文档库 最新最全的文档下载
当前位置:文档库 › 最新半刚性基层沥青路面典型结构设计

最新半刚性基层沥青路面典型结构设计

最新半刚性基层沥青路面典型结构设计
最新半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计

黄晓明

【东南大学交通学院南京210018】

摘要:通过对江苏、安徽、浙江三省高等级公路若干线段及沪宁高速公路无锡试验段的调查、测试和分析,提出了高等级公路半刚性基层沥青路面典型结构图式及其注意事项,对半刚性基层沥青路面的结构设计具有较好的参考价值。

关键词:半刚性基层沥青路面结构设计

1概述

我国90%以上的高等级公路沥青路面基层和底基层采用半刚性材料。半刚性基层沥青路面已经成为我国高等级公路沥青路面的主要结构类型。

在七·五期间,国家组织开展了“高等级公路半刚性基层、重交通道路沥青面层和抗滑表层的研究”的研究工作,对沥青混合料的高温稳定性、低温抗裂性,沥青面层的开裂机理、车辙和疲劳、抗滑表层设计和应用、半刚性基层材料的强度特性和收缩特性,组成设计要求等进行了深入的研究工作,提出了较为完整的研究报告,为高等级公路半刚性基层沥青路面的设计和施工提供了理论依据和技术保证。

由于现行的《柔性路面设计规范》颁布于1986年,随着国家对交通运输业的日益重视和人们筑路经验的不断提高,一致认为1986年版的《柔性路面设计规范》已不能满足高等级公路半刚性基层沥青路面的需要。由于对半刚性基层认识不足,使得设计结果具有一定的盲目性,设计结果要么过分保守,要么因路面结构设计不当而产生早期破坏,造成很大的经济损失。因此,如何利用七·五国家攻关项目取得的成果,结合近十年来半刚性基层沥青路面的设计和施工经验,根据实际使用效果,提出适合本地区特点的路面结构,对路面结构设计方法的更新和路面实际使用效果的改善具有重要的意义。根据江苏、安徽、浙江高等级公路的实际,江苏在镇江、无锡、苏州、徐州、连云港共计4线10段进行调查,安徽在合肥、马鞍山、淮南三市调查了3线8段,浙江在嘉兴和杭州调查了2线5段共计9线23段。调查的路面结构具有一定的典型性。

2国内外研究概况

2.1国外国道主干线基层的结构特点

国外国道主干线基层结构有以下特点:

(1)多数采用结合料稳定的粒料(包括各种细粒土和中粒土)及稳定细粒土(如水泥土、石灰土等)只能用作底基层,有的国家只用作路基改善层。法国和西班牙在重交通的高速公路上,要求路面底基层也用结合料处治材料。

(2)使用最广泛的结合料是水泥和沥青,石灰使用得较少。此外,还使用当地的低活性慢凝材料和工业废渣,如粉煤灰、粒状矿渣等。

(3)有的国家用沥青稳定碎石做基层的上层,而且用沥青做结合料的结构层的总厚度(面层+基层的上层)常大于20cm。

经过几十年的总结,国外在半刚性基层沥青路面结构组合上虽有所改进,但半刚性材料仍是常采用的基层和底基层材料。

2.2国外典型结构示例

国外沥青路面结构设计方法经过几十年的完善,已经提出了比较成熟的设计方法,并且许多国家提出了典型结构设计方法,表1给出了法国典型结构一个范例。

表1

土的等级

PF1PF2PF3

交通等级

To(750-

7BB+7BB+25GC+25GC7BB+7BB+25GC+20GC7BB+7BB+25GC+25GC 2000)

T1(300-

8BB+25GC+25GC8BB+25GC+20GC8BB+20GC+20GC 750)

T2(150-

6BB+25GC+22GC6BB+22GC+20GC6BB+20GC+18GC 300)

T3(50-

6BB+22GC+20GC6BB+18GC+18GC6BB+15GC+15GC 150)

注:(1)交通等级栏下括号内的数值指一个车道上的日交通量,以载重5t以上的车计;

(2)PF1,PF2和PF3指土的种类和土基的潮湿状态,PF1相当于一般的土基;

(3)BB指沥青混凝土,GC指水泥粒料;

(4)表中数字单位为cm。

一些国家在高等级公路上实际采用过的半刚性基层沥青路面结构见表2。

一些国家在高等级公路上实际采用过的半刚性基层沥青结构表表2

国家沥青层厚度(cm)半刚性材料层厚度(cm)备注

日本20~30水泥碎石,30~20

荷兰20~26水泥碎石,40~15

西德30贫混凝土,15另有防冻层

英国9.5~16.9贫混凝土,15另有底基层

瑞典12.5水泥粒料

南非17.5水泥砂砾,30

西班牙8水泥粒料当前的规定2.3其它高速公路路面结构

沥青路面典型结构设计表3

道路名称

长度

(km)

路面结构

面层(cm)基层(cm)底基层(cm)

广佛路15.7

4中粒式

5细粒式25水泥碎石或

31水泥石屑

25-28水泥土

沈大路375

4中粒式

5细粒式

6沥青碎石

25水泥碎石

京津塘142.5

5中粒式

6细粒式

12沥青碎石

25水泥碎石30石灰土

京石14

4中粒式

8沥青碎石

15二灰碎石40石灰土济青路15-18开级配中粒式38-40二灰碎石42石灰土正在建设的沪宁高速公路路面结构如表4。

表4

标段

结构层A1

B4

B5

B7

C1

C4

C5

C2

D1

D6

D7

D9

E1

E5

F1

F6

F7

G1

G2

G4

G5G6

面层

16

AC 16

AC

16

AC

16

AC

16

AC

16

AC

16

AC

16

AC

16

AC

16

AC

16

AC

基层

30

LFA

30

LFA

25

LFA

25

LFA

40

LFA

38

LFA

30

LFA

20

LFA

18

LFA

20

LFA

20

LFA

底基层

30

LF

30

LFS

33

LS

33

LFS

18

LF

20

LFS

33

LFS

40

LFS

36

FS

40

LFS

40

LFD

注:AC-沥青面层(4cm中粒式,6cm粗粒式,6cm中粒式);

LFA-二灰碎石,LF-二灰,LS-石灰土;

LFS-二灰土,LFD-二灰砂。

国内七·五期间修筑的主要几条试验路的结构、实体工程及正在建设的一些高等级公路的结构表明,半刚性基层是沥青路面最主要的结构类型,同时,不同设计人员所提出的结构组合相差较大,甚至,对同一条路,不同设计单位设计的路面结构相差也很大。因此,根据设计与施工经验提出的适应不同地区的典型结构具有一定的理论意义和实践意义。

3路面结构调查

典型结构调查要求选择的路线及路段具有典型性,公路等级要求是二级或二级以上的半刚性基层沥青路面,施工质量达到一定的水平,或者由专业队伍承担施工任务。施工质

量检查比较严格,如有相应的试验路段,尽可能根据当时试验目的及原始测试数据进行跟踪调查。

选择的调查路段使用年限应达到三年以上,并有一定的交通量。路段应包括不同的路基结构(即填控情况)不同的地带类型,不同的路面结构(含不同材料和不同厚度),不同的使用状态(如完好,临界和破坏)和不同的交通量。被选择的路段的基层结构应符合《公路路面基层施工技术规范》的规定,即不是用稳定细粒土或悬浮式石灰土粒料做的基层。路段长度在100~500m之间。为此,浙江、江苏和安徽分别选择320国道嘉兴段,104国道萧山段,206国道淮南段,205国道马鞍山段,合蚌路,312国道镇江、无锡、苏州段,310国道新墟段、徐丰线进行全面的调查和测试。

根据选择路段的基本情况,本次典型结构调查路段选择具有以下特点:

(1)反映了不同地区,不同的道路修建水平;

(2)反映了不同地区,不同的路面结构组合类型;

(3)包括了表处,贯入式等一般二级公路采用的结构,也包括了高速公路采用的结构;

(4)包括中间夹有级配碎石连结层的路面结构;

(5)反映了经济和地区水平的差异;

(6)包括了不同地区主要使用的半刚性基层材料。

3.1路段测试内容及测试方法

沥青路面结构设计

第四章 路面结构设计 1、1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24、5米,全长5km ,结合近几年济南经济增长及人口增长得情况,根据近期得交通量预测该路段得年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13、8℃,无霜期178天,最高月均温27、2℃(7月),最低月均温-3、2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1、3;因此该 路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ 区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5、1、4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1、2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载得计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 得各级轴载Pi 得作用次数Ni 按下式换算成标准轴载P 得当量作用次数N 得计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算得车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型得各级轴载(kN ); C1——被换算车型得各级轴载系数,当其间距大于3m 时,按单独得一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1、2(m-1); C2——被换算车型得各级轴载轮组系数,单轮组为6、4,双轮组为1、0, 四轮组为0、38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709、00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18、5,双轮组为1、0,四轮组为0、09。 注:轴载小于50KN 得特轻轴重对结构得影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

沥青路面结构设计示例

7.2路面结构设计 7.2.1路面结构设计步骤 新建沥青路面按以下步骤进行路面结构设计: (1) 根据设计任务书和路面等级及面层类型,计算设计年限内一个车道的累计当量轴次和设计弯沉值。 (2) 按路基土类型和干湿状态,将路基划分为几个路段,确定路段回弹模量值。 (3) 根据已有经验和规范推荐的路面结构,拟定几中可能的路面结构组合及厚度方案,根据选用的材料进行配合比实验及测定结构层材料的抗压回弹模量、抗拉强度,确定各结构层材料设计参数。 (4) 根据设计弯沉值计算路面厚度。对二级公路沥青混凝土面层和半刚性基层材料的基层、底基层,应验算拉应力是否满足容许拉应力的要求。如不满足要求,或调整路面结构层厚度,或变更路面结构层组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 7.2.2 路面结构层计算 该路位于中原黄河冲积平原区,地质条件一般为a)第一层:冲积土;b)第二层:粘质土;c)第三层:岩石。平原区二级汽车专用沥青混凝土公路,路面使用年限为12年,年预测平均增长率为6%。 (1)轴载分析 本设计的累计当量轴次的计算以双轮组单轴载100kN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表7-1确定。 表7-1标准轴载计算参数 表7-2起始年交通量表

1)以设计弯沉为指标及验算沥青层层底拉应力 ① 轴载换算 各级轴载换算采用如下计算公式: 4.35 1121( )k i i i p N c c n p ==∑ (7-1) 式中:N 1—标准轴载的当量轴次,次/日; n i —被换算车辆的各级轴载作用次数,次/日; P —标准轴载,kN ; P i —被换算车辆的各级轴载,kN ; k —被换算车辆类型; C 1—轴数系数,C 1=1+1.2(m -1),m 是轴数。当轴间距大于3m 时,按单独的一个轴载计算,当轴间距小于3m 时,应考虑轴系数; C 2—轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 计算结果如下表7-3所示。 表7-3 轴载换算结果表(弯沉) 注:轴载小于25kN 的轴载作用不计。 ② 累计当量轴次为:

半刚性基层沥青路面问题分析

半刚性基层沥青路面问题分析 半刚性基层沥青路面具有与柔性路面完全不同的结构特征。因此,其病害成因和维修对策也与传统的柔性路面有所不同,本文根据半刚性基层沥青路面的典型病害特征及产生原因,提出了路面养护维修的主要对策。 关键字:半刚性基层沥青路面病害对策 一、半刚性基层路面的典型病害特征 半刚性基层沥青路面的典型病害可划分为两大类型:非结构性损坏和结构性损坏。前者指半刚性基层的板体性未受到破坏,而后者是指路面损坏位置下的半刚性基层受到损坏,板体强度减弱或完全丧失。 1、非结构性损坏 该类病害主要有桥头跳车、间距规则的横向裂缝、路表局部网裂和正常车辙等,病害特征如下。 (1)桥头跳车桥头跳车有两种情况:(1)台背填土压实不足,导致填土在台背后数十米范围内下沉。其特征为:沉降在行车方向是渐变的,延续距离相对较长,路面的整体强度未受破坏,路表面也少有损坏,但行车时具有明显的“波浪”感;(2)由于桥梁与台背填土刚度的差异而产生的不均匀沉降,从而出现的跳台。其特征为:延续距离短,只有几米,路面少有损坏发生,行车时具有明显的“瞬间跳车冲击”感。 (2)间距规则的横向裂缝这种裂缝一般为半刚性基层的结构性收缩而导致的反射裂缝。它横向贯穿公路全幅路面,深度方向贯通全部结构层,并且缝隙宽随季节变化。一般认为这种裂缝不可避免,对路面的整体性没有损害。 (3)纵向裂缝这种裂缝的数量较少,大多发生在高路堤地段路基外侧。成因是路堤中央与外侧压实不均匀、旧路帮宽或地基受外部水源的长期侵蚀,导致路基或地基的不均匀沉降。一般情况下裂缝较宽。 (4)路表局部网裂路表局部网裂多发生在行车道轮迹下,成因为路面局部施工缺陷。如:材料不均匀、基层成型不好、沥青面层与基层间有软弱夹层等。它起始于轮迹处,而远离轮迹处的路面施工缺陷由于受车辆荷载的影响较小,因此难以出现此类损坏。 2、结构性损坏该类损坏主要有路面局部凹陷龟裂和结构性辙槽。 (1)路面局部凹陷龟裂这种损坏是路面局部网裂的延续。因局部网裂没有得到及时的维修封堵,雨水渗入到基层,而高速行驶车辆轮胎的强大“泵吸”作用

半刚性基层060807

半刚性基层 一、概述 1.半刚性基层发展和应用概况 60~70年代:石灰土——经济 70年代:开始应用二灰类,但碎石无级配 80~90年代:大量应用二灰稳定类,悬浮型结构90年代:同时应用二灰稳定类和水泥稳定类 2. 半刚性基层类型 基层类型: (1)粒料类基层 (2)有机结合料稳定类——沥青稳定类 沥青稳定土 沥青碎石——沥青碎石、沥青贯入 沥青稳定碎石 沥青混凝土 (3)无机结合料稳定类——半刚性基层 此外还有刚性基层——混凝土、贫混凝土基层 半刚性基层类型: (1)石灰稳定类 (2)水泥稳定类 (3)综合稳定类 (4)工业废渣稳定类 常用半刚性基层类型: (1)二灰稳定类 二灰稳定碎石、二灰稳定砂砾——基层 二灰土——底基层 (2)水泥稳定类 水泥稳定碎石、水泥稳定砂砾——基层 水泥土——底基层

水泥稳定砂、水泥稳定石屑等,水泥稳定中粒土——低等级公路基层 、高等级公路底基层3. 半刚性基层的特点 (1)优点 ①强度高、承载力大、整体性好 ②稳定性好(水稳性、冻稳性) ③刚度大 ④对地方材料的质量要求较低 ⑤就地取材,经济性能好 (2)缺点 ①收缩系数较大、抗变形能力差 ②透水性差,表面易积水 ③破裂后不能愈合 ④对荷载大小的敏感性较大 (3)特点 ①较大的刚性、抗变形能力差 ②弯拉强度控制设计 目前沥青路面设计中,采用劈裂强度 ③环境温度和湿度对强度形成有很大的影响 ④强度和刚度均随龄期增长、后期衰减并逐渐疲劳 (4)再认识——结论 ①裂缝难以解决 ②排水性能不好 ③强度、模量会不断衰减 ④抗车辙能力并不比柔性基层好 ⑤对重载、超载交通敏感性大 ⑥铺筑过程易提前开裂 ⑦维修困难 养生时间长、破坏后无愈合能力,新老基层无法联结

低温地区沥青路面结构设计分析

低温地区沥青路面结构设计分析 发表时间:2019-05-23T11:01:43.723Z 来源:《防护工程》2019年第1期作者:潘攀 [导读] 因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 中铁四局集团有限公司设计研究院 230000 摘要:本文就低温地区沥青路面结构破坏类型及低温影响效果进行简单分析,并从沥青混合料、基层结构、联结层结构及表面层结构四个方面展开设计研究,旨在为低温地区沥青路面结构设计提供参考建议。 关键词:低温地区;沥青路面;结构设计 沥青路面具有平坦整洁、环保美观、舒适安全、维修养护简单等特点,因此逐渐成为世界道路桥梁建设工程首要选择,调查发现沥青路面在我国道路建设项目所占比重也呈现逐渐增加的趋势。因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 一、低温地区沥青路面结构破坏研究 1、沥青路面结构破坏类型 通过对部分沥青道路调研发现,虽然道路结构、材料配比及使用年限存在较大差异,但道路路面呈现的结构破坏类型及特点却大致相同,具体表现在于:低温地区大多存在周期性冻土现象,道路基层在冻胀融缩的物理作用下容易出现结构变异,破坏道路结构引起不同程度的路面开裂问题。图1展示的就是低温地区常见的沥青路面结构破坏类型。 (a)路面剪裂(b)温缩开裂(c)反射开裂 图1 沥青论结构破坏类型 2、低温对沥青路面结构影响 道路建设需要应用到多种建筑材料,这些材料若长期处于低温状态会出现不同程度的收缩现象,由此产生较大拉应力,若拉应力超过材料拉伸强度将会导致材料结构被破坏进而出现开裂问题。道路路面纵向长度远大于横向长度,因此低温收缩引起的裂缝往往呈现为横向间隔,严重时才会出现纵向裂缝。种类各异的沥青基层对应特定的温度拉应力,因此结合实际情况选择合适的沥青材料显得尤为重要。 二、低温地区沥青路面结构设计研究 对低温地区沥青路面进行结构设计研究的时候需要针对基层耐受性、面层抗车辙、表面层抗裂性进行综合考量,因此需要对沥青混合料配比、基层温差、联结层荷载、表面层开裂等内容进行重点分析,以便确保结构设计的科学合理。 图2 沥青路面基本结构图 1、基于感温性能的沥青混合料设计 进行沥青混合料配比设计时需要综合考虑混合料所在位置及耐受特点,进而实现最优设计。图2展示的是沥青路面基本结构,分析可知表面层及联结层处于主要压力承载的高压应力区域,在进行建筑设计时需要选择抗磨损、高模量的沥青混合料,联结层处于表面层与基层的过度位置,最好选择传导效果优异的沥青材料,以便做好路面压力疏导工作。基层结构承受较大的拉应变,就整个路面而言担负着路面压力的重任,因此就沥青道路基层而言结构设计需要围绕荷载疲劳展开,研究发现沥青占比高的混合基层能够承受更大的荷载压力,有效避免了疲劳裂缝的出现。对于处于低温地区的沥青路面设计还需要着重考虑混合料感温性能,不同类型的沥青混合料其感温性能存在差异,在此基础上计算获得代表其粘弹性的劲度抗压指标,进而明确沥青混合料在特定温度时的物理特性。 2、基于大温差作用的沥青基层设计 沥青路面各结构在低温大温差的作用下会沿着路面横向出现不均衡温度场,此时的沥青路面这一受约整体在温度场作用下将产生温度

柔性基层与半刚性基层沥青路面重载适应性分析

柔性基层与半刚性基层沥青路面重载适应性分析摘要:论文以路面力学软件bisar3.0为计算工具,分析标准轴载、超载50%、超载100%的情形下对这两种不同基层沥青路面的力学响应,对比研究其路表弯沉、路面结构各层次(面层、基层、底基层)的力学特性。结果表明,柔性基层沥青路面与半刚性基层沥青路面的重载适应性存在明显差异。只有对其合理优化组合,才能实现这两种路面结构的优势互补。 关键词:柔性基层;半刚性基层;重载适应性 abstract: the paper to pavement mechanics for computing tools bisar3.0 software, analysis standard axle load, overload, overload 100% 50% of cases of the two different the mechanical response of the asphalt pavement, the contrast of the way the table deflection, pavement structure all levels (surface, basic level, subbase) mechanical properties. the results show that the asphalt pavement and flexible grassroots semi-rigid base of the asphalt pavement overloaded adaptability differences. only for the rational optimized combination, can realize the two complementary advantages of pavement structure. keywords: flexible grassroots; semi-rigid base; overloaded adaptability 中图分类号:u416.217文献标识码:a 文章编号:

最新半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计 黄晓明 【东南大学交通学院南京210018】 摘要:通过对江苏、安徽、浙江三省高等级公路若干线段及沪宁高速公路无锡试验段的调查、测试和分析,提出了高等级公路半刚性基层沥青路面典型结构图式及其注意事项,对半刚性基层沥青路面的结构设计具有较好的参考价值。 关键词:半刚性基层沥青路面结构设计 1概述 我国90%以上的高等级公路沥青路面基层和底基层采用半刚性材料。半刚性基层沥青路面已经成为我国高等级公路沥青路面的主要结构类型。 在七·五期间,国家组织开展了“高等级公路半刚性基层、重交通道路沥青面层和抗滑表层的研究”的研究工作,对沥青混合料的高温稳定性、低温抗裂性,沥青面层的开裂机理、车辙和疲劳、抗滑表层设计和应用、半刚性基层材料的强度特性和收缩特性,组成设计要求等进行了深入的研究工作,提出了较为完整的研究报告,为高等级公路半刚性基层沥青路面的设计和施工提供了理论依据和技术保证。

由于现行的《柔性路面设计规范》颁布于1986年,随着国家对交通运输业的日益重视和人们筑路经验的不断提高,一致认为1986年版的《柔性路面设计规范》已不能满足高等级公路半刚性基层沥青路面的需要。由于对半刚性基层认识不足,使得设计结果具有一定的盲目性,设计结果要么过分保守,要么因路面结构设计不当而产生早期破坏,造成很大的经济损失。因此,如何利用七·五国家攻关项目取得的成果,结合近十年来半刚性基层沥青路面的设计和施工经验,根据实际使用效果,提出适合本地区特点的路面结构,对路面结构设计方法的更新和路面实际使用效果的改善具有重要的意义。根据江苏、安徽、浙江高等级公路的实际,江苏在镇江、无锡、苏州、徐州、连云港共计4线10段进行调查,安徽在合肥、马鞍山、淮南三市调查了3线8段,浙江在嘉兴和杭州调查了2线5段共计9线23段。调查的路面结构具有一定的典型性。 2国内外研究概况 2.1国外国道主干线基层的结构特点 国外国道主干线基层结构有以下特点: (1)多数采用结合料稳定的粒料(包括各种细粒土和中粒土)及稳定细粒土(如水泥土、石灰土等)只能用作底基层,有的国家只用作路基改善层。法国和西班牙在重交通的高速公路上,要求路面底基层也用结合料处治材料。 (2)使用最广泛的结合料是水泥和沥青,石灰使用得较少。此外,还使用当地的低活性慢凝材料和工业废渣,如粉煤灰、粒状矿渣等。

沥青路面设计范例

路基路面课程设计(沥青路面设计)范例 1.1 道路等级确定 根据调查资料,基年交通量组成如下: 表3.1 基年交通量组成 由于路线为县级公路,因此道路等级为一级公路以下,则由预测年限规定:具有集散功能的一级公路及二、三级公路的规划交通量应按15年预测,则由公式: N d =N (1+8%)n-1 (式1-1) 其中:N d —规划年交通量(辆/日) N —基年平均日交通量(辆/日) —年平均增长率(%) n—预测年限(年) 即:规划年交通量为: Nd=[(150+80+100+120)×1.5+150×2.0+(120+110)×3.0]×(1+8%)15-1 =[345+150+300+180+360+330] ×(1+8%)15-1 =4890辆/日 由《公路工程技术标准》(JTG B01—2003)(以下简称《标准》),双车道三级公路应能适应将各种车辆折合成小客车的年平均日交通量为2000~6000辆,综合考虑选定道路等级为三级。

1.2 结构设计 6.2.1轴载分析 路面设计以双轮组单轴轴载100kN为标准轴载。 6.2.1.2.1轴载换算(基本参数见表6.1) 轴载换算公式如下: N= 35 .4 i i k 1 i 2 1p p N C C?? ? ? ? ? ∑ = (式6-1) 式中:N—标准轴载的当量轴次,(次/日); N i —被换算车辆的各级轴载,(KN); P—标准轴载,(KN); P i —被换算车辆的各级轴载,(KN); K—被换算车型的轴载级别; C 1—轴载系数,C 1 =1+1.2×(m-1),m是轴数。当轴间距大于3m时,按单独 的一个轴载计算,当轴轴间距小于3m时,应考虑轴数系数;C 2 —轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 表6-1 标准轴载计算参数 表6-2 预测交通量组成

半刚性基层沥青路面的过去,现在和未来

半刚性基层沥青路面的过去,现在和未来 马辉112364 摘要:我国所修建的高速公路中90%以上为半刚性基层沥青路面结构,这种结构承载能力强,车辙深度小,水稳定性好,且已成为我国高等级公路的主要结构型式。但实践证明半刚性基层沥青路面有一些不可避免的技术问题,如由于半刚性基层材料的收缩特性而导致的沥青路面早期开裂,半刚性基层材料在行车荷载水和温度梯度的综合作用下出现的基层唧泥现象,在重交通条件下出现的早期疲劳损坏现象等等。本文从半刚性基层的特点,典型结构和主要病害以及防止措施等方面对半刚性基层沥青路面做了详细的介绍,并在结构优化和重载条件下半刚性基层沥青路面的发展做了展望。 关键词:半刚性基层沥青路面;病害;裂缝;结构优化;重载交通 1.概述 在粉碎的或原状松散的土中掺人一定量的无机结合料(水泥、石灰或工业废渣等)和水,拌和后经压实与养生,其抗压强度符合规定要求的材料称为无机结合料稳定材料。由于无机结合料稳定材料的刚度介于柔性路面材料和刚性路面材料之间,故常称此为半刚性材料,以此修筑的基层(底基层)亦称为半刚性基层(底基层),在此基础上修筑的沥青路面称为半刚性基层沥青路面。 20世纪80年代中期以来,由于交通量大增,以及轴载和重车比例增大,对路面的整体强度和平整度提出了更高的要求,相应地,对基层的要求也提高到了一个更高的水平。由于原有的级配碎石基层暴露出很大的弊端,即容易导致新建或改建的高等级公路沥青路面发生一些严重的早期损坏现象,于是普遍采用无机结合料稳定粒料(土)类基层,即在路面材料中掺入一定比例的石灰、水泥、粉煤灰或其他工业废渣等结合料,加水拌和形成混和料,经摊铺压实及养生后形成路面基层。进入20世纪90年代以后,沥青混凝土为面层的半刚性基层路面被广泛地应用于国内二级以上公路(含高速公路)。半刚性基层材料在国外一般都用水泥稳定,称为CTB(Cement Treated Base),最早应用于对软弱地基的处理,随后发展并应用于基层和底基层路面结构设计。与传统的全柔性路面基层(级配碎石、级配砾石、填隙碎石等)相比,石灰、水泥、粉煤灰等结合料都具有很高(或一定)的活

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均增长率为9.5%,设计年限为15年,该路段处于Ⅳ2区。 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次

根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

半刚性基层沥青路面面层层位功能

TRANSPOWORLD 2012 No.18 (Sep) 172前言 随着国外耐久性沥青路面(或称长寿命沥青路面)设计理念的引进,我国道路工作者对沥青路面结构组合设计越来越重视,半刚性沥青路面结构的沥青面层厚度有逐渐增厚的趋势。那么,沥青面层分几层设计合适,每一沥青层材料设计应侧重哪些方面的性能要求等,则是沥青路面结构设计必须要明确的关键问题,否则,盲目的增加沥青面层厚度将很难起到路面耐久的作用。本文利用长寿命沥青路面设计分析软件BISAR3.0,以及希尔斯(Hills)和布来因(Brien)提出的温度应力计算公式,分析了半刚性基层沥青路面在沥青面层厚度、模量、行车荷载和环境温度等条件下的沥青面层应力分布规律,并依此确定沥青面层不同深度的功能分区,对指导半刚性基层沥青路面的沥青面层组合设计具有重要意义。 沥青路面结构与设计计算参数 采用的半刚性基层沥青路面结构形式及参数见图1。 应力计算时采用垂直荷载作用下的弹性层状连续体系,荷载采用双轮组单轴载100KN作为标准轴载,单轮传压面当量圆直径21.30cm,轮胎接地压强0.7MPa,两轮中心距31.95cm。计算点为单圆荷载中心处以下每2cm深度取一点。 利用BISAR3.0的沥青面层应力分布规律分析 在半刚性基层沥青路面设计中,影响沥青面层内部里应力分布规律的主要变量有面层厚度、面层模量,以及行车荷载的大小等。 面层厚度对应力的影响分析 在保持路面其他设计参数不变的条件下,改变沥青面层厚度(H 1为16cm~30cm),进行沥青面层不同深度处的拉应力(拉应力为负值时材料受压,拉应力为正值时材料受拉)、剪切应力的计算。沥青面层不同深度处的 拉应力、剪切应力随深度变化规律见图2、图3。 由图2可见,当面层总厚度H1从16cm增加到30cm时,应力为压应力的范围由距路表深度0~8cm增加到0~15cm;距路表深度8~15cm以下则表现为拉应力,并随深度增加而增大, 均在面层底部达到最大值,因此,面层厚度对沥青面层层底拉应力峰值位置的影响不大。同时随沥青面层总厚度的增加,面层底部最大拉应力值减小。由此表明增加面层厚度有利于提高面层的抗疲劳破坏能力。 由图3可见,当面层厚度H 1从16cm增加到30cm时,剪应力沿路面深 度先增大后减小,且均在6~7cm深度处剪应力达到最大值。因此面层厚度对最大剪应力位置无明显影响。 面层模量对拉应力的影响分析 在保持路面其他设计参数不变的条件下,改变沥青面层模量(E1为1000MPa~2400MPa),进行沥青面层不同深度拉应力和剪切应力的计算。沥青面层不同深度处的拉应力、剪切应力随深度变化规律见图4、图5。 由图4可见,当面层模量E 1从1000Mpa增加到2400Mpa时,应力为压应力的范围变化不大,基本在距路表深度0~11cm范围内,而在距路表深度10cm以下则表现为拉应力,且拉应力随深度增加而增大,在面层底达到最大值。同时,随面层模量的增加,面层底部最大拉应力增大。总的来说,面层模量对层底拉应力峰值位置无明显影响。 由图5可见,当面层模量E 1从 H IGHWAY 现代公路 半刚性基层沥青路面面层层位功能分析 文/李海波 魏如喜

半刚性基层和柔性基层路面运营期养护对比分析

半刚性基层和柔性基层路面运营期养护对比分析 半刚性基层和柔性基层路面运营期养护对比分析 摘要:公路半刚性基层和柔性基层路面由于力学性能的不同, 在运营期间会出现不同的路面病害,通过对公路运营期间养护的对比分析,为公路改建和新建沥青路面方案比选提供参考意义。结合安徽省宣城市S322水仙路宣城至泾县段的运营期养护工作,从半刚性基 层路面和柔性基层路面受力特性、路面病害类型、养护对策和费用等方面进行了对比分析,全面阐述了半刚性基层和柔性基层路面的优缺点。 关键词:半刚性基层;柔性基层;路面养护;对比 Abstract: The highway semi-rigid and flexible base pavement due to the different mechanical properties, during the operation period will appear different pavement distress, through comparative analysis of highway maintenance operation period, for the highway reconstruction and new asphalt pavement scheme selection of reference significance. Unifies the Anhui province Xuancheng city Xuancheng road to Jingxian County S322 Narcissus operation maintenance work, are compared and analyzed from the semi-rigid base pavement and flexible base pavement stress characteristics, pavement type, maintenance and cost etc, a comprehensive exposition of the advantages and disadvantages of semi-rigid base and flexible base pavement. Key words: semi-rigid base; flexible base pavement maintenance; comparison; 中图分类号:U415 一、前言 我市升级改造后国省干线公路绝大部分都采用半刚性基层沥青 混凝土路面,半刚性基层具有一定的抗拉强度、抗疲劳强度、良好的水稳定特性。这些都符合路面基层的要求,使得路面基层受力性能良

沥青路面结构设计示例

7、2 路面结构设计 7.2.1 路面结构设计步骤 新建沥青路面按以下步骤进行路面结构设计: (1) 根据设计任务书与路面等级及面层类型,计算设计年限内一个车道的累计当量轴次与设计弯沉值。 (2) 按路基土类型与干湿状态,将路基划分为几个路段,确定路段回弹模量值。 (3) 根据已有经验与规范推荐的路面结构,拟定几中可能的路面结构组合及厚度方案,根据选用的材料进行配合比实验及测定结构层材料的抗压回弹模量、抗拉强度,确定各结构层材料设计参数。 (4) 根据设计弯沉值计算路面厚度。对二级公路沥青混凝土面层与半刚性基层材料的基层、底基层,应验算拉应力就是否满足容许拉应力的要求。如不满足要求,或调整路面结构层厚度,或变更路面结构层组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 7.2.2 路面结构层计算 该路位于中原黄河冲积平原区,地质条件一般为a)第一层:冲积土;b)第二层:粘质土;c)第三层:岩石。平原区二级汽车专用沥青混凝土公路,路面使用年限为12年,年预测平均增长率为6%。 (1)轴载分析 本设计的累计当量轴次的计算以双轮组单轴载100kN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表7-1确定。 表7-1 标准轴载计算参数

① 轴载换算 各级轴载换算采用如下计算公式: 4.351121( )k i i i p N c c n p ==∑ (7-1) 式中:N 1—标准轴载的当量轴次,次/日; n i —被换算车辆的各级轴载作用次数,次/日; P —标准轴载,kN; P i —被换算车辆的各级轴载,kN; k —被换算车辆类型; C 1—轴数系数,C 1=1+1、2(m-1),m 就是轴数。当轴间距大于 3m 时,按单独的一个轴载计算,当轴间距小于3m 时,应考虑轴系数; C 2—轮组系数,单轮组为6、4,双轮组为1、0,四轮组为0、38。 计算结果如下表7-3所示。 表7-3 轴载换算结果表(弯沉)

养护高等级公路半刚性基层沥青路面的主要对策

养护高等级公路半刚性基层沥青路面的主要对策 1半刚性基层路面的特征 在我国高等级公路中半刚性基层沥青路面是主要的路面结构形式,由于该路面与柔性路面的结构特征不同。所以,它产生病害的原因及维修对策与柔性路面也是不同的。半刚性基层具有较高的刚度,具备较强的荷载扩散能力。所以施工及运营过程中一定要保持半刚性基层的整体性;半刚性基层起着结构承载能力作用,而沥青面层只起着功能层作用。因此半刚性基层沥青路面结构的主要破坏形 式是半刚性基层的弯拉疲劳损坏;该路面采用防水下渗措施是十分重要的。这是规范的规定。正因为这些与柔性路面的不同,如果还采用柔性路面的维修方法, 自然就导致半刚性基层沥青路面维修的失败。这里就其高等级公路半刚性基层沥青路面的病害特征及其产生原因,对传统的路面维修方法进行了修正和改进,同时新对策在路面养护维修实践中保证了路面维修的有效性和耐久性。 2半刚性基层沥青路面的病害 半刚性基层沥青路面的典型病害可划分非结构性损坏和结构性损坏。非结构性损坏是指半刚性基层的板体性未受到破坏。而结构性损坏是指路面损坏位置下的半刚性基层受到损坏,从而使板体强度减弱或完全丧失。 (1)非结构性损坏,主要有桥头跳车、间距规则的横向裂缝、路表局部网裂、正常车辙和桥面铺装层剥落等。桥头跳车有两种情况: 一是台背填土压实不足,导致填土在台背后数十米范围内下沉。其特征为:沉降在行车方向是渐变的,延续距离相对较长,路面的整体强度未受破坏,路表面也少有损坏,但行车时具有明显的“波浪”感; 二是由于桥梁与台背填土刚度的差异而产生的不均匀沉降,从而出现的跳台。其特征为:延续距离短,只有几米,路面少有损坏发生,行车时具有明显的“瞬间 跳车冲击”感。间距规则的横向裂缝为半刚性基层的结构性收缩而导致的反射裂缝,它横向贯穿高速公路半幅路面,深度方向贯通全部结构层,并且缝宽随季节变化。一般认为这种裂缝不可避免,对路面的整体性没有损害。纵向裂缝的数量较少,大多发生在高路堤地段路基外侧。成因为路堤中央与外侧压实不均或地基

半刚性路基材料

半刚性路基材料 郜宇晨 21813109在道路工程这门课上我们初步了解了半刚性路基是刚性路面在下,柔性路面在上的一种路基,现在通过查阅资料对它进行更进一步的认识。 一、路面基层的分类 路面基层大的分为三类:刚性基层、半刚性基层、柔性基层,底基层材料和基层差不多,主要是水泥、石灰含量低一些或者选用的是粒径小一些的土、砂砾之类。 刚性基层是指采用普通混凝土、碾压式混凝土、贫混凝土、钢筋混凝土、连续配筋混凝土等材料铺筑的路面基层。 半刚性基层又分为三类:水泥稳定类;石灰稳定类;工业废渣稳定类,具体对应有水泥稳定碎石、水泥稳定砂砾、水泥稳定细粒土;石灰稳定碎石、石灰稳定砂砾、石灰稳定细粒土;石灰粉煤灰、石灰粉煤灰土、石灰粉煤灰砂、石灰粉煤灰砂砾、石灰粉煤灰碎石、石灰粉煤灰矿渣、石灰粉煤灰煤矸石。 柔性基层有沥青稳定类和粒料类。沥青稳定类包括密级配沥青稳定碎石(ATB)、开级配排水式沥青碎石基层(ATPB)、半开级配沥青碎石(AM)。粒料类一般即碎砾石基层,又可以分为两类嵌挤型和密实型,嵌挤型包括泥结碎石、泥灰结碎石、填隙碎石,密实型包括级配碎石、级配砾石。 二、半刚性基层的概述 半刚性基层是采用水硬性材料(又称无机结合料)稳定的各种集料和土类,并具有一定强度和厚度的路面基层结构;在半刚性基层上铺筑一定厚度沥青混合料面层的结构称为半刚性基层沥青路面。半刚性基层沥青路面具有强度和刚度较高、路面平整度好、噪音低、行车舒适、易于就地取材、施工工艺简单、使用周期长、工程投资较低、养护维修方便等优点,因此在国内外公路建设中被广泛应用。 半刚性基层,包括水泥稳定粒料类及二灰稳定粒料类等,均具有较高的抗压强度和抗压回弹模量值(介于500~4000MPa),并具有一定的抗弯拉强度,因此半刚性基层沥青路面具有较小的弯沉和较强的荷载分布能力。另外,由于半刚性基层刚度大,使得其上的沥青面层弯拉应力相对减少,从而提高了沥青面层抵抗行车的疲劳破坏能力。因此,半刚性基层具有很好的力学性能、较好的板体性及整体性,设计优良的半刚性基层能满足高等级公路“足够的强度、适宜的刚度和耐久性、较小的变形”的技术要求。由于半刚性基层沥青路面结构有其技术和经济的优点,在我国已建成的高速公路中,半刚性基层沥青混凝土路面约占90%以上,成为我国高等级公路的主要结构型式。这类路面通常由半刚性材料垫层、底基层、半刚性材料基层和沥青面层构成。其中垫层承担排水或隔水、防污、路基补强等作用;半刚性基层作为路面的主要承重层,半刚性底基层是路面的辅助承重层,这两个结构层可提供半刚性路面所需的承载能力,而沥青面层主要承担抗滑、平整、防水等功能性作用。 三、半刚性基层材料结构类型划分 随着对基层材料应用要求的提高和对基层材料性能认识的深人,研究和工程 应用中均显现出集料在混合料中的分布状态对材料性能影响的重要性,有必要在

半刚性基层沥青路面结构的弊端

半刚性基层沥青路面结构的弊端 摘要:我国沥青路面各种早期损坏发生的原因是复杂的,短期的损坏大都受施工影响,较长时间的损坏则具有某种共性,这种影响相对来说要更大些。这种情况与我国使用半刚性基层沥青路面的结构有一定关系,有时很可能是造成沥青路面耐久性不足的主要原因。 关键词:半刚性基层存在弊端 国际上绝大部分国家早在20世纪70年代起,都采用沥青层的弯拉应变和土基模量作为设计指标,采用柔性基层沥青路面、全厚式路面作为重载交通路段的常用的路面结构。而惟有我国千篇一律地采用弯沉指标,采用半刚性基层沥青路面,甚至于结构层的厚度都差不多。 在沥青路面结构问题上,我们也需要放眼世界。纵观国际上的高速公路和重交通公路,大量使用的是全厚式路面或者柔性基层沥青路面。相反半刚性基层沥青路面普遍使用于交通量不很大的公路,或者往往在半刚性基层下设置一个碎石过渡层。水泥稳定碎石基层和贫混凝土基层是性质安全不同的两个类型,而我们则一直混淆不清。名义上铺筑的无机结合料稳定集料基层,却做成类似于贫混凝土的强度,却又没有按贫混凝土的方法去做。即使同样称为半刚性基层的水泥稳定碎石基层,在强度要求、具体做法上也有许多不同之处。 国际上在20世纪70年代以前,半刚性基层沥青路面也曾经用得很普遍,后来,柔性基层和全厚式路面得到了很大的发展,逐渐成为主流。其原因是半刚性基层在其优点的背后,也有不少弊端,有些无法克服。 1)半刚性基层的收缩开裂及由此引起沥青路面的反射性裂缝轻重不同地存在。裂缝会导致两种后果:一是裂缝进水;二是车轮从裂缝的一侧经过到达裂缝的另一侧时,荷载变化不再连续使路面裂缝两侧发生大的应力突变,还形成很大的上下剪切和表面受拉。 2)半刚性基层非常致密,它基本上是不透水或者渗水性很差的材料。水从各种途径进入路面并到达基层后,不能从基层迅速排走,只能沿沥青层和基层的界面扩散、积聚。水进入路面的途径,除了降雨、降雪、化雪的表面水外,还有多种来源。可以说,水进入沥青路面是不可避免的,如不能及时排走就将造成危害。所以都称“水”是造成沥青路面损坏的“元凶”,半刚性基层沥青路面的内部排水性能差是其致命的弱点。 3)半刚性基层有很好的整体性,但是在使用过程中,半刚性基层材料的强度、模量会由于干湿和冻融循环、在反复荷载的作用下因疲劳而逐渐衰减。半刚性基层的状态是由整块向大块、小块、碎块变化,按照整体结构设计路面是偏于不安全的。

半刚性基层浅析

长期以来,我国习惯于注重对硬件的引进,全国公路部门花了大量的外汇进口了很多筑路机械、施工设备、试验仪器设备,以及大量的沥青材料,可是偏偏没有在引进国外的技术上花功夫。我们习惯于立足“自力更生”,强调我国的“国情”与国外的情况不同,特别看重自己的研究成果。这本来无可厚非,但如果民族自尊心变成了虚荣心,盲目地排外,也就很容易产生轻视学习国外先进技术的另一种倾向,这种情况已经影响到公路领域。 引进成熟技术的必要性我国沥青路面(水泥混凝土路面也有类似情况)的结构和设计就是一个典型,我们的许多做法与国际上通行的做法不同,并没有取得良好的效果。国际上绝大部分国家早在20世纪70年代起,就采用柔性基层沥青路面、全厚式路面作为重载交通路段的常用的路面结构,而惟有我国千篇一律地采用半刚性基层沥青路面,甚至于结构层的厚度都差不多。对沥青路面的力学模式,国际上都采用沥青层的弯拉应变和土基模量作为设计指标,惟有我国钟情于表面弯沉这个指标,其他指标实际上都没有作用。其他还有许许多多与国际上不一致的地方,遗憾的是多半多被自己认为是最先进的。

我国最早修建的京津塘高速公路,当时基本上是参照国际上的路面结构和沥青混合料的级配做的,广深珠高速公路也吸收了国外的结构,这2条高速公路使用10余年来,情 况基本良好。京津塘高速公路的外国监理在我国开了一个严格执行“菲迪克条款”的先例,实行了动态质量管理,取得了良好的效果,成为我国质量最好的高速公路之一。然而,自此以后的工程就“本土化”了,监理的素质明显下降,开始了具有我国特点的“评分、评奖、评优”质量检验评定和验收管理办法。施工质量数据弄虚作假已经成了公开的秘密。表面上“像模像样”,实际上“沆瀣一气”一起造假,其结果是工程验收的分数都快接近100分了,优质工程比比皆是,经常是奖状到手,路也坏了。 我国是世界上第一个采用弹性层状体系进行路面结构 计算的国家,这一点始终处于世界的最先进水平。可是,“先进的方法、落后的参数”并没有对设计起多少作用。设计参数都是“想当然”地自由取值,脑子里想什么结构,想多少厚度,都能计算成什么结构,多少厚度,实际上还是拍脑袋。其结果是“天下设计一大抄”,路面设计成为“数学游戏”。全国都千篇一律地使用几乎相同的较薄沥青面层的半刚性基层沥青路面结构。

(整理)半刚性基层沥青路面典型结构设计.

半刚性基层沥青路面典型结构设计 黄晓明 【东南大学交通学院南京210018】 摘要:通过对江苏、安徽、浙江三省高等级公路若干线段及沪宁高速公路无锡试验段的调查、测试和分析,提出了高等级公路半刚性基层沥青路面典型结构图式及其注意事项,对半刚性 关键词:半刚性基层沥青路面结构设计 1 我国90%以上的高等级公路沥青路面基层和底基层采用半刚性材料。半刚性基层沥青 在七·五期间,国家组织开展了“高等级公路半刚性基层、重交通道路沥青面层和抗滑表层的研究”的研究工作,对沥青混合料的高温稳定性、低温抗裂性,沥青面层的开裂机理、车辙和疲劳、抗滑表层设计和应用、半刚性基层材料的强度特性和收缩特性,组成设计要求等进行了深入的研究工作,提出了较为完整的研究报告,为高等级公路半刚性基层沥青路面

由于现行的《柔性路面设计规范》颁布于1986年,随着国家对交通运输业的日益重视和人们筑路经验的不断提高,一致认为1986年版的《柔性路面设计规范》已不能满足高等级公路半刚性基层沥青路面的需要。由于对半刚性基层认识不足,使得设计结果具有一定的盲目性,设计结果要么过分保守,要么因路面结构设计不当而产生早期破坏,造成很大的经济损失。因此,如何利用七·五国家攻关项目取得的成果,结合近十年来半刚性基层沥青路面的设计和施工经验,根据实际使用效果,提出适合本地区特点的路面结构,对路面结构设计方法的更新和路面实际使用效果的改善具有重要的意义。根据江苏、安徽、浙江高等级公路的实际,江苏在镇江、无锡、苏州、徐州、连云港共计4线10段进行调查,安徽在合肥、马鞍山、淮南三市调查了3线8段,浙江在嘉兴和杭州调查了2线5段共计9线23段。调查的路面结构具有一定的典型性。 2 2.1国外国道主干线基层的结构特点 (1)多数采用结合料稳定的粒料(包括各种细粒土和中粒土)及稳定细粒土(如水泥土、石灰土等)只能用作底基层,有的国家只用作路基改善层。法国和西班牙在重交通的高速公路 (2)使用最广泛的结合料是水泥和沥青,石灰使用得较少。此外,还使用当地的低活性慢凝材料和工业废渣,如粉煤灰、粒状矿渣等。

相关文档
相关文档 最新文档