文档库 最新最全的文档下载
当前位置:文档库 › 奇异谱分析课件 II

奇异谱分析课件 II

有机波谱分析知识点

名词解析 发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。 助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。 红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。 蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。 增色效应(hyperchromic effect):使吸收强度增加的作用。 减色效应(hypochromic effect):使吸收强度减弱的作用。 吸收带:跃迁类型相同的吸收峰。 指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。但该区中各种官能团的特征频率不具有鲜明的特征性。 共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。 诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。 核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。 化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。 弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。 分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。 基峰:质谱图中表现为最高丰度离子的峰。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 麦氏重排(McLafferty rearrangement):具有不饱和官能团 C=X(X为O、S、N、C 等)及其γ-H原子结构的化合物,γ-H原子可以通过六元环空间排列的过渡态,向缺电子(C=X+ )的部位转移,发生γ-H的断裂,同时伴随 C=X的β键断裂,这种断裂称为麦氏重排。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 自旋裂分:因自旋偶合而引起的谱线增多现象称为自旋裂分。 1.紫外光谱的应用 (1).主要用于判断结构中的共轭系统、结构骨架(如香豆素、黄酮等) (2).确定未知化合物是否含有与某一已知化合物相同的共轭体系。 (3).可以确定未知结构中的共轭结构单元。 (4).确定构型或构象 (5).测定互变异构现象 2.分析紫外光谱的几个经验规律 (1).在200~800nm区间无吸收峰,结构无共轭双键。 (2).220~250nm,强吸收(max在104~2104之间),有共轭不饱和键(共轭二烯,,-不饱和醛、酮)

有机波谱分析习题(最新)

有机波谱分析习题 第一章电子辐射基础 (一)判断题 1.现代分析化学的任务是测定物质的含量。( ) 2.测定某有机化合物中C、H、O、N元素含量的方法属于定性分析。( ) 3.测定某有机化合物中是否含有羰基属于有机结构分析。( ) 4.利用物质分子吸收光或电磁辐射的性质,建立起来的分析方法属于吸收光谱分析。( ) 5.物质被激发后,利用物质跃迁至低能态或基态时发光的性质建立起来的分析方法属于发射光谱分析。( ) 6.根据Franck-condon原理,在电子能级发生跃迁时,必然伴随振动能级和转动能级的变化。( ) 7.紫外吸收光谱、红外吸收光谱、核磁共振波谱和质谱是有机结构分析的四种主要的有机光波谱分析方法,合称为四大谱。( ) 8.电磁辐射的波长越长,能量越大。( ) 9.有机波谱分析方法和仪器分析方法的灵敏度和准确度都要比化学分析法高得多。( ) 10.一般来讲,分子光谱远比原子光谱复杂,原子光谱通常为线状光谱,而分子光谱为带状光谱。( ) 11.吸收定律偏离线性完全是由于仪器因素引起的。( ) 12.电子能级间隔越小,跃迁时吸收光子的频率越大。( ) 13.分子光谱是由于电子的发射而产生的。( ) 14.分子荧光也叫二次光,都属吸收光谱的畴。( ) 15.ICP可用于测定F、Cl、Br、C、H、N、O、S等非金属元素。( ) (一)判断题答案 1.×2.×3.√4.√5.√6.√7.√8.×9.×l0.√11.×l2.×13.×l4.×l5.× (二)单选题 1.光或电磁辐射的二象性是指( )。 A.电磁辐射是由电矢量和磁矢量组成;B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应;D.电磁辐射具有波动性和微粒性。 2.光量子的能量与电磁辐射的哪一个物理量成正比?( ) A.频率;B.波长;C.周期;D.强度 3.可见光区、紫外光区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为( )。 A.紫外光区和无线电波区;B.紫外光区和红外光区; C。可见光区和无线电波区;D.可见光区和红外光区。 4.频率为l×107MHz的电磁辐射是处在哪个光区?( ) A.红外光区;B.紫外光区;C.无线电波区;D.可见光区。 5.有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的( )。 A.能量越大;B.波数越大;C.波长越长;D.频率越高。 6.分析化学发生第二次变革的年代是( )。 A.20世纪初;B.20世纪20年代;C.20世纪40年代;D.20世纪末。

语音信号的频域分析

实验二:语音信号的频域分析 实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。 实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。 实验内容: 1、 语音信号的频谱分析 1.1加载“ma1_1”语音数据。基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。 load ma1_1; x = ma1_1 (4161:4460); plot (x) N = 1024; k = - N/2:N/2-1; X = fftshift (fft (x.*hann (length (x)),N)); plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ]) 已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。 问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别? 问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期? 问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度? 1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱: ∏ ==R r r X HPSx 1)()(ωω 式中,R 一般取为5。在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。

太阳黑子数时间序列的奇异谱分析和小波分析

第32卷第6期 2007年11月 测绘科学 Science of Surveying and M app ing Vol 132No 16 Nov 1 作者简介:徐克红(19822),女,山东泰安人,辽宁工程技术大学与中国测绘科学研究院联合培养硕士研究生,主要研究方向为卫星轨道确定。E 2mail:xukehong0719@1631com 收稿日期:2007206228 太阳黑子数时间序列的奇异谱分析和小波分析 徐克红 ①② ,程鹏飞①,文汉江 ① (①中国测绘科学研究院,北京 100039;②辽宁工程技术大学,辽宁阜新 123000) 【摘 要】本文对小波变换和奇异谱分析方法进行了简要介绍,对离散小波的分解和重构、奇异谱分析的重构进 行了详细阐述。结合太阳黑子数1749年至2007年3月期间的月平均值时间序列进行了小波变换的分解和重构及SS A 方法的重构,提取了其主要的周期特性,并对两种分析方法进行了比较。【关键词】小波分析;离散小波的分解与重构;奇异谱分析;太阳黑子数【中图分类号】P228 【文献标识码】A 【文章编号】100922307(2007)0620035204 1 引言 太阳黑子是太阳光球上经常出现的阴暗斑点,是太阳活动的羁绊标志,是反映太阳辐射变化的重要指标,一般用太阳黑子数表示。太阳黑子数反映了太阳活动强弱的变化,对地球的影响很大,诸如地磁变化、大气运动、气候异常、海洋变化等,都和太阳黑子数变化有着不同程度的关系。因此研究太阳黑子数的变化有利于深入了解它对卫星轨道、定位等方面的影响。 对太阳黑子数变化的研究已有很多,韩延本,韩刚用小波分析的方法对太阳黑子数变化进行研究,验证了小波分析方法的可行性,并得到太阳黑子数变化包含多种周期分量的结论。郝立生,李新,李月英利用Morlet 小波变换对太阳活动变化进行了研究,得到太阳活动存在141和106a 的变化周期。 小波变换的概念是1984年法国地球物理学家J 1Morlte 在分析处理地球物理勘探资料时提出来的。其数学基础是19世纪的傅里叶变换,其后理论物理学家A 1Gr oss man 采用平移和伸缩不变性建立了小波变换的理论体系。1989年S 1Mallat 提出了多分辨率分析概念,统一了在此之前的各种构造小波的方法,特别是提出了二进小波变换的快速算法,使得小波变换完全走向实用性[8]。 奇异谱分析(SS A )是对一维的时间序列进行分析的主成分分析方法。该方法适用于从短噪声时间序列中提取信息。SS A 在时空域中,通过将序列分解成元素行为模式的方法,将含在延迟坐标相空间的信息拆开,通过使用数据适应滤波器来帮助将时间序列分开为统计的独立成分,这些成分可以当作趋势、振动或噪声来进行分类。 本文选用太阳黑子数月平均值,采用小波变换和奇异谱分析的方法对该时间序列进行分析,同时对两种分析方法进行比较。 2 奇异谱分析 主成分分析(PCA,Princi pal Component Analysis ),也称为经验正交函数(E OF,E mp irical O rthogonal Functi on ), 可以由多维的时间序列中获取时间序列的主要成分,是常用的多元统计分析方法之一,主要将多个彼此相关的指标变换为少数几个彼此独立的综合指标即主成分,并要求主成分能反映原始数据的几乎全部信息,其中,常用于对一维的时间序列进行分析的方法称为奇异谱分析(SS A,Sin 2gular s pectru m analysis )。 奇异谱方法(SS A )是一种特别适合于研究周期振荡行为的分析方法,它是从时间序列的动力重构出发,并与经验正交函数相联系的一种统计技术,是E OF 分解的一特殊应用。分解的空间结构与时间尺度密切相关,可以较好地从含噪声的有限尺度时间序列中提取信息,目前已应用于多种时间序列的分析中。 SS A 的具体操作过程是,将一个样本量为n 的时间序列按给定嵌套空间维数(即窗口长度)构造一资料矩阵。当这一个资料矩阵计算出明显成对的特征值,且相应的E OF 几乎是周期性或正交时,通常就对应着信号中的振荡行为,可见SS A 在数学上相应于E OF 在延滞坐标上的表达。 对给定的X 1,X 2,…,X n 的时间序列,给定嵌套维数M ,M

第二章 语音信号处理基础知识

第二章语音信号处理基础知识 1、语音信号处理? 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。 2、语音信号处理的目的? 1)如何有效地,精确地表示、存储、传递语音信号及其特征信息;2)如何用机器来模仿人类,通过处理某种运算以达到某种用途的要求,例如人工合成出语音,辨识出说话人、识别出说话内容等。 因此,在研究各种语音信号处理技术之前,需要了解语音信号的基本特性,同时,要根据语音的产生过程建立实用及便于分析的语音信号模型。 本章主要包括三方面内容:语音的产生过程、语音信号的特性分析以及语音信号生成的数学模型。 第一部分内容语音的产生过程,我们要弄清两个问题:1)什么是语音?2)语音的产生过程? 3、什么是语音? 语音是带有语言的声音。人们讲话时发出的话语叫语音,它是一种声音,由人的发音器官发出且具有一定的语法和意义。语音是声音和语言的组合体,所以对于语音的研究包括:1)语音中各个音的排列由一些规则控制,对这些规则及其含义的研究成为语言学;2)对语音中各个音的物理特征和分类的研究称为语音学。 4、语音的产生 语音的产生依赖于人类的发声器官。人的发音器官包括:肺、气管、喉、咽、鼻、口等。 ◆喉以上的部分称为声道,其形状随发出声音的不同而变化; ◆喉的部分称为声门。 ◆喉部的声带是对发音影响很大的器官。声带振动产生声音。 ◆声带开启和闭合使气流形成一系列脉冲。

每开启和闭合一次的时间即振动周期称为基音周期,其倒数为基音频率,简称基频。基频决定了声音频率的高低,频率快则音调高,频率慢则音调低。 基音的范围约为70 -- 350Hz,与说话人的性别、年龄等情况有关。 人的说话过程可以分为五个阶段:(1)想说阶段(2)说出阶段(3)传送阶段(4)理解阶段(5)接收阶段。 人的说话的过程: 1)想说阶段:人的说话首先是客观事实在大脑中的反映,经大脑的决策产生了说话的动机; 接着说话神经中枢选择适当的单词、短语以及按照语法规则的组合,以表达想说的内容和情感。 2)说出阶段:由想说阶段大脑中枢的决策,以脉冲形式向发音器官发出指令,使得舌、唇、鄂、声带、肺等部分的肌肉协调地动作,发出声音。与此同时,大脑也发出一些指令给其他有关器官,使之产生各种动作来配合言语的效果,如表情、手势、身体姿态等。经常有些人说话时会手舞足蹈。另外,还会开动“反馈”系统来帮助修正语音。 3)传送阶段:说出的话语是一连串声波,凭借空气为媒介传送到听者的耳朵。有时遇到某种阻碍或其他声响的干扰,使声音产生损耗或失真。 4)接收阶段:从外耳收集的声波信息,经过中耳的放大作用,达到内耳。经过内耳基底膜的振动,激发器官内的神经元使之产生脉冲,将信息以脉冲形式传送给大脑。 5)理解阶段:听觉神经中枢收到脉冲信息后,经过一种至今尚未完全了解的方式,辨认说话人及听到的信息,从而听懂说话人的话。 再开始介绍语音信号的特性之前,我们先了解一下语音和语言的定义。 5、语言 是从人们的话语中概括总结出来的规律性的符号系统。包括构成语言的语素、词、短语和句子等不同层次的单位,以及词法、句法、文脉等语法和语义内容。语言学是语音信号处理的基础。例如,可以利用句法和语义信息减少语音识别中搜索匹配范围,提高正确识别率。 6、语音学 Phonetics是研究言语过程的一门科学。它考虑的是语音产生、语音感知等的过程以及语音中各个音的特征和分类问题。现代语音学发展成为三个分支:发音语音学、声学语音学以

语音信号采集与时频域分析正文

第一章引言 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和频域等处理方法。语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。 时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。 频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。主要分析的特征参数:短时谱、倒谱、语谱图等。 本文采集作者的声音信号为基本的原始信号。对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。整体设计框图如下图所示: 图1.1时频域分析设计图 图1.2加噪滤波分析流程图

第二章 语音信号时域分析 语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。 2.1窗口选择 由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。两种窗函数的时域波形如下图2.1所示: sample w (n ) sample w (n ) 图2.1 矩形窗和Hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下 {1,00,()n N w n ≤<=其他 (2.1) 哈明窗的定义:一个N 点的哈明窗函数定义为如下 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = (2.2) 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

有机波谱分析习题参考答案

有机波谱分析习题参考答案“有机质谱”部分习题参考答案 1 A C 2H 3 Cl, B C 2 H 6 S 2. C 2 H 2 Cl 2 , ClCH=CHCl 3. m/z 142 M43 (C 3H 7 ), m/z 142 C 9 H 20 N, (n-C 4 H 9 ) 3 N, 4.略 5.(a)CH 3COCH 2 CH 2 CH 2 CH 3 , or CH 3 COCH 2 CH(CH 3 ) 2 (b)CH 3COCH(CH 3 )CH 2 CH 3 (c) CH 3 COC (CH 3 ) 3 6. (a) CH 3CH 2 CH 2 COOCH 3 , (b) (CH 3 ) 3 CCOOH (c) CH 3 CH 2 COOCH 2 CH 3 7. p-CH3COC6H4NO2 8. m/z 172, M28 (C 2H 4 ) , C 6 H 5 OBr , BrC 6 H 4 OCH 2 CH 3 9.C 6H 5 COOCH 2 CH 2 CH 2 CH 3 , m/z 123 M55,酯的双氢重排。 “核磁共振氢谱”部分习题参考答案 1.CH 3CH 2 COOCH 3 , (NO 2 )CH 3 3.(a) C 6H 5 CH(CH 3 )OCOCH 3 , (b)C 6 H 5 CH 2 CH 2 OCOCH 3 , (c) p-CH3C6H4COOCH2CH3 4. HOCH 2CH 2 CN , 5. CH 3 CH 2 OCOCH 2 N(CH 3 ) 2 6.CH 3CH 2 OCOCH=CHCOOCH 2 CH 3 , 7. 略, 8. CH 3 CH 2 CH 2 COOCH=CH 2 10.(a) 2-乙基吡啶,(b) 3-乙基吡啶“核磁共振碳谱”部分习题参考答案 3. CH 3COOCH=CH 2 4. p-N CC6H4COOH 5. p-ClC6H4COCH3 6. CH3CH2OCOCH2CH2COOCH2CH3 7.(CH 3CH 2 CO) 2 O 8. a: C 6 H 5 CH 2 COCH 3 , b: C 6 H 5 COCH 2 CH 3 8.C 6H 5 OCH 2 CH 2 OCOCH 3

实验一显示语音信号的语谱图

实验一显示语音信号的语谱图 一、实验目的 综合信号频谱分析和滤波器功能,对语音信号的频谱进行分析,并对信号含进行高通、低通滤波,实现信号特定处理功能。加深信号处理理论在语音信号中的应用;理解语谱图与时频分辨率的关系。二、实验原理 语谱图分析语音又称语谱分析,语谱图中显示了大量的与语音的语句特性有关的信息,它综合了频谱图和时域波形的优点,明显的显示出语音频谱随时间的变化情况。语谱图实际上是一种动态的频谱。窄带语谱图有良好的频率分辨率及较差的时间分辨率;而宽带语谱图具有良好的时间分辨率及较差的频率分辨率。 三、实验内容 实验数据为工作空间ex3M2.mat中数组we_be10k是单词“we”和“be”的语音波形(采样率为10000点/秒)。 1、听一下we_be10k(可用sound) 2、使用函数specgram_ex3p19.显示语谱图和语音波形。对比调用参数窗长20ms(200点)、帧间隔1ms(10点)和参数窗长5ms(50点)、帧间隔1ms(10点);再对比窗长>20ms或小于5ms,以及帧间隔>1ms时的语谱图说明宽带语谱图、窄带语谱图与时频分辨率的关系及如何得到时频折中。 3、生成高通和低通滤波器,观察其频谱;对语音信号we_be进行滤波,听一下对比其效果。

四、实验结果 实验程序 语谱图和语音波形

低通滤波器频谱

高通滤波器频谱 结论:1、因频率分辨率随窗口宽度的增加而提高,但同时时间分辨率降低;如果窗口取短,频率分辨率下降,但时间分辨率提高。由以上图可知:窄带语谱图有良好的频率分辨率及较差的时间分辨率,而宽带语谱图具有良好的时间分辨率及较差的频率分辨率。窄带语谱图中的时间坐标方向表示的基因及其各次谐波;而宽带语谱图给出语音的共振峰平率及清辅音的能量汇集区。 2、因加窗的目的是要限制分析的时间以使其中的波形特性没有显著变化,因此想要得到时频折中,选用的窗函数应尽量满足a、频率分辨率高b、卷积后其他的频率成分产生的频谱泄露少。海明窗在频率范围中的分辨率高,具有频谱泄露少的优点,频谱中高频分量弱、波动小,因而得到较平滑的谱。

有机波谱分析谱图特征总结

峰区 波数(cm –1 ) 键的振动类型 区别醇、酚、酸: 1.酸( ):νO-H ,3000,宽谱带,散谱 νO-H ,≈3500,强、宽峰 νC-O ,≈1230 νC-H ,3100-2700,多谱带 芳环骨架振动,1600-1450,3、4条谱带 叔,νC-O ,1150-1200 仲,νC-O ,1125-1150 伯,νC-O ,1050 第一峰区:(4000-2500) X —H 的伸缩振动 O —H 、 N —H 、 C —H 。 3750~3000 νOH, 游离,≈3700 缔合,≈3500,特点:峰强而宽 νNH,3500-3150,特点:弱尖峰 区别胺: 伯,3500-3100,2/3条 仲,3400 1条 叔,无 3300~3000 不饱和:>3000 ν≡CH,3300,谱带尖锐 ν=CH ,3100-3000 νAr —H ,3100-3000,多谱带 极少数可到2900cm –1 3000~2700 饱和:<3000 νC —H,>2900 νC —H (-CHO),2850-2720,双谱带 νS —H ,2600-2500,谱带尖锐 —CH 3,2960-2870 —CH 2-,2920-2850 第二峰区:(2400-2100) 叄键、累积双键 2400~2100 νC≡N ,2250-2240 νC≡C ,2200-2100 ν—C≡C—C≡C — 苯环特征吸收 2. 酚 3.醇 区别酰胺: 伯,3300、3150,双峰 仲,3200 1条 叔,无

图2: 氢谱 常见类型结构的质子化学位移:其他振动: [CH 2]n : CH 2平面摇摆振动,800~700,弱吸收带。 N<4,向高波波数移动。 RR'CH ═C H 2(同碳),895~885,1条(890) R CH ═C H R'(顺), 830~750,1条(800) 芳烃: ???见图2 单取代:740 ,690, 2条 邻二取代:740 , 1条 间二取代:860 ,770,,700,3条 对二取代:810, 1条 -COOH 12~10 -CHO 10~9 ArOH 8~4

实验三 语音信号的频域分析

实验三语音信号的频域分析 一、实验名称语音信号的频域分析 二、实验目的 1)掌握傅里叶分析原理,利用Matlab软件估计短时谱、倒谱。 2)借助频域分析方法所求得的参数分析语音信号的基音周期或共振峰。 三、实验设备 Matlab 软件计算机 四、实验步骤 1、语音信号短时谱的求取。 用Matlab软件读取语音文件h.wav数据,取N=256点,求取其短时频谱,记录频谱图,并判断该帧语音是清音还是浊音。 用Matlab软件读取语音文件u.wav数据,取N=256点,求取其短时频谱,记录频谱图,并判断该帧语音是清音还是浊音。 参考程序: clear a=wavread('h'); subplot(2,1,1); plot(a);title('original signal'); grid N=256; k=hamming(N); for m=1:N b(m)=a(m)*k(m); end y=20*log(abs(fft(b,1024))); pinlv=(0:1:255)*8000/512;%点和频率的对应关系 subplot(2,1,2); y1(1:256)=y(1:256); plot(pinlv,y1);title('短时谱'); xlabel('频率/Hz') ylabel('对数幅度/dB') grid

2、语音信号的语谱图。 语音信号的语谱图,即水平方向是时间轴,垂直方向是频率轴,图上的灰度条纹代表各个时刻的语音短时谱。生成hubeis.wav语音文件的语谱图。

参考命令: >> [x,fs,nbits]=wavread('hubeis'); >> specgram(x,512,fs,100); 3、倒谱分析 浊音信号的倒谱中存在着峰值,它的存在位置正好是该帧语音的基音周期。清音信号的倒谱中不存在峰值,利用这一特点可以分辨清音与浊音,并可估计浊音的基音周期。分别计算语音文件“h”及“u”的倒谱,并判断哪个是清音,哪个是浊音,若为浊音请估计它的基音周期。 参考程序: clear a=wavread('h'); N=300; h=hamming(N); for m=1:N b(m)=a(m)*h(m); end d=rceps(b); d=fftshift(d); plot(d);title('h 加汉明窗时的倒谱')

有机化合物波谱解析-有机波谱分析-课后习题答案-xu

第二章 质谱习题及答案 1、化合物A 、B 质谱图中高质荷比区的质谱数据,推导其可能的分子式 解:分子离子峰为偶数62=? +M 表明不含氮或含有偶数个氮。 对于A ,1:3)(:)2(≈+M RI M RI ,所以分子中含有一个Cl 原子,不可能含氮。则根据 8.41.1100) () 1(==?+x M RI M RI ,得3,2==y x ,所以A 分子式C 2H 3Cl ,UN=1合理; 对于B ,4.4)2(=+M RI ,所以分子中可能含有一个S 原子,不可能含氮。则根据 8.38.01.1100) () 1(=+=?+z x M RI M RI ,6,2==y x ,所以B 分子式C 2H 6S ,UN=0合理。 2、化合物的部分质谱数据及质谱图如下,推导其结构 解: 1:6:9)4(:)2(:)(≈++M RI M RI M RI , 所以分子中含有两个Cl ,m/z=96为分子离子峰,不含氮。 根据 4.21.1100) () 1(==?+x M RI M RI ,2,2==y x ,分子式为C 2H 2Cl 2,UN=1,合理。 图中可见:m/z 61(M-35),RI(100)为基峰,是分子离子丢失一个Cl 得到的; m/z=36, 为HCl +;m/z=26(M-Cl 2), RI(34),是分子离子丢失Cl 2得到的,相对强度大,稳定,说明结构为CHCl=CHCl 。

解: 分子离子峰m/z 185为奇数表明含有奇数个氮。 基峰m/z 142=M 43,丢失的碎片可能为(C 3H 7,CH 3CO ),若丢失碎片为 (CH 3CO ),则来源于丁酰基或甲基酮,结合分子中含氮元素,很有可能为酰胺 类物质,那么就应该有很强的分子离子峰,而m/z 185峰较弱,所以,丢失的中性碎片应该是(C 3H 7),来源于长链烷基,谱图中有而则m/z 29,43,57的烷基m/z 142=A 的组成, C x H y N z O w S S 3.1037.01.1100) () 1(=+=?+z x A RI A RI ,设z=1,则x=,若z=3,则x=,不合理。无 (A+2)峰,表明不含有卤素和氧硫,则A (m/z 142)组成为C 9H 20N ;m/z 57为C 4H 9+,m/z 44为CH 2=N +HCH 3,m/z 100(A-C 3H 6),M 分子式(n-C 4H 9)3N 。 图谱解析:

语音信号的滤波与频谱分析

生物医学信号处理大作业 题目:语音信号的滤波与频谱分析 学生姓名 学院名称精密仪器与光电子工程 专业 学号

一、实验目的 语音信号的滤波与频谱分析 录制自己的一段语音:“天津大学精密仪器与光电子工程学院生物医学工程X班XXX, College of precision instrument and opto-electronics engineering, biomedical engineering”,时间控制在15秒到30秒左右;利用wavread函数读入语言信号,记住采样频率。 二、实验过程 (1)求原始语音信号的特征频带:可以分别对一定时间间隔内,求功率谱(傅里叶变换结果取模的平方)并画出功率谱。 (2)根据语音信号频谱特点,设计FIR或IIR滤波器,分别画出滤波器幅频和相频特性曲线。说明滤波器特性参数。用设计的滤波器对信号滤波,画出滤波后时域波形。用sound函数回放语音信号。 (3)求出特征频段语音信号随时间变化的曲线(每隔0.05秒求一次功率谱,连接成曲线)。 (4)选做:语谱图:横轴为时间,纵轴为频率,灰度值大小表示功率谱值的大小。(提示,可以采用spectrogram 函数)

(1)读入语音文件并画出其时域波形和频域波形,实现加窗fft并求出其功率谱。 clc clear all; close all; [x,Fs,bits]=wavread('C:\Users\刘冰\Desktop\数字信号处理\liubing'); x0=x(:,1); %将采集来的语音信号转换为一个数组 sound(x0,Fs,bits); y=fft(x); figure;plot(x,’b’);title('原始语音信号时域波形'); y1=fft(x0); y1=fftshift(y1); d = Fs/length(x); figure;plot([-Fs/2:d: Fs/2-d],abs(y1),’b’);title('原始语音信号的频域信号'); % 画出原始语音信号的频谱图

语音识别基础讲义02

第二章语音的特征 2.1发音的生理机构与过程 2.1.1 发音的生理机构 人的发音生理机构见图2.1。如图所示, 发音器官主要由以下三个部分所构成: (1)主声道:一般将声门(声带开口处) 以上,经咽喉、口腔(舌、唇、腭、 小舌)的管道称为主声道。 (2)鼻道:经小舌和鼻的管道称为鼻道。 鼻道只有在发音时通过小舌下才被 打开。小舌上抬时鼻道将被关闭。 (3)次声门系统:经肺、支气管和气管 的管道称为次声门系统。 图2.1 发音器官示意图 2.1.2 语音的产生过程 语音的产生过程可分为音源产生、声道调音和向外辐射三个阶段。 音源可分为声带音源和非声带音源两大类,非声带音源又可分为噪声音源和爆破音源。声带振动周期称为基本周期(Fundamental Period),其倒数称为基本频率(Fundamental Frequency)。男性的基本频率一般为50~250Hz,女性的基本频率一般为100~500Hz。当发音的基本周期随时间变化时,便可感知重音和语调(Intonation)。音源波由基波及其谐波成分构成。 声道调音(Articulation)指为了发出各种各样的声音,需要诸如舌、口唇、腭等的器官对声道形状进行的调整。有了不同的声道形状,就能给出声道的不同的传递特性,并由于声道腔的共鸣作用,使得语音能量按频率发生强弱变化。声道腔共鸣特性反映在其频率特性上,便有一系列共振峰的出现,这些共振峰所对应的频率称为共振峰频率(Formant)。 根据产生的音源不同大致可形成以下三种语音: (1)浊音(V: V oiced speech)的产生 音源是位于声门处的准周期空气脉冲序列。空气从肺部排出形成空气流,空气流经过声带时,如果声带是绷紧的,则将在声门处产生出一个准周期性脉冲气流。即声带产生弛张振动,形成周期性地开启和闭合。声带启开时空气流从声门喷射出来,形成一个脉冲,声门闭合时相应于脉冲序列的间隙。该空气脉冲流通过声道后最终从嘴唇辐射出声波,这便是浊音语音。 (2)清音(U: Unvoiced speech)的产生 音源是位于声道的某个收缩区的湍流(类似噪音)。如果声带是完全舒展开来的,则肺部发出的空气流将不受影响地通过声门。空气通过声门后,如果声道某个部位发生了收缩,形成了一个狭窄的通道,则当空气流到达此处时将被迫以高速气流冲过收缩区,并在附近产生出空气湍流。这种湍流空气通过声道后便形成所谓的清音(也称摩擦音)。 (3)爆破音(P: Plosive speech)的产生 音源是位于声道某个闭合点处建立起来的气压,其具有突然释放的特性。声带状态同湍流音源一样,但当空气通过声门后,如果声道的某个部位完全闭合在一起,当空气流到达时便在此处建立起空气压力,一旦闭合点突然开启便会让气压快速释放,经过声

语谱图

基于信号分析与处理的语谱图显示 1 语谱图 语音的发音过程中, 声道通常都是处于运动状态的, 因此它的共振峰特性也是时变的。不过这个时变过程比起振动过程来说要缓慢得多, 因此一般可以假定它是短时平稳的, 每一时刻我们都可以用这时刻附近的一短段( 例如15ms) 语音信号分析得到一种频谱。对语音信号连续地进行频谱分析就可以得到一种二维图谱, 其横坐标表示时间, 纵坐标表示频率, 而每像素的灰度值大小反映相应时刻和相应频率的信号能量密度。这种时频图称为语谱图( Sonogram 或Spectrogam), 这种反映语音信号动态频谱特性的时频图在语音分析中有重要实用价值, 被视为可视语言。从语谱图上不仅能看出任一时刻发音器官的共振峰特征,而且可以看出语音的基音频率, 是否清音、爆破音等。语谱分析在语音识别、合成及编码中很有意义。 1.1 语谱图的产生基理 语音信号是一种典型的非平稳信号, 但是其非平稳性是由发音器官的物理运动过程而产生的, 此过程与声波振动的速度相比较缓慢, 可以假定在10~30ms这样的短时间内是平稳的。傅立叶分析是分析线性系统和平稳信号稳态特性的强有力的手段, 而短时傅里叶分析, 也叫时间依赖傅立叶变换, 就是在短时平稳的假定下, 用稳态分析方法处理非平稳信号的一种方法。 设离散时域采样信号为x(n), n=0,1,?,N- 1, 其中n 为时域采样点序号, N 是信号长度。然后对信号进行分帧处理, 则x(n)表示为xn(m), n=0,1,?,N- 1, 其中n 是帧序号, m 是帧同步的时间序号, N 为帧长( 一帧内的采样点数) 。信号{x(n)}短时傅里叶变换为: 其中{w(n)}为窗序列, 则信号x(n)的离散时域傅里叶变换(DTFT) 为: 采用离散傅里叶变换(DFT)得: 则P(n,k)是二维的非负实值函数, 并且不难证明它是信号x(n)的短时自相关函数的傅里叶变换。用时间n 作为横坐标, k 作纵坐标, 将P(n,k)的值表示为灰度级所构成的二维图像就是语谱图。通过变换10log10(P(n,k))能得到语谱图的dB 表示。

数字语音处理复习题分析

第一章绪论 1.语音信号处理是以语音语言学和数字信号处理为基础而形成的一门涉及面很广的综合性的学科。p1d3 2.语音信号处理的应用技术列举:语音编码、语音识别、语音合成、说话人识别和语种辨识、语音转换和语音隐藏(语音信息伪装、语音数字水印技术)、语音增强等p4d3 3.当前语音信号处理应用的3个主流技术:矢量量化技术、隐马尔可夫模型技术、人工神经网络技术。p4d3 第二章语音信号处理基础知识 1.语音是组成语言的声音,是声音(Acoustic)和语言(Language)的组合体。p5d2 2.语音的基本声学特性包括音色,音调,音强、音长。p7d2 音色:也叫音质,是一种声音区别于另一种声音的基本特征。 音调:是指声音的高低,它取决于声波的频率。 音强:声音的强弱,它由声波的振动幅度决定。 音长:声音的长短,它取决于发音时间的长短。 3. 说话时一次发出的,具有一个响亮的中心,并被明显感觉到的语音片段叫音节(Syllable)。一个音节可以由一个音素(Phoneme)构成,也可以由几个音素构成。音素是语音发音的最小单位。p7d3 4.任何语言都有语音的元音(V owel)和辅音(Consonant)两种音素。p7d3 8.当声带振动发出的声音气流从喉腔、咽腔进入口腔从唇腔出去时,这些声腔完全开放,气流顺利通过,这种音称为元音。p7d3 9.呼出的声流,由于通路的某一部分封闭起来或受到阻碍,气流被阻不能畅通,而克服发音器官的这种阻碍而产生的音素称为辅音。p7d3 7.发辅音时由声带是否振动引起浊音和清音的区别,声带振动的是浊音,声带不振动的是清音。p7d3 8.元音构成音节的主干(因为无论从长度还是能量看,元音在音节中都占主要部分。)p7d3 9.元音的一个重要声学特性是共振峰(Formant)。共振峰参数是区别不同元音的重要参数,它一般包括共振峰频率(Formant Frequency)的位置和频带宽度(Formant Bandwidth)。p7d5 16.人类的声道和鼻道可以看作是非均匀截面的声道管,声道管的谐振频率称为共振峰频率(共振峰)。p7d5 10.汉语音节一般由声母、韵母和声调三部分组成。汉语普通话中有6000多个常用字,每个汉字是一个音节。p10d6 10. 发浊音时,气流通过声门时使声带发生振动,产生准周期激励脉冲串,这个脉冲串的周期就称为基音周期(pitch),其倒数成为基音频率。 11.汉语是一种声调语言,声调的变化就是浊音基音周期(或基音频率)的变化。p14d5 13. 无论是单音节语音还是连续语音,其中浊音段的基因频率是随时间而变化的,基因频率的不同轨迹成为声调。p9d11 14. 当两个响度不同的声音作用于人耳时,响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象成为掩蔽效应。 15.语音信号的生成模型可由激励模型、声道模型和辐射模型三个子模型构成,三者是串联(串联/并联)的关系。p21-26 16.语音信号激励模型一般分为浊音激励和清音激励,发浊音时激励模型为脉冲波。p21d6 17.语音信号激励模型一般分为浊音激励和清音激励,发清音时激励信号通常被模拟为随机白噪声。p22d2

影视作品分析教案【私家编导课件】

五、课后作业: “拉片”xx影片《我的父亲母亲》 第四周 课题: 分析xx影片《我的父亲母亲》 教学目的: 熟悉色彩在影片中的运用 课的类型: 职业基础理论模块 教学方法: 讲授、观摩、讨论 教具: 放像机、投影仪 教学重点: 再认知色彩 难点: 色彩在影片中的应用 教学过程: 一、讲色彩“两要点”及“八种”常用色彩的含义与象征(一)《色彩——影片成功的情绪元素之一》(50分钟)

电影诞生是从黑、白、灰的单调来反映世界的,尽管如此,观众在欣赏黑白影片时也能聪明的从黑、白、灰的单调中找到蓝天、白绿树、红花。这就是艺术的假定性,马克思说的好: “色彩的感觉是一般美感中最大众化的形式”。 色彩的运用可以从两个角度理解: 一是从技术角度而言,我们首先要求色彩的准确还原,尤其是接近真实。二是在影片中,追求色彩的再现并非绝对准确还原,而是注重美学上的思考。 现实生活中色彩斑斓、绚丽夺目,但是人们对它的选择、喜爱则各有不同。中国人喜欢用黑白来表示悲伤;用红色来表示喜庆;以黄色显示富贵。欧洲人则喜欢用黑、红色装点葬礼;用白色打扮新娘。尽管国度不同、习惯各异,但色彩能够表现人的情感,这一点是共同的。 电影艺术家总是把色彩看作有助于深刻表达作品思想内容的一种手段,是从情绪上、心理上感染观众的一种重要造型因素。 请10位同学谈(色彩的作用与象征性) (二)“八种”常用色彩的含义与象征 色彩可分两大色调体系: 暖色调(黄色为主) 冷色调(蓝色为主) 暖色调: 白色、红色、黄色、紫色(中性色彩) 冷色调: 黑色、蓝色、绿色、灰色(中性色彩) (结合影片讲授让大家再认识色彩的作用)

影视作品分析教案【私家编导课件】

五、课后作业:“拉片”中国影片《我的父亲母亲》 第四周 课题:分析中国影片《我的父亲母亲》 教学目的:熟悉色彩在影片中的运用 课的类型:职业基础理论模块 教学方法:讲授、观摩、讨论 教具:放像机、投影仪 教学重点:再认知色彩 难点:色彩在影片中的应用 教学过程: 一、讲色彩“两要点”及“八种”常用色彩的含义与象征 (一)《色彩——影片成功的情绪元素之一》(50分钟) 电影诞生是从黑、白、灰的单调来反映世界的,尽管如此,观众在欣赏黑白影片时也能聪明的从黑、白、灰的单调中找到蓝天、白绿树、红花。这就是艺术的假定性,马克思说的好:“色彩的感觉是一般美感中最大众化的形式”。 色彩的运用可以从两个角度理解:一是从技术角度而言,我们首先要求色彩的准确还原,尤其是接近真实。二是在影片中,追求色彩的再现并非绝对准确还原,而是注重美学上的思考。现实生活中色彩斑斓、绚丽夺目,但是人们对它的选择、喜爱则各有不同。中国人喜欢用黑白来表示悲伤;用红色来表示喜庆;以黄色显示富贵。欧洲人则喜欢用黑、红色装点葬礼;用白色打扮新娘。尽管国度不同、习惯各异,但色彩能够表现人的情感,这一点是共同的。电影艺术家总是把色彩看作有助于深刻表达作品思想内容的一种手段,是从情绪上、心理上感染观众的一种重要造型因素。 请10位同学谈(色彩的作用与象征性) (二)“八种”常用色彩的含义与象征 色彩可分两大色调体系:暖色调(黄色为主) 冷色调(蓝色为主) 暖色调:白色、红色、黄色、紫色(中性色彩) 冷色调:黑色、蓝色、绿色、灰色(中性色彩) (结合影片讲授让大家再认识色彩的作用) 二、分析影片《我的父亲母亲》艺术特色(150分钟) (一)色彩在影片《我的父亲母亲》的运用 影片《我的父亲母亲》在色彩的运用方面独具特色 1、现实时空采用“黑白”色彩,过去时空采用“彩色”色彩, 将色彩与剧情有机结合。(“彩色”表现美好的纯洁爱情的多彩人生,“黑白”色彩表现现实冬天与对先生逝去的哀思。) 2、影片人物造型运用色彩形成强烈的反差,达到绝妙的艺术效果。(“招娣”服装色彩的变化与“先生”服装色彩的对比,人物服装色彩与自然景色色彩的对比。) (二)影片的叙事结构(两部分,四个点) 1、影片的叙事结构由“现实时空与过去时空”两个部分组成。 2、影片的叙事结构由四个点(等、追、找、看)补充完善。 (三)影片艺术特色与风格 影片采用朴实、自然的视“许多如中国民间版画”听叙事手法,诗意、散文化、抒情、浪漫与纪实性巧妙结合的艺术风格。 (四)影片思想内涵

相关文档
相关文档 最新文档