文档库 最新最全的文档下载
当前位置:文档库 › 高三电磁感应专题复习(附答案)

高三电磁感应专题复习(附答案)

高三电磁感应专题复习(附答案)
高三电磁感应专题复习(附答案)

图3 2015年高考电磁感应专题复习(附答案)

一、选择题

1、(2014上海)如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。则磁场:( )

A .逐渐增强,方向向外

B .逐渐增强,方向向里

C .逐渐减弱,方向向外

D .逐渐减弱,方向向里

2、(2014·新课标全国卷Ⅰ) 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是:( )

A .将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化

B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化

C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化

D .绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化

3、如图3所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿

管的轴线迅速插入螺线管内,小灯泡的亮度如何变化:( ) A .不变 B .变亮 C .变暗 D .不能确定 4、(2014·江苏卷)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为:( )

A.Ba 22Δt

B.nBa 22Δt

C.nBa 2Δt

D.2nBa 2

Δt

5、(2014·山东卷)如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是:( )

A .F M 向右

B .F N 向左

C .F M 逐渐增大

D .F N 逐渐减小 6、(2014·四川卷) 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t ) T ,图示磁场方向为正方向.框、挡板和杆不计形变.则:( ) A .t =1 s 时,金属杆中感应电流方向从C 到D B .t =3 s 时,金属杆中感应电流方向从D 到C C .t =1 s 时,金属杆对挡板P 的压力大小为0.1 N D .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N

7、(2014·安徽卷) 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r 磁场B ,环上套一带电荷量为+q 的小球.已知磁感应强度B 随时间均匀增加,其变化率为k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是:( ) A .0 B.12

r 2qk C .2πr 2qk D .πr 2

qk

8、(2014·全国卷)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率:( )

A .均匀增大

B .先增大,后减小

C .逐渐增大,趋于不变

D .先增大,再减小,最后不变

9、(2014·广东卷)如图8所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块:( ) A .在P 和Q 中都做自由落体运动 B .在两个下落过程中的机械能都守恒 C .在P 中的下落时间比在Q 中的长 D .落至底部时在P 中的速度比在Q 中的大 10、(2014·江苏卷)如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有:( )

A .增加线圈的匝数

B .提高交流电源的频率

C .将金属杯换为瓷杯

D .取走线圈中的铁芯

11、(2013大纲理综)纸面内两个半径均为R 的圆相切于O 直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化。一长为2R 的导体杆OA 绕过O 点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t =0时,OA 恰好位于两圆的公切线上,如图所示。若选取从O 指向A 的电动势为正,下列描述导体杆中感应电动势随时间变化的图像可能正确的是:( )

12、(2013新课标1)如图,在水平面(纸面)内有三报相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触。下列关于回路中电流i 与时间t 的关系图线,可能正确的是:( )

A.B.C.D.13、(2013新课标2)如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区时导线框的的右边恰与磁场的左边界

()重合,随后导线框进入并通过磁场区域。下列v-t图像中可能正确描述上述过程的是:

14、(2010安徽理综)如图所示,水平地面上方矩形区域内存在垂直纸面向里

的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,

不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面h高处由静止开始

自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖

直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则:()

A.v1

C.v1Q2D.v1=v2,Q1< Q2

15、(2008山东理综)两根足够长的光滑导轨竖直放置,间距为L,底

端接阻值为R的电阻. 将质量为m的金属棒悬挂在一个固定的轻弹簧下

端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁

场垂直,如图所示. 除电阻R外其余电阻不计. 现将金属棒从弹簧原长

位置由静止释放,则:()

A. 释放瞬间金属棒的加速度等于重力加速度g

B. 金属棒向下运动时,流过电阻R的电流方向为a→b

C. 金属棒的速度为v时,所受的安培力大小为F=

D. 电阻R上产生的总热量等于金属棒重力势能的减少

二、计算题

16、(2014·新课标Ⅱ卷)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小g.求

(1)通过电阻R的感应电流的方向和大小:

(2)外力的功率.

17、(2014·安徽卷)如图1所示,匀强磁场的磁感应强度B为0.5 T,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨的MPN(电阻忽略不计),MP和NP长度均为2.5 m,MN连线水平,长为3 m.以MN中点O为原点、OP为x轴建立一维坐标系Ox.一根粗细均匀的金属杆CD,长度d为3 m,质量m为1 kg、电阻R为0.3 Ω,在拉力F的作用下,从MN处以恒定速度v=1 m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好).g取10 m/s2.

图1 图2

(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差U CD;

(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出Fx关系图像;

(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.

18、(2014·江苏卷)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求:

(1)导体棒与涂层间的动摩擦因数μ;

(2)导体棒匀速运动的速度大小v;

(3)整个运动过程中,电阻产生的焦耳热Q.

19、(2014·天津卷) 如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场

中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2

,问 (1)cd 下滑的过程中,ab 中的电流方向;

(2)ab 刚要向上滑动时,cd 的速度v 多大;

(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少? 20、(2014·浙江卷)某同学设计一个发电测速装置,工作原理如图所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,

O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R

3

的圆盘,圆盘和金属棒能随转轴

一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷

的电阻均不计,重力加速度g 取10 m/s 2

)

(1)测U 时,与a 点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小;

(3)求此下落过程中铝块机械能的损失.

21、(2014上海)如图,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5Ω,MN与MP的夹角为1350,PQ与MP垂直,MP边长度小于1m。将质量m=2kg,电阻不计的足够长直导体棒搁在导轨上,并与MP平行。棒与MN、PQ交点G、H间的距离L=4m.空间存在垂直于导轨平面的匀强磁场,磁感应强度B=0.5T。在外力作用下,棒由GH处以一定的初速度向左做直线运动,运动时回路中的电流大小始终与初始时的电流大小相等。

(1)若初速度v1=3m/s,求棒在GH处所受的安培力大小F A。

(2)若初速度v2=1.5m/s,求棒向左移动距离2m到达EF所需时间△t。

(3)在棒由GH处向左移动2m到达EF处的过程中,外力做功W=7J,求初速度v3。

22、(2008上海物理)如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道

MN处的速度

中够长。已知导体棒ab下落r/2时的速度大小为v

大小为v2。

(1)求导体棒ab从A下落r/2时的加速度大小。

(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II

之间的距离h和R2上的电功率P2。

(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度

大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,

求所加外力F随时间变化的关系式。

2015年高考电磁感应专题复习参考答案

一、选择题

1、CD

2、D

3、C

4、B

5、BCD

6、AC

7、D

8、C

9、C 10、AB 11、C 12、A 13、D 14、D 15、AC

二、计算题

16、[解析] (1)在Δt 时间内,导体棒扫过的面积为

ΔS =12

ωΔt [(2r )2-r 2

]①

根据法拉第电磁感应定律,导体棒上感应电动势的大小为

ε=

B ΔS

Δt

② 根据右手定则,感应电流的方向是从B 端流向A 端.因此,通过电阻R 的感应电流的方向是从C 端流向D 端.由欧姆定律可知,通过电阻R 的感应电流的大小I 满足

I =ε

R

联立①②③式得

I =3ωBr 2

2R

.④

(2)在竖直方向有

mg -2N =0⑤

式中,由于质量分布均匀,内、外圆导轨对导体棒的正压力大小相等,其值为N ,两导轨对运行的导体棒的滑动摩擦力均为

f =μN ⑥

在Δt 时间内,导体棒在内、外圆轨上扫过的弧长为

l 1=r ωΔt ⑦

l 2=2r ωΔt ⑧

克服摩擦力做的总功为

W f =f (l 1+l 2)⑨

在Δt 时间内,消耗在电阻R 上的功为

W R =I 2R Δt ⑩

根据能量转化和守恒定律知,外力在Δt 时间内做的功为

W =W f +W R ?

外力的功率为

P =

W Δt

? 由④至12式得

P =32μmg ωr +9ω2B 2r 4

4R

?

17、[解析] (1)金属杆C D 在匀速运动中产生的感应电动势

E =Blv (l =d ),E =1.5 V(D 点电势高)

当x =0.8 m 时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l 外,则

l 外=d -OP -x

OP d

OP =

MP 2

-? ??

??MN 22

得l 外=1.2 m

由楞次定律判断D 点电势高,故CD 两端电势差 U CB =-Bl 外v, U CD =-0.6 V

(2)杆在导轨间的长度l 与位置x 关系是

l =OP -x OP d =3-32

x

对应的电阻R 1为R 1=l

d R ,电流I =

Blv R 1

杆受的安培力F 安=BIl =7.5-3.75x 根据平衡条件得F =F 安+mg sin θ F =12.5-3.75x (0≤x ≤2) 画出的Fx 图像如图所示.

(3)外力F 所做的功W F 等于Fx 图线下所围的面积,即

W F =

5+12.5

2

×2 J =17.5 J 而杆的重力势能增加量ΔE p =mg sin θ 故全过程产生的焦耳热Q =W F -ΔE p =7.5 J

18、[解析] (1)在绝缘涂层上

受力平衡 mg sin θ=μmg cos θ 解得 μ=tan θ. (2)在光滑导轨上

感应电动势 E =Blv 感应电流 I =E R

安培力 F 安=BLI 受力平衡 F 安=mg sin θ 解得 v =

mgR sin θ

B 2L 2

(3)摩擦生热 Q T =μmgd cos θ

能量守恒定律 3mgd sin θ=Q +Q T +12

mv 2

解得 Q =2mgd sin θ-m 3g 2R 2sin θ

2B 4L

4

.

19、[解析] (1)由右手定则可以直接判断出电流是由a 流向b .

(2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有

F max =m 1g sin θ①

设ab 刚好要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有

E =BLv ②

设电路中的感应电流为I ,由闭合电路欧姆定律有

I =E R 1+R 2

③ 设ab 所受安培力为F 安,有

F 安=ILB ④

此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有

F 安=m 1g sin θ+F max ⑤

综合①②③④⑤式,代入数据解得

v =5 m/s ⑥

(3)设cd 棒的运动过程中电路中产生的总热量为Q 总,由能量守恒有

m 2gx sin θ=Q 总+12

m 2v 2⑦

Q =R 1

R 1+R 2

Q 总⑧ 解得Q =1.3 J

20、[解析] 本题考查法拉第电磁感应定律、右手定则等知识和分析综合及建模能力.

(1)正极

(2)由电磁感应定律得U =E =ΔΦ

Δt

ΔΦ=12BR 2Δθ U =12

B ωR 2

v =r ω=13

ωR

所以v =2U

3BR =2 m/s

(3)ΔE =mgh -12mv 2

ΔE =0.5 J

21、[解析](1)棒在GH 处速度为v 1 ,因此根据法拉第电磁感应定律有: E 1=BLv 1…① ,

由闭合电路欧姆定律得I 1=BLv 1/R …② ,

棒在GH 处所受安培力为F A =BI 1L …③,

解①②③式且代入数据得:F A =B 2L 2

v 1/R = 8N …④

(2)设棒移动距离为a =2m ,由几何关系可得EF 间距也为a ,向左移动整个过程中磁通量的变化量△φ=Ba(a+L)/2 ,题设运动时回路中电流保持不变,即感应电动势E 2不变, 开始移动时有E 2=BLv 2…⑤ ,

又整个过程中E 2=△φ/△t =Ba(a+L)/(2△t) …⑥ , 解以上两式并代入数据得△t =a(a+L)/(2Lv 2)=1s …⑦.

(3)设外力做功为W=7J ,克服安培力做功为W A ,导体棒在EF 处的速度为v 4 ,

由动能定理得:W -W A =mv 42/2-mv 32

/2 …⑧

运动时回路中电流保持不变,即感应电动势E 2不变,同(2)理有:E 3=BLv 3 =Bav 4 …⑨, E 3=△φ/△t 1=Ba(a+L)/(2△t 1) …⑩ ,

得△t 1=a(a+L)/(2Lv 3) …○

11 I 3=BLv 3/R …○

12, 由功能关系得W A =Q =I 32

R △t 1 …○

13 解○8○9○10○11○12○13且代入数据得:v 3=1m/s …○14

22、解析:(1)以导体棒为研究对象,棒在磁场I 中切割磁感线,棒中产生产生感应电动势,导体棒ab 从A 下落r /2时,导体棒在策略与安培力作用下做加速运动,由牛顿第二定律,

得: mg -BIL =ma ,式中l

1

Blv I R =

式中 844844R R R

R R R R

?总(+)=

+(+)=4R

由以上各式可得到221

34B r v a g mR

=-

(2)当导体棒ab 通过磁场II 时,若安培力恰好等于重力,棒中电流大小始终不变,即

222422t t

B r v B r v mg BI r B r R R ??=?=??=

并并

式中 124

3124

R R R R R R ?并==+

解得

22

22

344t mgR mgR

v B r B r

=

=并 导体棒从MN 到CD 做加速度为g 的匀加速直线运动,有

22

22t v v gh -=

得 2222

44

9322v m gr h B r g

=-

此时导体棒重力的功率为

2222

34G t m g R

P mgv B r ==

根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即

12G P P P P =+=电=2222

34m g R

B r 所以,23

4

G P P ==

2222916m g R B r (3)设导体棒ab 进入磁场II 后经过时间t 的速度大小为t v ',此时安培力大小为

2243t B r v F R

'

'=

由于导体棒ab 做匀加速直线运动,有3t v v at '=+ 根据牛顿第二定律,有:F +mg -F ′=ma

即 2234()

3B r v at F mg ma R

++-

= 由以上各式解得: 22222233444()()333B r v B r B r a

F at v m g a t ma mg R R R

=

+--=++-

高考物理专题:电磁感应定律与楞次定律

2020高考物理 电磁感应定律 楞次定律(含答案) 1.如图所示,一水平放置的N 匝矩形线框面积为S ,匀强磁场的磁感应强度为B ,方向斜向上,与水平面成30°角,现若使矩形框以左边的一条边为轴转到竖直的虚线位置,则此过程中磁通量的改变量的大小是( ) A.3-1 2BS B.3+1 2NBS C. 3+1 2 BS D. 3-1 2 NBS 答案 C 2.(多选)涡流检测是工业上无损检测的方法之一,如图所示,线圈中通以一定频率的正弦交流电,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化。下列说法中正确的是( ) A .涡流的磁场总是要阻碍穿过工件磁通量的变化 B .涡流的频率等于通入线圈的交流电频率 C .通电线圈和待测工件间存在周期性变化的作用力 D .待测工件可以是塑料或橡胶制品 答案 ABC 3.如图所示,ab 为一金属杆,它处在垂直于纸面向里的匀强磁场中,可绕a 点在纸面内转动;S 为以a 为圆心位于纸面内的金属环;在杆转动过程中,杆的b 端与金属环保持良好接触;A 为电流表,其一端与金属环相连,一端与a 点良好接触。当杆沿顺时针方向转动时,某时刻ab 杆的位置如图所示,则此时刻( )

A.有电流通过电流表,方向由c向d,作用于ab的安培力向右 B.有电流通过电流表,方向由c向d,作用于ab的安培力向左 C.有电流通过电流表,方向由d向c,作用于ab的安培力向右 D.无电流通过电流表,作用于ab的安培力为零 答案A 4.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去。现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝。闭合开关S的瞬间() A.从左侧看环中感应电流沿顺时针方向 B.铜环受到的安培力大于铝环受到的安培力 C.若将环放置在线圈右方,环将向左运动 D.电池正负极调换后,金属环不能向左弹射 答案AB 5.如图所示,矩形金属线框abcd放在水平桌面上,ab边和条形磁铁的竖直轴线在同一竖直平面内,现让条形磁铁沿ab边的竖直中垂线向下运动,线框始终静止。则下列说法正确的是()

高三第一轮复习电磁感应复习教案

高三第一轮复习电磁感 应复习教案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第九章 电磁感应 电磁感应 楞次定律 一、电磁感应现象 1.产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。 2.感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 二、右手定则 伸开右手,使大拇指与四指在同一个平面内,并跟四指垂 直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四 指所指的方向就是感应电流的方向。 三、楞次定律 1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。( 阻碍 原磁场增加时,反抗, 原磁场减小时,补充 ) R 第3课

2.对“阻碍”意义的理解: (1)阻碍原磁场的变化。“阻碍”不是阻止,而是“延缓” (2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流. (3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动. (4)由于“阻碍”,为了维持原磁场变化,必须有外力克服这一“阻碍”而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现. 3.楞次定律的具体应用 从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于是由相对运动引起的,所以只能是机械能减少转化为电能,表现出的现象就是“阻碍”相对运动。 4.运用楞次定律处理问题两种思路方法: ①常规法:——据原磁场(B 原方向及ΔΦ情况)????→?楞次定律确定感应磁场(B 感方 向)????→?安培定则判断感应电流(I 感方向)????→?左手定则导体受力及运动趋势. ②效果法——由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据"阻碍"原则,可直接对运动趋势作出判断. 例题举例 【例1】一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为

高二物理之电磁感应综合题练习(附答案)

电磁感应三十道新题(附答案) 一.解答题(共30小题) 1.如图所示,MN和PQ是平行、光滑、间距L=0.1m、足够长且不计电阻的两根竖直固定金属杆,其最上端通过电阻R相连接,R=0.5Ω.R两端通过导线与平行板电容器连接,电容器上下两板距离d=lm.在R下方一定距离有方向相反、无缝对接的两个沿水平方向的匀强磁场区域I和Ⅱ,磁感应强度均为B=2T,其中区域I的高度差h1=3m,区域Ⅱ的高度差h2=lm.现将一阻值r=0.5Ω、长l=0.lm的金属棒a紧贴MN和PQ,从距离区域I上边缘h=5m处由静止释放;a进入区域I后即刻做匀速直线运动,在a进入区域I的同时,从紧贴电容器下板中心处由静止释放 一带正电微粒A.微粒的比荷=20C/kg,重力加速度g=10m/s2.求 (1)金属棒a的质量M; (2)在a穿越磁场的整个过程中,微粒发生的位移大小x; (不考虑电容器充、放电对电路的影响及充、放电时间) 2.如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,图(乙)为安培力与时间的关系图象.试求: (1)金属棒的最大速度; (2)金属棒的速度为3m/s时的加速度; (3)求从开始计时起2s内电阻R上产生的电热.

高三电磁感应题

高三电磁感应题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电磁感应一、本章知识结构

二、高考热点分析 电磁感应是高考的重点章节.楞次定律和法拉第电磁感应定律是每年必考的热点.甚至在1份高考试卷中出现多个这部分的试题.特别是与动力学、磁场及电路相综合的大型试题,在近年的高考试卷中频频出现。因而在复习中必须予以高度重视,在彻底理解有关概念和规律的基础上,有意识地加强此类综合题训练的力度,力争达到对各种题型的求解方法都心中有数。 (一)高考知识热点 1.电磁感应条件,楞次定律,右手定则. 2.法拉第电磁感应定律. 3.自感现象 (二)高考能力热点 1.熟练运用右手定则、楞次定律灵活解决各类感应电动势、感应电流的方向问题. 2.电磁感应中的能量转化及动态变化分析. 三、学习方法指导 1.本章的重点可概括为一个条件(电磁感应产生的条件)和二个定律(楞次定律、法拉第电磁感应定律)。难点表现在两个方面:一是正确理解楞次定律中“阻碍”的含义;二是灵活运用动力学观点和能的转化与守恒的观点解决电磁感应问题。 2.应正确理解楞次定律中“阻碍”的含义

“阻碍”既不是“阻止”也不是“削弱”,应理解为是反抗磁通量的变化,即当磁通量增加时是反抗其增加但又不能阻止总磁通量的增加;当磁通量减少时是反抗其减少但又不能阻止总磁通量的减少,因此其作用的实质是延缓了磁通量的变化。 3.关于法拉第电磁感应定律 法拉第电磁感应定律的表达式为 E = n t ??Φ .当由于面积变化而引起感应电动势, E =nB t S ??;当由于磁场变化而引起感应电动势, E =n S t B ??;当由于线圈自身电流变化而引起感应电动势, E 自=t I L ??;当由 于感应电场作用,使电荷定向运动形成电流,在Δt 时间内迁移的电量q=R t R E ?Φ = ? 4.电磁感应过程的实质是能量的转化 ⑴通过克服磁场力做功,把机械能转化为电能。即:W 安=?E 电。 ⑵楞次定律是能量守恒在电磁感应中的表现形式,电磁感应现象中的所谓“增反减同”、“来拒去留”都是能量守恒的必然结果。 5.电磁感应现象中的运动导体在达到稳定之前,由于其受到的磁场力、合外力的变化,导致加速度、速度发生变化,反过来又引起感应电流、磁场力及合外力的变化,最终可使导体达到稳定状态。这种动态分析的关键是综合运用动力学与运动学的相关规律进行缜密的逻辑推理,一般对其中导体运动情况分析时用动力学方法,对变加速过程处理时采用能量守恒求解.

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高三物理 法拉第电磁感应定律练习题

高三物理 法拉第电磁感应定律练习题 1.如下右图所示,竖直放置的螺线管与导线abcd 构成回路。导线所围区域内有一个垂直纸面向里的变化的匀强磁场。螺线管下方水平桌面上有一导体圆环,导线abcd 所围区域内磁场的磁感应强度按下面哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力 C. D. 2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B 随时间如图2变化时,图3 中正确表示线圈中感应电动势E 变化的是 A . . 3.如图所示,固定在水平面上的三角形导线框PQS 顶角为θ,处于垂直于纸面向里的匀强磁场中。一根用与导线框同样材料制作的导线棒MN 放在导线框上,保持MN ⊥ QS ,用水平力F 拉MN 向右匀速运动,MN 与导轨间的接触电阻和摩擦都忽略不计。则下列说法中正确的是 A.回路中的感应电流方向不变,大小逐渐增大 B.回路中的感应电流方向不变,大小逐渐减小 C.回路中的感应电流方向和大小都保持不变 D.水平力F 的大小保持不变 4.如图所示,虚线框和实线框在同一水平面内.虚线框内有矩形匀强磁场区,矩形的长是宽的2倍.磁场方向垂直于纸面向里.实线框abcd 是一个正方形导线框.若将导线框以相同的速率匀速拉离磁场区域,第一次沿ab 方向拉出,第二次沿ad 方向拉出,两次外力做的功分别为W 1、W 2,则 A.W 1=W 2 B.W 1=2W 2 C.W 2=2W 1 D.W 2=4W 1 5.一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面向里,如图1所示。磁感应强度B 随t 的变化规律如图2所示。以I 表示线圈中的感应电流,以图1中线圈上箭头所示方向的电流为正,则以下的I-t 图中正确的是 A. B. C. D. t 2E -E -22E -E -2E 2-E -2E 2-E -2图1 /s 图2

电磁感应篇高考模拟试题

2015年电磁感应篇高考模拟试题11.(2003年上海综合能力测试理科用)唱卡拉OK用的话筒,内有传感器。其中有一种是 动圈式的,它的工作原理是在弹性膜片后面 粘接一个轻小的金属线圈,线圈处于永磁体 的磁场中,当声波使膜片前后振动时,就将 声音信号转变为电信号。下列说法正确的是 () A 该传感器是根据电流的磁效应工作的 B 该传感器是根据电磁感应原理工作的 C 膜片振动时,穿过金属线圈的磁通量不变 D 膜片振动时,金属线圈中不会产生感应电动势 28.(2001年粤豫综合能力测试)有一种高速磁悬浮列车的设计方案是在每节车厢底部安装 强磁铁(磁场方向向下),并在两条铁轨之 间沿途平放—系列线圈。下列说法中不正确 ...

的是() A 当列车运动时,通过线圈的磁通量会发生变化 B 列车速度越快,通过线圈的磁通量变化越快 C 列车运动时,线圈中会产生感应电流 D 线圈中的感应电流的大小与列车速度无关 15.(2002年上海综合能力 测试理科用)右图是一 种利用电磁原理制作的 充气泵的结构示意图。其工作原理类似打点 计时器。当电流从电磁铁的接线柱a流入,吸引小磁铁向下运动时,以下选项中正确的 是() A.电磁铁的上端为N极,小磁铁的下端为N极

B.电磁铁的上端为S极,小磁铁的下端为S极 C.电磁铁的上端为N极,小磁铁的下端为S极 D.电磁铁的上端为S极,电磁铁的下端为N极 19.(2004全国理综)一直升飞机停在南半球的 地磁极上空。该处地磁 B 场的方向竖直向上,磁 感应强度为B。直升飞机 螺旋桨叶片的长度为l, 螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a,远轴端为b,如图所示。如果忽略a到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

电磁感应高考复习

电磁感应 电磁感应的应用:电路 力和运动 能量 图像 ①源的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; ②路的分析——分析电路结构,弄清串并联结构,求出相关部分的电流强度,以求安培力; ③力的分析——分析力学研究对象的受力情况,尤其注意其所受的磁场力; ④运动分析——根据力和运动的关系,抽象出运动模型要素,建立运动模型; ⑤能量分析——寻找电磁感应过程和力学对象的运动过程中其能量转化和守恒的关系 热能求解方法: (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2 Rt 直接进行计算. (2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能. 图像问题: B -t 图象还是Φ-t 图象,或者E -t 图象、I -t 图象等 自感:断电自感 通电自感 F=BIL 临界状态态 v 与a 方向关系 运动状态的分析 a 变化情况 F=ma 合外力 运动导体所受的安培力 感应电流 确定电源(E ,r ) r R E I +=

L + + L 1 L 2 S E R 1. (2013). 如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属 导轨上以速度V 向右匀速滑动, MN 中产生的感应电动势为E l ;若磁感应强度增为2B, 其他条件不变,MN 中产生的感应电动势变为E 2。则通过电阻R 的电流方向及E 1与 E 2之比E l : E 2分别为 A. C →a ,2:1 B. a →c ,2:1 C. a →c ,1:2 D. c →a ,1:2 【2012】19.物理课上,老师做了一个奇妙的“跳环实验”。如图,她把一个带铁芯的线圈I 、开关S 和电源用导终连接起来后.将一金属套环置于线圈L 上,且使铁芯穿过套环。闭合开关S 的瞬间,套环立刻跳起。某司学另找来器材再探究此实验。他连接好电路,经重复试验,线圈上的套环均末动。对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是 A.线圈接在了直流电源上. B.电源电压过高. C.所选线圈的匝数过多, D.所用套环的材料与老师的不同 【2011】19某同学为了研究断电自感现象,自己找来带铁芯的线圈L 、小灯泡A 、开关S 和电源E ,用导线将它们连接成如图所示的电路。检查电路后,闭合开关S ,小灯泡发光。再断开开关S ,小灯泡仅有不明显的延时发光现象。虽经多次重复仍未见老师演示时灯泡闪亮现象,他冥思苦想找不到原因。你认为最有可能照成小灯泡未闪亮的原因是: A 电源内阻偏大 B 小灯泡电阻偏大 C 线圈电阻偏大 D 线圈自感系数偏大 (2010)19.在如图所示的电路中,两个相同的小灯泡1L 和2L 分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R .闭合开关S 后,调整R ,使1L 和2L 发 光的亮度一样,此时流过两个灯泡的电流均为I ,然后,断开S ,若't 时刻再闭合S ,则在't 前后的一小段时间内,正确反映流过1L 的电流1i ,流过2L 的电流2i ,随时间t 变化的图像是 2:如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭

高考物理大题突破--电磁感应(附答案)

1、(2011上海(14 分)电阻可忽略的光滑平行金属导轨长S=1.15m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热0.1r Q J =。(取210/g m s =)求:(1)金属棒在此过 程中克服安培力的功W 安;(2)金属棒下滑速度2/v m s =时 的加速度a .3)为求金属棒下滑的最大速度m v ,有同学解答如下由动能定理21-=2 m W W mv 重安,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。 解析:(1)下滑过程中安培力的功即为在金属棒和电阻上产生的焦耳热,由于3R r =,因此30.3()R r Q Q J == ∴=0.4()R r W Q Q Q J =+=安 (2)金属棒下滑时受重力和安培力22 =B L F BIL v R r =+安 由牛顿第二定律22 sin 30B L mg v ma R r ?-=+∴ 2222210.80.752sin 3010 3.2(/)()20.2(1.50.5)B L a g v m s m R r ??=?-=?-=+?+ (3)此解法正确。金属棒下滑时重力和安培力作用,其运动满足22 sin 30B L mg v ma R r ?-=+ 上式表明,加速度随速度增加而减小,棒作加速度减小的加速运动。无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大。由动能定理可以得到棒的末速度,因此上述解法正确。21sin 302m mgS Q mv ?-= ∴ 2.74(/)m v m s === 2、(2011重庆第).(16分)有人设计了一种可测速的跑步机,测速原理如题23图所示,该机底面固定有间距为L 、长度为d 的平行金属电极。电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R ,绝缘橡胶带上 镀有间距为d 的平行细金属条,磁场中始终仅有一 根金属条,且与电极接触良好,不计金属电阻,若 橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率;(2)电阻R 消耗的电 功率;(3)一根金属条每次经过磁场区域克服安培 力做的功。 解析:(1)设电动势为E ,橡胶带运动速率 为v 。由:BLv E =,U E =,得:BL U v =

北京市高三物理二轮复习 电磁感应专题教学案

高考综合复习电磁感应专题(二) 一、电磁感应现象:一切电磁感应现象都可以归结为磁通量的变化引起的: 如: 二、感应电流的方向判断: 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化 对于导体切割磁感线时的感应电动势方向的判断,也可以利用右手定则:伸开右手,让磁场穿过掌心,大拇指指向运动方向,四指指向导体内感应电流方向或导体内感应电动势的正极。 三、法拉第电磁感应定律: (1)在电磁感应现象中产生的感应电动势大小,跟穿过这一回路的磁通变化率成正比。 表达式:——平均值

(2)导体在磁场中切割磁感线产生电动势。 表达式:ε=BLv(垂直切割)——瞬时值 若v不与B垂直,则可以将v分解为垂直于B和平行于B,其中垂直分量产生感应电动势。 (3)自感现象:由于通过导体本身电流发生变化而引起的电磁感应现象。 自感电动势,即与电流的变化率成正比,式中L为自感系数由线圈本身的长度、横截面积、匝数以及有无铁芯决定。 [例题分析] 例1、通电直导线与闭合金属框彼此绝缘,它们处于同一平面内,导 线位置与线框轴重合。为了使线框中产生如图所示方向的感应电流,可 以采取的措施是: A、减弱直导线中的电流强度 B、线框以直导线为轴转动 C、线框向右平动 D、线框向左平动 分析:通电直导线产生磁场的磁感线是以电流为圆心的同心圆。闭 合线框在如图所示状态下磁通量j为零。当直导线中电流强度发生变化或线框以直导线为轴转动时,通过线框的磁通量j始终是零,Δj=0,故无感应电流产生。 当线框向右或向左平动时,通过线框的磁通量j都要增加。向右平动原磁场方向为“x”,向左平动原磁场方向为“·”为了阻碍磁通量的增加产生题目中要求感生电流的方向。由楞次定律可判断线框应向左平动,故D选项是正确的。 例2、如图所示,用金属导线变成闭合正方形导线框边长为L,电阻 为R,当它以速度v匀速地通过宽也为L的匀强磁场区过程中,外力需做 功W,则该磁场磁感应强度应为多大?若仍用此种导线变成边长为2L的正 方形导线框,以相同速度通过同一磁场区,外力应做功为原来的几倍? 解:正方形线框匀速通过磁场ΣF=0,当进入磁场时,cd边切割磁感 线产生ε→产生I→受F安:F外=F安。当出磁场时ab边切割磁感线产生ε→产生I→受F安,则F外=F安。 外力功W=F外·2L=F安×2L=BIL×2L=2BL2× 。 则磁感应强度。 当线框边长为2L时,此时真正产生感应电流的时候是当cd、ab边在磁场中运动时,外力功W'为:(此时电阻为原来的2倍)

高考物理大题突破--电磁感应(附答案)

1、(2011(14 分)电阻可忽略的光滑平行金属导轨长S=1.15m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热0.1r Q J =。(取 210/g m s =)求:(1)金属棒在此过程中克服安培力的功W 安;(2)金属棒下滑速度2/v m s =时的加速度a .3)为求金 属棒下滑的最大速度m v ,有同学解答如下由动能定理21 -=2 m W W mv 重安,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。 2、(2011第).(16分)有人设计了一种可测速的跑步机,测速原理如题23图所示,该机底面固定有间距为L 、长度为d 的平行金属电极。电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R ,绝缘橡胶带上镀有间距为d 的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻,若橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率;(2)电阻R 消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功。 3、(2010年).(15分)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强

磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B; (2)电流稳定后,导体棒运动速度的大小v; (3)流以电流表电流的最大值I m. 4、(2010)(19)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域,存在着垂直穿过斜面向上的匀强磁场。现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止。当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向选滑动,此时b棒已滑离导轨。当a 棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动。已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计。求 (1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度I R之比; (2)a棒质量m a; (3)a棒在磁场中沿导轨向上运动时所受的拉力F。 5、(2011).如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面,在水平面a1b1b2a2区域和倾 37的斜面c1b1b2c2区域分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场。角θ=? 电阻R=0.3Ω、质量m1=0.1kg、长为l 的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

法拉第电磁感应定律高三物理一轮专题.docx

法拉第电磁感应定律 例 1. 如图 3 所示,边长为 a 的正方形闭合线框 ABCD 在匀强磁场中绕 AB 边匀速转动,磁感应强度为 B,初时刻线框所在平面与磁感应线垂直,经过 t 时间转 过 120°角,求:(1)线框内感应电动势在 t 时间内 的平均值; ( 2)转过 120°角时感应电动势的瞬时值 . 例 2 A 、B 两闭合圆形导线环用相同规格的导线制成,他们的半径之比为 rA:rB = 2:1 ,在导线环保会的匀强磁场区域,磁场方向垂直于导线环平面,如图,当磁场的磁感应强度随时间均匀增大过程中,求两导线 环内产生的感应电动势之比和流过两导线环的感 应电流大小之比 例 3.. 如图 5 所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场。若第一次用 0.3s 时间拉出,外力所做的功为 W1,通过导线截面 的电 量为 q 1;第二次用 0.9s 时间拉出,外力所做的功为W2,通过导线截面的电量为 q 2,则() A. W1W2,q1q2 B. W 1W2,q1q2 C. W1W2,q1q2 D.W1W2, q1q2 例 4. 一直升机停在南半球的地磁极上空,该处地磁场叶片的长度为 l,螺旋桨转动的频率为 f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动 .螺 旋桨叶片的近轴端为 a ,远轴端为 b ,如图所示 . 如果 忽略 a 到转轴中心线的距离,用 E 表示每个叶片 中的感应电动势,则() A.E=πfl2B, 且 a 点电势低于 b 点电势 B.E=2πfl2B ,且 a 点电势低于 b 点电势 C.E=πfl2B ,且 a 点电势高于 b 点电势 D.E=2πfl2B ,且 a 点电势高于 b 点电势 例5 如图所示,一导线弯成半径为a 的半圆形闭合回路。虚线 MN 右侧有磁感应强度为 B 的匀强磁场。方向垂直 于回路所在的平面。回路以速度 v 向右匀速进入磁场,直径 CD 始络与 MN 垂直。从 D 点到达 边界开始到 C 点进入磁场为止,下列结论正确的是 () A 感应电流方向不变 B .CD段直线始 终不受安培力 C 感应电动势最大值 E=Bav D 感应电动势平均 值 E=0.25πBav y v R B O x

高考复习——《电磁感应》典型例题复习

十五、电磁感应 1、磁通量 设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B ,平面的面积为S ,如图所示。 一、知识网络 二、画龙点睛 概念

(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量,简称磁通。 (2)公式:Φ=BS 当平面与磁场方向不垂直时,如图所示。 Φ=BS⊥=BScosθ (3)物理意义 物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。 (4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。 1Wb=1T·1m2=1V·s。 (5) 磁通密度:B=Φ S⊥ 磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通密度。 2、电磁感应现象 (1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。 (2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。 (3)产生电磁感应现象的条件 ①产生感应电流条件的两种不同表述 a.闭合电路中的一部分导体与磁场发生相对运动 b.穿过闭合电路的磁场发生变化 ②两种表述的比较和统一 a.两种情况产生感应电流的根本原因不同 闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。 穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。 b.两种表述的统一 两种表述可统一为穿过闭合电路的磁通量发生变化。 ③产生电磁感应现象的条件 不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。 条件:a.闭合电路;b.磁通量变化 3、电磁感应现象中能量的转化 能的转化守恒定律是自然界普遍规律,同样也适用于电磁感应现象。

电磁感应高考题大题综合

电磁感应电路问题 一、平行导轨,匀强磁场 (1990年全国) 32.参考解答:把PQ作为电源,阻为R,电动势为εε=Blv……………1. 评分标准:全题7分.正确列出1.式得1分.正确得出2.、3.、4.、5.式各得1分.正确得出aP段中电流的大小和流向再各得1分. (2005年)34.(7分)如图所示,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R的定值电阻,导体棒ab长l=0.5m,其电阻为r,与导轨接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4T.现使ab以v =10m/s的速度向右做匀速运动. (1)ab中的感应电动势多大? (2)ab中电流的方向如何? (3)若定值电阻R=3,OΩ,导体棒的电阻r=1.O Ω,,则电路电流大? 34.(共7分) (1)ab中的感应电动势为:① 代入数据得:E=2.0V ② (2)ab中电流方向为b→a (3)由闭合电路欧姆定律,回路中的电流E I R r = + ③ 代入数据得:I=0.5A ④ 评分标准:本题7分,其中第(1)问2分,第二问2分,第三问3分。 第(1)问中①、②各1分。第(2)问中,正确得出ab中电流的方向给2分。第(3)问中,③式给2分,④式给1分。 (2008年全国2卷)24.(19分)如图,一直导体棒质量为m、长为l、电阻为r,其两端放在位于水平面间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面。开始时,给导体棒一个平行于导轨的初速度v0。在棒的运动

近三年高考电磁感应

(2014全国一卷)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是 A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B.在一通电线圈旁放置一连有电流表的线圈,然后观察电流表的变化 C.将一房间内的线圈两端与相邻房间的电流表相连。往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 (2014全国卷一)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间的电压如图(b)所示。已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是 (2015全国卷一)1824年,法国科学家阿拉果完成了著名的“圆盘实验”实验中 将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。下列说法正确的是() A.圆盘上产生了感应电动势 B.圆盘内的涡电流产生的磁场导致磁针转动 C.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化 D..在圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动

P S Q M 北 南 N S (2017全国卷一)扫描对到显微镜(STM )可用来探测样品表面原子尺寸上的形貌,为了 有效隔离外界震动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小震动,如图所示,无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右震动的衰减最有效的方案是 (2018全国卷一)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心。轨道的电阻忽略不计。OM 是有一定电阻、可绕O 转动的金属 杆,M 端位于PQS 上,OM 与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B 。现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程I );再使磁感应强度的大小以一定的变化率从B 增加到B '(过程II )。在过程I 、II 中,流过OM 的电荷量相等,则 B B '等于 A .54 B .32 C .74 D .2 (2018全国卷一)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接, 另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A .开关闭合后的瞬间,小磁针的N 极朝垂直纸面向里的方向转动 B .开关闭合并保持一段时间后,小磁针的N 极指向垂直纸面向里的方向 C .开关闭合并保持一段时间后,小磁针的N 极指向垂直纸面向外的方向 D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转 动 (2019全国卷一)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )

相关文档
相关文档 最新文档