼肌及冠状动脉有扩张作用; 3)收缩压、舒张压均可升高 4)松弛支气管平滑肌;使粘膜血管收缩,降低毛细血管通透性,减轻或消除粘膜充血或水肿5)促进肝糖原分解和糖原异生,升高血糖 17、异丙肾上腺素 1)兴奋心脏 2 )舒张血管,使收缩压升高而舒张压下降,脉压增大 3)扩张支气管 4)促进脂肪分解 18、硫酸阿托品 1)抑制腺体分泌 2)扩瞳、升高眼压、调节麻痹 3 )解除平滑肌痉挛 4)解除迷走神经对心脏抑制 5 )扩张血管,改善微循环 6 )解救有机磷酸脂类中毒 19、盐酸利多卡因 1 )局部麻醉 2)抗心律失常 20、尼可刹米 直接兴奋延髓呼吸中枢,提高呼吸中枢对CO2的敏感性;也可刺激颈动脉体化学感受器反射性兴奋呼吸中枢,使呼吸加深加快。 21、洛贝林 通过刺激颈动脉体和主动脉体的化学感受器,反射性兴奋呼吸中枢。 22、间羟胺 1)收缩血管、升高血压作用较去甲肾温和、缓慢而持久 2 )心肌收缩力增强,可使休克患者心排血量增加 3)较少引起心悸和心律失常 4)收缩肾血管作用较弱,较少引起少尿、无尿 23、盐酸多巴胺 1)兴奋心脏 2)大剂量应用时,表现为血管收缩。外周阻力增加,故收缩压和舒张压均升高 3)治疗量时产生排钠利尿作用;大剂量应用时使肾血管明显收缩,肾血流量减少。 24、西地兰 1)正性肌力作用显著加强衰竭心脏的收缩力,增加心排血量,从而解除心衰的症状 2)负性频率作用减慢心率的作用 3)对心肌电生理的影响降低窦房结自律性,减慢房室传导速度,可减慢心房纤颤或心房扑动的心室率

小分子靶向治疗药物简介

化学抗肿瘤药物经过半个多世纪的发展,已经进入靶向治疗药物时代。小分子靶向药物在临床上的应用日益增多,在一些肿瘤类别中已经进入一线用药地位,比如肾癌、慢粒白、多发性骨髓瘤等。本文对小分子靶向治疗药物做一综述。 小分子靶向治疗药物简介 一、受体酪氨酸激酶抑制剂 作为抗肿瘤药物靶点的酪氨酸激酶有两类,一类是受体酪氨酸激酶(RTKs),另一类是非受体酪氨酸激酶(nrRTKs)。 如图2,作为抗肿瘤药物靶点的RTKs是一种生长因子受体,其本质为跨膜蛋白,胞外结构域负责与生长因子结合,胞内结构域含有激酶活性。当RTKs 与生长因子结合后,胞内的激酶活性被激活,继而使底物蛋白的酪氨酸残基磷酸化,被磷酸化的蛋白质再引发多种信号通路的瀑布效应,并进一步引发基因转录,达到调节靶细胞生长与分化的作用。 图2 受体酪氨酸激酶(RTKs)的胞内信号转导途径 按照其结合的生长因子的不同,又可以将RTKs分为多种类型,主要包括表皮生长因子受体家族、血小板衍生因子受体家族、成纤维细胞生长因子受体家族、胰岛素样生长因子受体家族、血管内皮生长因子受体家族。 受体酪氨酸激酶抑制剂: 小分子受体酪氨酸激酶抑制剂(TKI)阻止RTKs酪氨酸激酶功能的激活。当TKI进入肿瘤细胞后,与RTKs在胞内的ATP结合位点结合,从而抑制RTKs 的磷酸化,阻止激酶的激活,阻断受体下游信号通路的传导而发挥抗肿瘤作用。 从作用机制上看,受体酪氨酸激酶抑制剂作用于信号传导途径的最上游,同时阻断多条通路,具有治疗范围广、疗效高的优点。 目前上市的受体酪氨酸激酶抑制剂有两代。第一代为单靶点酪氨酸激酶抑

制剂,如吉非替尼、厄洛替尼。 表已上市的酪氨酸激酶抑制剂 注:EGFR:表皮生长因子受体,属HER家族; VEGFR:血管内皮生长因子; PDGFR:血小板衍生因子; HER2:HER家族的一种受体; Abl-Bcr:一种非受体酪氨酸激酶; Raf:酪氨酸激酶的下游信号通路中的一种蛋白; Flt-3: Src:一种非受体酪氨酸激酶; c-kit: Ret:胶质细胞源性神经营养因子的受体 吉非替尼为EGFR酪氨酸激酶抑制剂,主要用于非小细胞肺癌,对酪氨酸激酶基因编码区突变型肿瘤的有效率高达80%以上。厄洛替尼为EGFR酪氨酸激酶抑制剂,该药对非小细胞肺癌复治患者的有效率为10%左右。 酪氨酸激酶的研发仍然面临着一些很关键的问题,一是耐药性的出现,二是肿瘤通常有一条以上的激酶通路被激活,信号通路存在交叉和代偿。因此,研究人员开发出第二代酪氨酸激酶抑制剂,包括:凡德他尼、达沙替尼、舒尼替尼、拉帕替尼、达沙替尼和尼洛替尼,它们对伊马替尼耐药的白血病有一定

常用抗肿瘤药物配置方法一览表(2)

常用抗肿瘤药物配置方法一览表(2) 序名称储藏溶解溶解后稀释使用方法及注意事项 23长春地辛遮光,0.9% NaCI6h内使用5%GS 或0.9%NaCI只可静脉注射(缓慢)及静滴(6~12小时),不能肌注、皮下及鞘内注射。 (西艾克,2~10C500~1000ml静注时如果外漏,立即停止用药,用大量生理盐水冲洗,1%普鲁卡因局部VDS) 封闭,温湿敷或冷敷。 24长春瑞宾遮光,5% GS 或0.9% 5%GS 或0.9%NaCI24 h内室温下储存。 (诺维本,2~8C NaCI125ml,浓度为可静注(6~10分钟内)或静滴(15~20分钟内);给药后用至少75~125ml NVB) 浓度为0.5~2.0 mg/ml0.9%NS、GNS、GS、林格氏液等冲洗:禁止鞘内注射。 1.5~3.0mg /ml静注时如果外漏,立即停止给药并在另一静脉重新开始将剩下的药品注射 完毕。 不可使用碱性药物稀释本品,以免产生沉淀。 25羟基喜树碱遮光0.9 %NaCl可静注(缓慢)、肝动脉给药、动脉滴注、膀胱灌注。 (HCPT)本品不宜用GS等酸性药液溶解。 26伊立替康遮光40mg/2ml12h室温5%GS 或0.9%NaCI静滴(30~90分钟内完成)。 (开普拓)24h冷藏250ml 27拓扑替康遮光1mg/ml注射用5%GS 或0.9%NaCI24h内室温下储存,静滴(不少于30分钟)。 (和美新)水 28足叶乙甙遮光注射用水、0.9%静滴(不少于30分钟):不宜胸腔、腹腔注射或鞘内注射,不能肌注,静 (依托泊苷,NaCI,浓度为滴时注意不能外漏。 VP-16) 10~20mg/L (在与阿糖胞苷、环磷酰胺、卡氮芥有协冋作用。 5%GS中不稳定) 29替尼泊苷50mg/5ml0.9 % NaCI静滴(1.5~2小时),不能静注。 (鬼臼噻吩浓度为0.5~1mg/ml5%GS稀释后容易产生沉淀,有沉淀不能使用。 苷,卫萌,与肝素配伍禁忌。

载药靶向将成为未来抗肿瘤药物发展的必然趋势

纳米靶向载药系统抗癌药物 将成为未来药物发展的必然趋势【摘要】 文章内容:癌症已经成为威胁人类生命的头号杀手,本文综述及讨论近年来抗癌药物的高速发展以及靶向载药系统的发展趋势。 整理方法:通过中国知网、万方数据库、超星数据库、ScienceDirect、Pubmed、丁香园、蒲公英、生物谷等网站和数据库资源,寻找最具市场前景抗癌药物。 结论:在中国,纳米靶向载药的抗癌药品将是未来数十年内抗癌药物发展的主流和必然方向,是未来医药投资的重点所在。靶向给药系统的稳定性和材料的安全性是未来靶向载药系统药物发展必须解决的问题所在。 【关键词】生物医药;靶向;载药;医药投资;抗癌;靶向抗癌药 【内容】 肿瘤已成为威胁人类生命的头号杀手 据WHO统计,目前全球每年死于癌症的患者已经超过了心脑血管疾病死亡的患者,成为威胁人类生命的头号杀手。全球每年新增癌症患者约1500万人,全球现有癌症患者人数达5000万,每年死于癌症的患者达到850万人。其中中国(包括港、台、澳)每年新增癌症患者约350万人,每年死于癌症的患者达250万人。中国已成为全球肿瘤发病率、死亡率最高的国家。 全球每年癌症的发病率以5%左右的速率递增。随着环境的破坏和不良的生活习惯,这个速度在呈增长趋势。中国(包括港、台、澳)每年癌症的发病率更高,以10%左右的速率递增。由于中国经济快速发展,环境的破坏程度高于全球,癌症发病增长速度高于全球。在中国每分钟有6人被诊断为癌症,癌症患者已经占据世界癌症患者总数的1/4.癌症患者死亡人数占全球的1/3,成为世界抗癌形式最为严峻地区。 目前抗肿瘤药物市场情况分析 尽管癌症已经是人类致死的首要原因,并且癌症的发病率和死亡率都呈现上升趋势,但是医学的进展和新药的上市,已给我们带来了曙光,在完善抗肿瘤临床用药结构的同时,也推动了全球抗肿瘤药品市场的快速发展。肿瘤学的进展已使1/3的癌症患者有根治的希望,高昂的治疗费用,也为癌症药品市场带来了极大的发展,据统计2007年

常见抗肿瘤药物及医院

癌症种类 1:头颈部癌症:头颈癌,甲状腺肿瘤,鼻咽癌,脑膜瘤,听神经瘤,垂体腺瘤,口腔癌,颅咽管,瘤丘脑和脑干肿瘤,血管源性肿瘤,颅内其他肿瘤,颅内转移瘤;2:呼吸系统癌症:肺癌; 3:消化系统癌症:肝癌,胃癌,食管癌,大肠癌,胰腺癌; 4:泌尿系统癌症:肾肿瘤,膀胱肿瘤,阴茎癌,睾丸肿瘤,前列腺癌; 5:骨骼系统癌症:骨肿瘤 6:血液系统癌症:白血病恶性淋巴瘤,多发性骨髓瘤 7:妇科癌症:乳癌,子宫体癌,卵巢癌,宫颈癌,外阴与阴道癌 8:其他类型癌症:恶性黑色素瘤,皮肤及附件肿瘤,神经胶质瘤 常见肿瘤类型 男性:肺癌、胃癌、肝癌、结肠直肠癌、食道癌和前列腺癌。 女性:乳癌、肺癌、胃癌、结肠直肠癌和子宫颈癌 肿瘤医院 胃癌 1、北京肿瘤医院 2、复旦大学附属肿瘤医院 3、医科院肿瘤医院 4、北京301医院 5、上海中山医院 6、上海长海医院 7、天津市肿瘤医院 8、北京协和医院 结肠癌 1、北京肿瘤医院 2、北京301医院 3、复旦大学附属肿瘤医院 4、上海长海医院 5、医科院肿瘤医院 6、北京协和医院 7、上海瑞金医院 8、辽宁省肿瘤医院淋巴瘤 1、北京肿瘤医院 2、中山大学附属肿瘤医院 3、天津市肿瘤医院 4、医科院肿瘤医院 5、郑州大学一附院 6、复旦大学附属肿瘤医院 7、北京协和医院 8、北京301医院 直肠癌 1、北京肿瘤医院 2、医科院肿瘤医院 3、上海长海医院 4、北京协和医院 5、辽宁省肿瘤医院 6、北京军区总医院 7、中国医科大学附属盛京医院 8、北京301医院 黑色素瘤 1、北京肿瘤医院 2、复旦大学附属肿瘤医院 3、西京医院 4、医科院肿瘤医院 5、上海华山医院 6、武汉协和医院 7、江苏省肿瘤医院 8、解放军304医院乳腺癌 1、天津市肿瘤医院 2、北京肿瘤医院 3、复旦大学附属肿瘤医院 4、医科院肿瘤医院 5、北京协和医院 6、中山大学附属肿瘤医院 7、北京301医院 8、北京307医院

国内小分子抗肿瘤药物自主研发概况(上篇)

【干货】国内小分子抗肿瘤药物自主研发概况(上篇)原创2017-08-28Williamxiang药智网药智网 目录 中国的癌症发病率和死亡率一直保持着逐年上升的趋势,从2010年开始已经成为主要的致死原因,成为了中国的一个主要公共卫生问题。这个逐渐增加的

压力有相当大的一部分可以归于人口的增长和老龄化以及社会人口统计的变化。2016年,影响因子为144.8的CA-A Cancer Journal for Clinicians刊登了我国学者发表的一篇Cancer Statistics in China,2015的文章,即《2015中国癌症统计报告》。作者分析了代表6.5%人口的72个地区基于人群的癌症登记(2000~2011),用以估计2015年癌症新增病例数与死亡病例数。结果发现,2015年预计新增429.2万例癌症病例,死亡281.4万例。 《中国证券报》于2017年7月发表的一篇名为《抗肿瘤药物市场取得重大突破》援引财汇金融大数据终端数据称,2016年,全球用于治疗肿瘤的药物开销为1100亿美元,远高于其他疾病的用药开销。庞大的患者人群、巨大的市场空间与远未被满足的临床治疗需求,吸收越来越多的制药企业投入到抗肿瘤药物的研制中,其中,不乏国内企业的身影。 9月8日-10日,药智网携手中国药房杂志社联合主办的《2017中国医药创新高峰论坛?暨医药企业研发实力百强榜发布》在重庆耀世启幕,会议将隆重发布《2017药品研发实力排行榜》(包括“总榜”、“化药榜”、“中药榜”、“生物药榜”、“品牌榜”),哪些抗肿瘤药物领军企业将凭借其夯实的研发实力入围《2017药品研发实力排行榜》?欢迎大家莅临会场观摩。 本文基于药智药品注册与受理数据、CDE网站上的药物临床试验登记与信息公示平台,再结合充分的文献检索,介绍了各种适应证下国内企业自主或合作研发且已进行临床试验公示阶段的小分子抗肿瘤药物的以下信息: ◆体现出临床试验类型与主要目的的试验专业名称 ◆试验公示时间 ◆试验状态

常用抗癌药物

目录

常用抗癌药物 氮芥(mechlorethamine hydrochloride C5H11CL2N ): 氮芥是最早用于临床并取得突出疗效的抗肿瘤药物。为双氯乙胺类烷化剂的代表,它是一高度活泼的化合物。本品进入体内后,通过分子内成环作用,形成高度活泼的乙烯亚胺离子,在中性或弱碱条件下迅速与多种有机物质的亲核基团(如蛋白质的羧基、氨基、巯基、核酸的氨基和羟基、磷酸根)结合,进行烷基化作用。氮芥最重要的反应是与鸟嘌呤第7位氮共价结合,产生DNA的双链内的交叉联结或DNA 的同链内不同碱基的交叉联结。G1期及M期细胞对氮芥的细胞毒作用最为敏感,由G1期进入S期延迟。 【中文别名】安小辛;氮芥;恩比兴;肿瘤良 ,双氯乙基甲胺,恩比新,恩经兴, 盐酸氮芥 【英文名称】mechlorethamine hydrochloride 【英文别名】Chlormethine、Nitrogen mustard,Mustargen,Embichin, Chloromethamine,2-Chloro-N-(2-chloroethyl)-N-methylethanami ne 【EINECS号】 200-120-5 【CAS号】55-86-7[1] 【分子式】 C5H11CL2N 【分子量】 156.05 药品信息: 【作用特点】氮芥是最早用于临床并取得突出疗效的抗肿瘤药物。

为双氯乙胺类烷化剂的代表,它是一高度活泼的化合物。本品进入体内后,通过分子内成环作用,形成高度活泼的乙烯亚胺离子,在中性或弱碱条件下迅速与多种有机物质的亲核基团(如蛋白质的羧基、氨基、巯基、核酸的氨基羟基、磷酸根)结合,进行烷基化作用。氮芥最重要的反应是与鸟嘌呤第7位氮共价结合,产生DNA的双链内的交叉联结或DNA的同链内不同碱基的交叉联结。G1期及M期细胞对氮芥的细胞毒作用最为敏感,由G1期进入S期延迟。大剂量时对各周期的细胞和非增殖细胞均有杀伤作用。该药水溶液极不稳定,进入体内作用迅速,在血中停留的时间只有0.5~1min,90%在1min内由血中消失。24小时内50%以代谢物形式排出。此外,本品尚有弱免疫抑制作用。 【相互作用】烷化剂的耐药性与DNA受损后的修复能力有关,咖啡因、氯喹可阻止其修复,故可增效。本品与氯霉素及磺胺类药合用可加重骨髓的抑制作用。使用本品前宜加用止吐剂如恩丹西酮或格拉司琼等,减轻胃肠道反应。 【规格】针剂:每支5mg、10mg。 适应症 主要用于恶性淋巴瘤及癌性胸膜、心包及腹腔积液。目前已很少用于其他肿瘤,对急性白血病无效。与长春新碱(VCR)、甲基卡肼(PCZ)及泼尼松(PDN)合用治疗霍奇金病有较高的疗效,对卵巢癌、乳腺癌、绒癌、前列腺癌、精原细胞瘤、鼻咽癌(半身化疗法)等也有一定疗效;腔内注射用以控制癌性胸腹水有较好疗效;对由于恶性淋巴瘤等压迫

抗癌药物

浅谈抗癌药物靶向制剂研究现状 [摘要] 抗癌靶向药物能选择性地与靶组织发生反应,并长时间缓慢地在病灶释放药物,对化疗起到很好的辅助作用。本文以目前受到广泛关注和重点研究的抗癌靶向药物制剂为题,从靶向制剂的优势、抗癌靶向药物载体分类等方面进行了探究。 [关键词] 靶向药物;靶向给药系统; 载体;抗癌 [Abstract] Targeted anti-cancer drugs can selectively react with the target tissue, and slowly release the drug for a long time, chemotherapy has played a good supporting role. This paper is studying at home and abroad and has made some progress in the anti-cancer drugs targeting agents, from targeted therapy design patterns, the classification of targeting agents, anti-cancer drugs targeted drug delivery and targeting the factors that affect areas such as the inquiry. [Keywords]targeted drugs;targeted drugs delivery system chemotherapy;carriers ;anti-cancer 引言: 伴随着现代社会的发展,生活节奏不断加快、环境污染进一步加剧,人们的身体健康也受到了严重威胁,其中癌症便是扼杀人们健康的头号杀手。传统的治疗手段对于癌症往往无法取得很好的治疗效果,所幸随着科技的进步,治疗手段也得到发展,γ刀、X线刀、热疗等治疗手段不断涌现[1],把治疗癌症带进了新天地。而靶向制剂作为当今治疗癌症的有效的新型手段,更是为癌症患者带来了新希望。靶向给药系统在特定的导向机制作用下,将药物输送到特定靶器官充分发挥治疗作用,在提高药物疗效,降低不俍反应等方面具有广阔前景。[2] 1.靶向制剂的优势 半个多世纪以来,化疗一直是治疗恶性肿瘤的较为成熟的重要手段之一。但化疗限于药物普遍用量偏大, 患者在用药期间经常会发生各种变态反应和产生多重耐药性,致使病人被迫停药,贻误了治疗时机、多数缺乏专一性,对正常组织也能产生严重的毒副作用等缺点,一直无法成为治愈癌症的理想手段。为了提高抗癌药物的疗效,克服化疗中的不足,药物靶向治疗应运而生,在提高化疗药物疗效的同时,也降低药物毒副作用,所以药物靶向治疗具有广阔前景[3]。靶向制剂广义地包括所有具靶向性的药物制剂。靶向抗癌药物就是针对分子靶点的抗癌药物,这类药物的针对性强,效果显著,就好像击靶一样。靶向药物的出现充分证明了以分子为靶点治疗肿瘤的巨大潜力,这类药物改变了传统化疗药物对所有快速分裂的细胞全面打击的方式,针对肿瘤细胞的基因突变或基因表达异常进行治疗。[4]目前有关基因治疗方面的研究正在逐步深入,并有进一步扩大的趋势。[5]研究者认为,利用靶向制剂进行癌症治疗具有以下优势:①药物易与机体结合;②;靶向载体能准确到达特定部位;④药物作用寿命长,避免药效受影响。[6] 2.靶向制剂分类 2.1聚酸酐聚酸酐作为一类新型合成生物可降解医用聚合物,由于其具有良好的生物相容性、药物释放速度可调节等优点,很快广泛应用于药物控制释放领域。[7]Brem等[8]报道采用聚酸酐和卡氮芥制备卡氮芥聚酸酐控释片,能保持连续释放卡氮芥达3周之久,病灶部位的浓度是静脉给药的100倍以上。[9]美国食品药品管理局(FDA)于1996年批准卡氮芥聚酸酐控释片用于治疗复发多形性胶质母细胞瘤[10]。侯雪梅等[11]的研究结果表明从聚合物中释放的药物能显著抑制大鼠颅脑肿瘤细胞生长。Walter等[12]也报道用紫杉醇和聚酸酐制备柴杉醇聚酸酐缓释片,结果表明紫杉醇聚酸酐缓释片具有明显的抗癌作用。[13] 2.3壳聚糖壳聚糖(chitosan)是甲壳素的脱乙酰产物,是自然界存在的唯一一种带正电荷碱性多糖,无毒、无刺激性、无致敏性、无致突变作用,具有良好的生物相容性和生物可降解性,而且有抗菌抗炎、促进伤口愈合和直接抑制肿瘤细胞的作用。[14]壳聚糖作为药物载体可以控制药物释放、延长药物疗效、降低药物不良反应,提高疏水性药物对细胞膜的通透性和药物的稳定性及改变给药途径,还可以大大加强制剂的靶向给药能力。徐蔚等参照Gup

相关文档
相关文档 最新文档