文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计课堂笔记

概率论与数理统计课堂笔记

概率论与数理统计课堂笔记
概率论与数理统计课堂笔记

概率论与数理统计是经管类各专业的基础课,概率论研究随机现象的统计规律性,它是本课程的理论基础,数理统计则从应用角度研究如何处理随机数据,建立有效的统计方法,进行统计推断。

概率论包括随机事件及其概率、随机变量及其概率分布、多维随机变量及其概率分布、随机变量的数字特征及大数定律和中心极限定理。共五章,重点第一、二章,数理统计包括样本与统计量,参数估计和假设检验、回归分析。重点是参数估计。

预备知识

(一)加法原则

引例一,从北京到上海的方法有两类:第一类坐火车,若北京到上海有早、中、晚三班火车分别记作火1、火2、火3,则坐火车的方法有3种;第二类坐飞机,若北京到上海的飞机有早、晚二班飞机,分别记作飞1、飞2。问北京到上海的交通方法共有多少种。

【答疑编号:10000101针对该题提问】

解:从北京到上海的交通方法共有火1、火2、火3、飞1、飞2共5种。它是由第一类的3种方法与第二类的2种方法相加而成。

一般地有下面的加法原则:

办一件事,有m类办法,其中:

第一类办法中有n1种方法;

第二类办法中有n2种方法;

……

第m类办法中有n m种方法;

则办这件事共有种方法。

(二)乘法原则

引例二,从北京经天津到上海,需分两步到达。

第一步从北京到天津的汽车有早、中、晚三班,记作汽1、汽2、汽3

第二步从天津到上海的飞机有早、晚二班,记作飞1、飞2

问从北京经天津到上海的交通方法有多少种?

【答疑编号:10000102针对该题提问】

解:从北京经天津到上海的交通方法共有:

①汽1飞1,②汽1飞2,③汽2飞1,④汽2飞2,⑤汽3飞1,⑥汽3飞2。共6种,它是由第一步由北京到天津的3种方法与第二步由天津到上海的2种方法相乘3×2=6生成。

一般地有下面的乘法原则:

办一件事,需分m个步骤进行,其中:

第一步骤的方法有n1种;

第二步骤的方法有n2种;

……

第m步骤的方法有n m种;

则办这件事共有种方法。

(三)排列(数):从n个不同的元素中,任取其中m个排成与顺序有关的一排的方法数叫排列数,记作或。

排列数的计算公式为:

例如:

(四)组合(数):从n个不同的元素中任取m个组成与顺序无关的一组的方法数叫组合数,记作或。

组合数的计算公式为

例如:=45

组合数有性质

(1),(2),(3)

例如:

例一,袋中有8个球,从中任取3个球,求取法有多少种?

【答疑编号:10000103针对该题提问】

解:任取出三个球与所取3个球顺序无关,故方法数为组合数

(种)

例二,袋中五件不同正品,三件不同次品(√√√√√×××)从中任取3件,求所取3件中有2件正品1件次品的取法有多少种?

【答疑编号:10000104针对该题提问】

解:第一步在5件正品中取2件,取法有

(种)

第二步在3件次品中取1件,取法有

(种)

由乘法原则,取法共有10×3=30(种)

第一章随机事件与随机事件的概率

§1.1随机事件

引例一,掷两次硬币,其可能结果有:

{上上;上下;下上;下下}

则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。

引例二,掷一次骰子,其可能结果的点数有:

{1,2,3,4,5,6}

则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。

从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即

它没有确定性结果,这样的事件,我们叫随机事件。

(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,

习惯用A、B、C表示随机事件。

由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。

虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有

时在演示过程中要利用它,所以我们也介绍这两种事件。

必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。

例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。

不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不

可能事件。

例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。

(二)基本(随机)事件

随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,

习惯用ω表示基本事件。

例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。

全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。

(三)随机事件的关系

(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A,

记作。

例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。∴A={1,2},

B={1,2,3}。

所以A发生则必然导致B发生。

显然有

(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事

件B,表示A与B实际上是同一事件。

(四)事件的运算

(1)和事件:事件A与事件B中至少有一个发生的事件叫事件A与事件B的和事件,记作:或A+B

例如,掷一次骰子,A={1,3,5};B={1,2,3}

则和事件A+B={1,2,3,5}

显然有性质

②若,则有A+B=B

③A+A=A

(2)积事件:事件A与事件B都发生的事件叫事件A与事件B的积事件,记作:AB或A∩B

例如,掷一次骰子,A={1,3,5};B={1,2,3},则AB={1,3}

显然有性质:

②若,则有AB=A

③AA=A

(3)差事件:事件A发生而且事件B不发生的事件叫事件A与事件B的差事件,记作(A-B)

例如,掷一次骰子,A={1,3,5};B={1,2,3},则A-B={5}

显然有性质:

②若,则有A-B=Φ

③A-B=A-AB

(4)互不相容事件:若事件A与事件B不能都发生,就说事件A与事件B互不相容(或互斥)即AB=Φ

例如,掷一次骰子,A={1,3,5};B={2,4}

∴AB=Φ

(5)对立事件:事件A不发生的事件叫事件A的对立事件。记作

例如,掷一次骰子,A={1,3,5},则

显然,对立事件有性质:

注意:A与B对立,则A与B互不相容,反之不一定成立。

例如在考试中A表示考试成绩为优,B表示考试不及格。A与B互不相容,但不

对立。

下面图1.1至图1.6用图形直观的表示事件的关系和运算,其中正方形表示必然事

件或样本空间Ω。

图1.1表示事件事件A

图1.2阴影部分表示A+B

图1.3阴影部分表示AB

图1.4阴影部分表示A-B

图1.5表示A与B互不相容

图1.6阴影部分表示

事件的运算有下面的规律:

(1)A+B=B+A,AB=BA叫交换律

(2)(A+B)+C=A+(B+C)叫结合律

(AB)C=A(BC)

(3)A(B+C)=AB+AC

(A+B)(A+C)=A+BC叫分配律

(4)叫对偶律

例1,A,B,C表示三事件,用A,B,C的运算表示以下事件。

(1)A,B,C三事件中,仅事件A发生

【答疑编号:10010101针对该题提问】

(2)A,B,C三事件都发生

【答疑编号:10010102针对该题提问】

(3)A,B,C三事件都不发生

【答疑编号:10010103针对该题提问】

(4)A ,B,C三事件不全发生

【答疑编号:10010104针对该题提问】

(5)A,B ,C三事件只有一个发生

【答疑编号:10010105针对该题提问】

(6)A,B,C三事件中至少有一个发生

【答疑编号:10010106针对该题提问】

解:(1)

(2)ABC

(3)

(4)

(5)

(6)A+B+C

例2.某射手射击目标三次:A1表示第1次射中,A2表示第2次射中,A3表示第3次射中。B0表示三次中射中0次,B 1表示三次中射中1次,B2表示三次中射中2次,B3表示三次中射中3次,请用A1、A2、A3的运算来表示B0、B1、B2、B3【答疑编号:10010107针对该题提问】

解:(1)

(2)

(3)

(4)

例3 ,A,B,C表示三事件,用A,B,C的运算表示下列事件。(1)A,B都发生且C不发生

【答疑编号:10010108针对该题提问】

(2)A与B至少有一个发生而且C不发生

【答疑编号:10010109针对该题提问】

(3)A,B,C都发生或A,B,C都不发生

【答疑编号:10010110针对该题提问】

(4)A,B,C中最多有一个发生

【答疑编号:10010111针对该题提问】

(5)A,B,C中恰有两个发生

【答疑编号:10010112针对该题提问】

(6)A,B,C中至少有两个发生

【答疑编号:10010113针对该题提问】

(7)A,B,C中最多有两个发生

【答疑编号:10010114针对该题提问】

解:(1)

(2)

(3)

(4)

(5)

(6)简记AB+AC+BC

(7)简记

例4,若Ω={1,2,3,4,5,6};A={1,3,5};B={1,2,3}求(1)A+B;

【答疑编号:10010115针对该题提问】

(2)AB;

【答疑编号:10010116针对该题提问】

(3);

【答疑编号:10010117针对该题提问】

(4);

【答疑编号:10010118针对该题提问】

(5);

【答疑编号:10010119针对该题提问】

(6);

(7),

【答疑编号:10010121针对该题提问】

(8)。

【答疑编号:10010122针对该题提问】

解:(1)A+B={1,2,3,5};

(2)AB={1,3};

(3)={2,4,6};

(4)={4,5,6};

(5)={4,6};

(6)={2,4,5,6};

(7)={2,4,5,6};

(8)={4,6}

由本例可验算对偶律,=,=正确例5,(1)化简;

【答疑编号:10010123针对该题提问】

(2)说明AB与是否互斥

【答疑编号:10010124针对该题提问】

解:(1)

(2)

例6.A,B,C为三事件,说明下列表示式的意义。(1)ABC;

【答疑编号:10010125针对该题提问】

(2);

(3)AB;

【答疑编号:10010127针对该题提问】

(4)

【答疑编号:10010128针对该题提问】

解:(1)ABC表示事件A,B,C都发生的事件

(2)表示A,B都发生且C不发生的事件

(3)AB表示事件A与B都发生的事件,对C没有规定,说明C可发生,也可不发生。

∴AB表示至少A与B都发生的事件

(4)

所以也可以记AB表示,ABC与中至少有一个发生的事件。

例7.A,B,C为三事件,说明(AB+BC+AC)与是否相同。

【答疑编号:10010129针对该题提问】

解:(1)表示至少A,B发生

它表示A,B,C三事件中至少发生二个的事件。

(2)表示A,B,C三事件中,仅仅事件A与事件B发生的事件

表示A,B,C三事件中仅有二个事件发生的事件。

因而它们不相同。

§1.2随机事件的概率

(一)频率:(1)在相同条件下,进行了n次试验,在这n次试验中,事件A发生了n A次,则事件A发生的次数n A叫事件A发生的频数。

(2)比值n A/n称为事件A发生的频率,记作f n(A),即

历史上有不少人做过抛硬币试验,其结果见下表,用A表示出现正面的事件:

从上表可见,当试验次数n大量增加时,事件A发生的频率f n(A)会稳定某一常数,我们称这一常数为频率的稳定值。例如从上表可见抛硬币试验,正面出现的事件A 的频率f n(A)的稳定值大约是0.5。

(二)概率:事件A出现的频率的稳定值叫事件A发生的概率,记作P(A)

实际上,用上述定义去求事件A发生的概率是很困难的,因为求A发生的频率f n (A)的稳定值要做大量试验,它的优点是经过多次的试验后,给人们提供猜想事件A 发生的概率的近似值。

粗略地说,我们可以认为事件A发生的概率P(A)就是事件A发生的可能性的大小,这种说法不准确,但人们容易理解和接受,便于应用。

下面我们不加证明地介绍事件A的概率P(A)有下列性质:

(1)0≤P(A)≤1

(2)P(Ω)=1,P(Φ)=0

(3)若A与B互斥,即AB=Φ,则有

P(A+B)=P(A)+P(B)

若A1,A2,……,A n互斥,则有

(三)古典概型:

若我们所进行的随机试验有下面两个特点:

(1)试验只有有限个不同的结果;

(2)每一个结果出现的可能性相等,

则这种试验模型叫古典概型。

例如,掷一次骰子,它的可能结果只有6个,假设骰子是均匀的,则每一种结果出现的可能性都是1/6,所以相等,这种试验是古典概型。

下面介绍古典概型事件的概率的计算公式:

设是古典概型的样本空间,其中样本点总数为n,A为随机事件,其中所含的样

本点数为r

则有公式:

例1,掷一次骰子,求点数为奇数点的事件A的概率。

【答疑编号:10010201针对该题提问】

解:样本空间为Ω={1,2,3,4,5,6};A={1,3,5}

∴n=6,r=3

例2.掷三次硬币,设A表示恰有一次出现正面,B表示三次都出现正面,C表示至少出现一次正面,求:

(1)P(A);

【答疑编号:10010202针对该题提问】

(2)P(B);

【答疑编号:10010203针对该题提问】

(3)P(C)

【答疑编号:10010204针对该题提问】

解:样本空间Ω={正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反};

(1)

(2)

(3)

由于在古典概型中,事件A的概率P(A)的计算公式只需知道样本空间中的样本点的总数n和事件A包含的样本点的个数r就足够,而不必一一列举样本空间的样本点,因此,当样本空间的样本点总数比较多或难于一一列举的时候,也可以用分析的方法求出n与r的数值即可。

例3,从0,1,2,3,4,5,6,7,8,9 这10个数码中,取出三个不同的数码,求所取3个数码不含0和5的事件A的概率。

【答疑编号:10010205针对该题提问】

解:从10个不同数码中,任取3个的结果与顺序无关,所以基本事件总数

A事件中不能有0和5,所以只能从其余8个数码中任取3个,所以A中的基本事件

例4,从1,2,3,4,5,6,7,8,9这9个数字中任取一个,放回后再取一个,求所取两个数字不同的事件A的概率。

【答疑编号:10010206针对该题提问】

解:(1)第一次取一个数字的方法有9种;

第二次取一个数字的方法与第一次相同也是9种;

由乘法原则,知两次所取的数字方法有9×9=92(种)

每一种取法是一个基本事件,所以n=92

(2)所取两个数字不同时,相当于从中任取两个数,其结果与顺序有关,所取取法有:

也可按(1)的乘法原则求r,第一次的取法有9种,第二次的数字与第1次不同,所以只有8种,所以取法共有9×8(种)

∴r=9×8

例5,袋中有5个白球,3个红球,从中任取2个球,

求(1)所取2个球的颜色不同的事件A的概率;

【答疑编号:10010207针对该题提问】

(2)所取2个球都是白球的事件B的概率;

【答疑编号:10010208针对该题提问】

(3)所取2个球都是红球的事件C的概率;

【答疑编号:10010209针对该题提问】

(4)所取2个球是颜色相同的事件的概率。

【答疑编号:10010210针对该题提问】

解:袋中共的8个球,从中任取2个球结果与顺序无关,所以取法共有种,每一种取法的结果是一个基本事件,所以基本事件总数为

(1)分两步取。第一步,在5个白球中任取一个,方法数为5;第二步在3个红球中取一个,方法数为3,根据乘法原则,共有5×3种方法,即有5×3种结果。

(2)从5个白球中任取2个,结果与顺序无关

∴取法共有(种)

∴B包含的基本事件共有r2=10

(3)从3个红球中任取2个的方法为(种)

∴C包含的基本事件数r3=3

(4)所取2个球颜色相同的有两类:

第一类:2个球都是白球的方法有(种)

第二类:2个球都是红球的方法有(种)

根据加法原则,所取2个球是颜色相同的方法共有10+3=13种。

∴2个球颜色相同的事件D包含r4=13种基本事件。

例6,袋中有10件产品,其中有7件正品,3件次品,从中每次取一件,共取两次,√√√√√√√×××

求:

(1)不放回抽样,第一次取后不放回,第二次再取一件,而且第一次取到正品,

第二次取到次品的事件A的概率。

【答疑编号:10010211针对该题提问】

(2)放回抽样,第一次取一件产品,放回后第二次再取一件,求第一次取到正品,第二次取到次品的事件B的概率

【答疑编号:10010212针对该题提问】

解(1)第一次取一件产品的方法有10种

∵不放回,∴第二次取一件产品的方法有9种

由乘法原则知,取两次的方法共有10×9种

也可以用排列数计算,因为结果与顺序有关,所以取法有(种)

∴基本事件总数n=10×9

第一次取到正品,第二次取到次品的方法有7×3种,所以事件A包含的基本事件有:

(2)放回抽样。由于有放回,所以第一次、第二次取一件产品的方法都是10种,由乘法原则知抽取方法共有10×10=100种,所以基本事件总数

n=10×10=100

第一次取正品方法有7种,第二次取次品的方法有3种,由乘法原则,事件B包含的基本事件共有

例7,将一套有1,2,3,4,5分册的5本书随机放在书架的一排上,求1,2分册放在一起的事件A的概率。

【答疑编号:10010301针对该题提问】

解:(1)基本事件总数n=5×4×3×2×1(种)

或者为

(2)A包含的基本事件有(种)

例8,掷两次骰子,求点数和为7的事件A的概率。

【答疑编号:10010302针对该题提问】

解:(1)基本事件总数n=6×6=36(种)

(2)A={①⑥;②⑤;③④;④③;⑤②;⑥①}

∴A包含的基本事件数r=6

例9,从1,2,3,4,5,6,7这七个数码中任取3个,排成三位数,

求(1)所排成的三位数是偶数的事件A的概率。

(2)所排成的三位数是奇数的事件B的概率。

【答疑编号:10010303针对该题提问】

解:基本事件总数(个)

(1)所排成的三位数是偶数的取法需分两步:

第一步,取一个偶数放在个位码位置,取法有3种;

第二步,将其余6个数中任取两个排成一排,分别处于十位数和百位数码位置,共

有种方法。

根据乘法原则,事件A包含的基本事件数

(2)所排成的三位数的取法也需分两步进行;

第一步,取一个奇数放在个位码位置,有4种方法。

第二步,将其余6个数中任取两个放在十位码和百位码,方法有种。

根据乘法原则,事件B包含的基本事件数

例10,袋中有9个球,分别标有号码1,2,3,4,5,6,7,8,9从中任取3个球,求

(1)所取3个球的最小号码为4的事件A的概率;

【答疑编号:10010304针对该题提问】

(2)所取3个球的最大号码为4的事件B的概率;

【答疑编号:10010305针对该题提问】

解:基本事件总数(个)

(1)最小号码为4的取法分两步进行

第一步,取出4号球,方法只有1种

第二步,在5,6,7,8,9这5个球中任取2个,方法数为

∴A包含的基本事件

(2)最大码为4的取法为:

第一步,取出4号球方法只有1种

第二步,在1,2,3号球中任取2个,方法数为

∴B包含的基本事件

例11,将两封信投入4个信箱中,求两封信在同一信箱的事件A的概率。【答疑编号:10010306针对该题提问】

解:(1)先将第一封信投入信箱,有4种方法

再将第二封信投入信箱,也有4种方法

∴根据乘法原则共有4×4种方法

∴基本事件总数n=4×4

(2)将两封信同时投入一个信箱,方法有4种

∴A包含的基本事件数r=4

例12,袋中有10个球,其中有6个白球,4个红球,从中任取3个,求:(1)所取的三个球都是白球的事件A的概率

【答疑编号:10010307针对该题提问】

(2)所取三个球中恰有2个白球一个红球的事件B的概率

【答疑编号:10010308针对该题提问】

(3)所取3个球中最多有一个白球的事件C的概率

【答疑编号:10010309针对该题提问】

(4)所取3个球颜色相同的事件D的概率

【答疑编号:10010310针对该题提问】

解:基本事件总数

(1)A包含的基本事件数

(2)B包含的基本事件数

(3)C的基本事件包含两类:

第一类,一个白球,二个红球的取法有

第二类,0个白球,三个红球取法有种

∴事件C包含的基本事件数

(4)事件D包含的基本事件有两类:

第一类,三个球都是白球的取法有种

第二类,三个球都是红球的取法有种

∴事件D 包含的基本事件数(种)

(四)概率的加法公式

请先看下面引例:

掷一次骰子,A={1,3,5},B={1,2,3}请求:

(1)P(A);

【答疑编号:10010311针对该题提问】

(2)P(B);

【答疑编号:10010312针对该题提问】

(3)P(A+B);

【答疑编号:10010313针对该题提问】

(4)P(AB)

【答疑编号:10010314针对该题提问】

解:(1)

(2)

(3)

(4)

由本例看出,P(A+B)=P(A)+P(B)-P(AB),本例的结果具有普遍性,下面我们不加证明地介绍下面公式:

特别情形:

(1)如果A与B互斥,即AB=Φ则P (AB)

=0

这时

(2)因为A与有性质

所以

当上面等式中左边的概率P(A)不易求得,而且A的对立事件的概率则较

易计算时,便可以通过容易计算的求难计算的概率P(A)。

例1若P(A)=0.5,P(A+B)=0.8,P(AB)=0.3,求P(B)

【答疑编号:10010315针对该题提问】

解:因为P(A+B)=P(A)+P(B)-P(AB)

∴P(B)=P(A+B)+P(AB)-P(A)

=0.8+0.3-0.5=0.6

例2,袋中有10件产品,其中有6件正品,4件次品,从只任取3件,求所取3件中有次品的事件A的概率。

【答疑编号:10010316针对该题提问】

解:A表示有次品,它包含有1件次品,有2件次品,有3件次品三类事件,计算比较复杂。

而对立事件则表示没有次品,即都是正品的事件,比较简单。

因为基本事件总数

事件包含的基本事件

加法公式可推广如下:

例3,P(A)=0.4,P(B)=0.5,P(C)=0.4,P(AB)=0.2,P(AC)=0.24,P(BC)=0,求P(A+B+C)。

【答疑编号:10010317针对该题提问】

解:

(五)概率的减法公式

因为,而,而BA 与明显不相容。

特别地,若,则有AB=A

所以当

例1 ,已知P (B )

=0.8,P (AB )=0.5,求

【答疑编号:10010318针对该题提问】 解:

例2,若A 与B 互不相容,P (A )=0.5,P (B )=0.3,求

【答疑编号:10010319针对该题提问】 解:(1)P (A+B )=P (A )+P (B )=0.8 根据对偶公式

所以

§1.3 条件概率

(一)条件概率和乘法公式

符号

叫在事件B 已经发生的条件下,事件A 发生的概率,叫条件概率

,需要指出

的是 条件概率仍是事件A 的概率,但是它有条件,条件是以B 已经发生为前提,或者

是以B 已经发生为条件。

例1,某厂有200名职工,男、女各占一半,男职工中有10人是优秀职工,女职工中有20人是优秀职工,从中任选一名职工。

用A 表示所选职工优秀,B 表示所选职工是男职工。 求(1)P (A );

【答疑编号:10010401针对该题提问】 (2)P (B );

【答疑编号:10010402针对该题提问】 (3)P (AB );

【答疑编号:10010403针对该题提问】 (4)

【答疑编号:10010404针对该题提问】 解:(1)

(2)

(3)AB 表示所选职工既是优秀职工又是男职工

(4)

表示已知所选职工是男职工。在已知所选职工是男职工的条件下,该职

工是优秀职工,这时n=100,r=10

由本例可以看出

事件A 与事件不是同一事件,所以它们的概率不同,

由本例还可看出,

事件AB 与事件也不相同,

事件AB 表示所选职工既是男职工又是优

秀职

工,这时基本事件总数n 1=200,r=10。而事件 则表示已知所选职工是男职工,所以基本事件总数n 2=100,

r=10,所以虽然P (AB )与

不相同,但

它们有关系,由本例可以看出

本例的结果具有普遍性。下面我们不加证明地给出下面的乘法公式:

显然有:若P(A)>0则有

将上面的结果改写为整式有

公式叫概率的乘法公式。

例2,在10件产品中,有7件正品,3件次品,从中每次取出一件(不放回),A表示第一次取出正品,B表示第二次取出正品,求:

(1)P(A);

【答疑编号:10010405针对该题提问】

(2);

【答疑编号:10010406针对该题提问】

(3)P(AB)

【答疑编号:10010407针对该题提问】

解(1)

(2)

∴(3) =

例3,若P(AB)=0.3,P(B)=0.5,求

【答疑编号:10010408针对该题提问】

解:

例4,若P(A)=0.8,P(B)=0.4,,求。

【答疑编号:10010409针对该题提问】

解:(1)

∴(2)

例5,某人寿命为70岁的概率为0.8,寿命为80岁的概率为0.7,若该人现已70岁时,问他能活到80岁的概率是多少?

【答疑编号:10010410针对该题提问】

解:用A表示某人寿命为70岁,B表示某人寿命为80岁。

已知P(A)=0.8,P(B)=0.7

由于

因为

所以,已经活到70岁的人能活到80岁的概率为0.875

乘法公式可以推广为:

例6,袋中有三件正品,二件次品(√√√××)从中每次取出1件(不放回)共取3次,求第3次才取到次品的事件B的概率。

【答疑编号:10010411针对该题提问】

解:用A1表示第一次取到正品A2表示第二次取到正品A3表示第三次取到正品

用古典概型计算P(A1),这时n1=5,r1=3

再用古典概型计算,这时n2=4,r2=2

再用古典概型计算,这时n3=3,r3=2

(二)全概公式

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

对概率论与数理统计的认识

对概率论与数理统计的认识

————————————————————————————————作者: ————————————————————————————————日期: ?

对概率论与数理统计的认识 院系数学与信息工 程系 专业数学与应用数学 姓名刘建丽

对概率论与数理统计的认识 摘要 概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。这是当前课程改革的大势所趋。加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。 关键字:概率论实践解决问题 一,学科历史 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大。 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。数学家们“参与”赌博。参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。1713年,雅可布的著作《猜度术》出版。遗憾的是在他的大作问世之时,雅可布已谢世

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

浙大版概率论与数理统计答案---第六章

第六章 统计量与抽样分布 注意: 这是第一稿(存在一些错误) 1、解:易知的X 期望为μ,方差为2n σ ,则 ()0,1X N μσ-近似地 , 所以,( ) (0.10.10.909X P X P μσ μσσ? ? - ? -<=<≈Φ= ? ? ??? 。 2、解 (1)由题意得: 2 2 2 2211111()()()()n n i i i i E X D X E X D X E X n n n σμ==??=+=+=+ ???∑∑ ()2211111111 ()()n n i i i i E X X E X X E X X n n n σμ==?=?==+∑∑ (2)1X X -服从正态分布,其中: 1()0E X X -=,22 1122111()( )()()n n n D X X D X D X n n n σ----=+= 从而 2 11~(0,)n X X N n σ-- 由于 ~(0,1)i X N μ σ -,1,2, i n =,且相互独立,因此: () ()2 22 1 ~n i i X n μχσ=-∑ ~(0,1)X N μ -,所以( ) ()2 22 ~1n X μ χσ- 由于 ()2 22 (1)~1n S n χσ--,所以 () () ()2 2 2 2 22 (1)/~1,1(1) n X n X n S F n n S μ μ σσ---=-- (3)由于 () 2 /2 2 1 ~(/2)n i i X n μχσ =-∑ ,以及 () 2 2 1/2 ~(/2)n i i n X n μχσ =+-∑ ,因此有:

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

《概率论与数理统计》课程重点与难点要记

《概率论与数理统计》课程重点与难点要记 第一章:随机事件及其概率 题型一:古典概型 1.房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,求最小号码为5的概率,及最大号码是5的概率。 2.设袋中有5个白球,3个黑球,从袋中随机摸取4个球,分别求出下列事件的概率: 1)采用有放回的方式摸球,则四球中至少有1个白球的概率; 2)采用无放回的方式摸球,则四球中有1个白球的概率。 3.一盒子中有10件产品,其中4件次品,每次随机地取一只进行检验, 1)求第二次检验到次品的概率; 2)求第二才次检验到次品的概率。 4.在1-2000的整数中随机的取一个数,问取到的整数既不能被6整除,又不能被8整除 的概率是多少?(合理的设置事件,通过概率的性质解题也很重要) 课后习题:P16:2,3,4,5, 7,9,10,11,12,13,14 P30:8,9,10,16 题型二:利用条件概率、乘法公式及事件的独立性计算事件的概率 1。3人独立去破译一个密码,他们能译出的概率分别为1/5、1/4、1/3,问能将此密码译出的概率。 2。设口袋有2n-1只白球,2n 只黑球,一次取出n 只球,如果已知取出的球都是同一种颜色,试计算该颜色是黑色的概率。 3。设袋中装有a 只红球,b 只白球,每次自袋中任取一只球,观察颜色后放回,并同时放入m 只与所取出的那只同色的球,连续在袋中取球四次,试求第一、第二次取到红球且第三次取到白球,第四次取到红球的概率。 课后习题:P23:1,2,3,4,6,10,11 P28:1,2,4,5,6,7,9,10,12, 13 题型三:全概率与贝叶斯公式 1.在一个每题有4个备选答案的测验中,假设有一个选项是正确的,如果一个学生不知道问题的正确答案,他就作随机选择。知道正确答案的学生占参加测验者的90%,试求: (1)学生回答正确的概率; (2)假如某学生回答此问题正确,那么他是随机猜出的概率。 2.一通讯通道,使用信号“0”和“1”传输信息。以A 记事件收到信号“1”,以B 记事件发出信号“1”。已知()0.4,(/)0.95,(/)0.90P B P A B P A B ===。 1)求收到信号“1”的概率? 2)现已收到信号“1”,求发出信号是“1”的概率? 课后习题:P23:7,8,9,12 P31:19,26,27,28 第二章:随机变量及其分布 题型一:关于基本概念:概率分布律、分布函数、密度函数 1.一房间有三扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了

相关文档
相关文档 最新文档