文档库 最新最全的文档下载
当前位置:文档库 › 高考数学-不等式的性质及其解法

高考数学-不等式的性质及其解法

高考数学-不等式的性质及其解法
高考数学-不等式的性质及其解法

不等式的性质及其解法

第一部分:基础回顾 一、不等式的主要性质:

(1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,

(4)乘法法则:bc ac c b a >?>>0,;bc ac c b a 0,;bd ac d c b a >?>>>>0,0 (5)倒数法则:b

a a

b b a 110,

>> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且

二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法

0>?

0=?

0

c bx ax y ++=2

(0>a )的图象

)

)((212x x x x a c

bx ax y --=++=

)

)((212x x x x a c bx ax y --=++=

c bx ax y ++=2

一元二次方程

()的根

00

2>=++a c bx ax

有两相异实根 )(,2121x x x x <

有两相等实根

a

b

x x 221-==

无实根

的解集)0(02>>++a c bx ax

{}21x x x x x

><或

????

??-≠a b x x 2

R

的解集

)0(02><++a c bx ax

{}21x x x x

<<

?

?

注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

第二部分:不同题型不等式的解法

1、高次不等式

例1解不等式:(1)0

15

22

3>

-

-x

x

x;

(2)0

)

2()5

)(4

(3

2<

-

+

+x

x

x.

解:(1)原不等式可化为0

)3

)(5

2(>

-

+x

x

x

把方程0

)3

)(5

2(=

-

+x

x

x的三个根3

,

2

5

,0

3

2

1

=

-

=

=x

x

x顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.

∴原不等式解集为

?

?

?

?

?

?

>

<

<

-3

2

5

x

x

x或

(2)原不等式等价于

?

?

?

>

-

<

-

?

?

?

?

>

-

+

+

?

>

-

+

+

2

4

5

)2

)(

4

(

5

)2

(

)5

)(

4

(3

2

x

x

x

x

x

x

x

x

x

∴原不等式解集为{}2

4

5

5>

-

<

<

-

-

x

x x或

说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”.

2、分式不等式

例2 解下列分式不等式:

(1)

2

2

1

2

3

+

-

-x

x

;(2)1

2

7

3

1

4

2

2

<

+

-

+

-

x

x

x

x

分析:①0

)

(

)

(

)

(

)

(

<

?

?

g

x

f

x

g

x

f

②0)()(

)(

)(

)(

)(

)(

)(

)(

)(

<

?

=

?

?

?

?

?

?

≤x g

x f

x f

x g

x f

x g

x g

x f

x g

x f

(1)解:原不等式等价于

?

?

?

-

+

+

-

+

-

?

+

-

+

-

?

+

-

+

+

-

?

+

-

-

-

+

?

+

-

-

?

+

-

)2

)(2

(

)2

)(2

)(1

)(6

(

)2

)(2

(

)1

)(6

(

)2

)(2

(

6

5

)2

)(2

(

)2

(

)2

(3

2

2

3

2

2

3

2

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

∴原不等式解集为[)[)

+∞

?

-

?

-

-∞,6

2,1

)2

,

(。

(2)解法一:原不等式等价于0

2

7

3

1

3

2

2

2

>

+

-

+

-

x

x

x

x

2

1

2

1

3

1

2

7

3

1

3

2

2

7

3

1

3

2

)2

7

3

)(

1

3

2(

2

2

2

2

2

2

>

<

<

<

?

??

?

?

?

<

+

-

<

+

-

??

?

?

?

>

+

-

>

+

-

?

>

+

-

+

-

?

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

∴原不等式解集为)

,2(

)1,

2

1

(

)

3

1

,

(+∞

?

?

-∞。

解法二:原不等式等价于0

)2

)(1

3(

)1

)(1

2(

>

-

-

-

-

x

x

x

x

)2

(

)1

3

)(

1

)(

1

2(>

-

?

-

-

-

?x

x

x

x

∴原不等式解集为)

,2(

)1,

2

1

(

)

3

1

,

(+∞

?

?

-∞

练习:1、解不等式0

4

12

5

6

2

2

<

-

+

+

-

x

x

x

x.

2、解不等式x

x

x

x

x

<

-

+

-

+

2

2

2

3

2

2.

答案:1、}6

5

1

2

{>

<

<

-

x

x x,或

,或.2、}3

2

1

{>

<

<

-x

x

x或.

3、绝对值不等式

例3解不等式3

3

10

42<

-

-x

x.

分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意

义???<-≥=)

0()0(a a a a a

二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<, 解答:去掉绝对值号得3310432<--<-x x , ∴原不等式等价于不等式组

??????<-->-??????<----<-0

61040

104331043104322

2

2x x x x x x x x ???????

<<->

?<+->-.

32

1,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为?

??

?

??

<<<<-32

5021

x x x 或.

例4解不等式242+<-x x

解法一:原不等式?????+<-<-?????+<-≥-?2

40

424042

222x x x x x x 或 即???>-<<<-???<<--≤≥1222222x x x x x x x 或或或∴32<≤x 或21<

解法二:原不等式等价于 24)2(2+<-<+-x x x

即?????+->-+<-)

2(42422x x x x ∴31213

2<

?-<><<-x x x x 故或. 4、含参数二次不等式

例5 设R m ∈,解关于x 的不等式03222<-+mx x m .

解:当0=m 时,因03<-一定成立,故原不等式的解集为R . 当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;

当0>m 时,解得m x m 1

3<<-

; 当0

x m 3

1-<<.

∴当0>m 时,原不等式的解集为?

??

???

<<-

m x m x 13; 当0

???

??-<

31. 练习 解关于x 的不等式0)(322>++-a x a a x .

解:原不等式可化为0))((2>--a x a x .

(1)当2a a <(即1>a 或0

2a x a x x ><或; (2)当2a a >(即10<

a x a x x ><或2; (3)当2a a =(即0=a 或1)时,不等式的解集为:{}a x R x x ≠∈且.

说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,2a a >,

2a a =三种情况.

5、无理不等式

例6 解关于x 的不等式)0(122>->-a x a ax .

分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解. 解:原不等式

??

?

??->-≥->-?;)1(2,01,

02)1(2

22x a ax x a ax 或???<-≥-.01,02)2(2x a x

由0>a ,得:

?

??

????<+++-≤>?;01)1(2,

1,2)1(2

2a x a x x a x ?????>≥?.1,

2)2(x a x 由判别式08)1(4)1(422>=+-+=?a a a ,

故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+. 当20≤

≤-+≤a a a ,121>++a a ,

不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x . 当2>a 时,不等式组(1)无解,(2)的解是2

a x ≥

. 综上可知,当20≤

+∞-+,21a a ; 当2>a 时,原不等式的解集是??

????+∞,2

a . 练习: 解不等式x x x ->--81032.

分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,

而)()(x g x f >等价于:

??

?<≥0)(0)(x g x f 或??

?

??>≥≥2

)]([)(0)(0

)(x g x f x g x f . 解:原不等式等价于下面两个不等式组: ① ??

?≥--<-0

103082

x x x

② ???

??->--≥--≥-222)

8(103010308x x x x x x

由①得??

?-≤≥>2

58

x x x 或,∴8>x

由②得∴???

????>

-≤≥≤.1374

258x x x x 或 81374

所以原不等式的解集为?

?????>≤<881374x x x

或 即为?

???

??

>

1374x x . 说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:

???

??≤≥≥?≤2)]

([)(0

)(0

)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,?

?????-≤--=x x x x A 81032,

则所求不等式的解集为A 的补集A ,

由2)

8(10301030

881032

222-≤??????-≤--≥--≥-?-≤--x x x x x x x x x x 或1374

5≤≤x .

即?

???

??

≤≤=137452x x x A 或, ∴原不等式的解集是

?

?????>=1374x x A .

6、二次不等式与二次方程的关系

例7 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.

解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根, ∴a

b

-=β+α,a

c =

β?α.

又02>++c bx ax 的解集是{}β<<αx x , 说明0

而0>α,0>β000?

>αβ?c a c

, ∴0022<++?>++c

a

x c b x a bx cx .

??????

?--==--=+-=????????=?-=+),1)(1(1,11βααβ

βααββαβαβαa c c b a c a

b ∴02<+

+c

a

x c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,

即0)1

)(1(<β

-α-x x .

又β<α<0,∴β

>α1

1,

∴0)1)(1(<β

-α-x x 的解集为?

???

??

α<<β11x x

. (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根, ∴a

c

=

β?α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0α,0>β000?

>αβ?c a

c

. 对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+?+?c x

b x

a . 令x

t 1

=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t , ∴

α=11x ,β=2

1

x .∴α=11x ,β=12x ,

∴方程02=++a bx cx 的两根为α

1

,β1. ∵β<α<0,∴

β

>α1

1. ∴不等式02>++a bx cx 的解集是?

??

?

??

α<<β11x x

练习 1若不等式

1

12

2+--<++-x x b x x x a x 的解为)1()31

(∞+-∞,,Y ,求a 、b 的值. 答案:???

?

???

==2325b a .

2不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值.

答案:∴1=a ,1-=b .

课后练习

一、填空与选择题

1、(1)(12)0x x -->的解集是 ;

2、2654x x +<的解集为__________;

3、2310x x -++>的解集是 ;

4、2210x x -+≤的解集是 ;

5、245x x -<的解集是 ;

6、已知(1)(1)0ax x -->的解集是 ;

{|12}x x x <>或,则实数a 的值为 ;

7、不等式220ax bx +->的解集是(1,2),则

22a b +的值等于 ;

8、方程220x bx ++=有两个负根,则实数b 的取值范围是 ;

9、若x =1在不等式2220k x kx +-<的解集内,则k 的取值范围是 ; 10、已知集合2{|4}M x x =<,

2{|230}N x x x =--<,则集合M N I = ;

11、“1x >”是“2x x >”的 条

件(选填:“充分不必要、必要不充分或充

要”);

12、2110(1)x a x a a ?

?-++<> ??

?的解为_____;

13、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;

14、不等式组()()()250

x x x x a --≤???-≥??与不等式

()()250x x --≤同解,则a 的取值范围是

____;

15.若f x x ax ()=-+21有负值,则a 的取值

范围是 ( )

(A )a >2或a <-2 (B )-<<22a

(C )a ≠±2 (D )13<

16、二次函数1)3(2+-+=x a x y 的图象与x

轴的两个交点的横坐标分别为1x 、2x ,且

21x ,则a 的取值范围是( )

(A )15a a <>或 (B )2

1

<

a (C )152a a <->或 (D )12

1

<<-a

二、解答题:

17、已知集合2{|280}A x x x =--<,

{|0}B x x a =-<

①当A B φ=I 时,求a 的取值范围;

②当A B ?时,求a 的取值范围;

18、解关于x 的不等式()a R ∈2220x ax a --<;

19、关于x 的不等式2680mx mx m +++≥在R 上恒成立,求m 的取值范围;

20、要在长为800米,宽为600米的一快长方形地面上进行绿化,要求四周种花卉(花卉的宽度相等),中间种草皮,要求草皮的面积不少于总面积的一半,求花卉宽度的范围。

21.对于集合{}

22430A x x ax a =-+-=,{}

2220B x x a a =-+++=是否存在实数a ,使

A B =?U ?若存在,求出a 的取值,若不存在,试说明理由

课后练习答案:1、1(0,)2;2、41,32??

- ???

;3

、11(66+;4、{1};5、R ;

6、

1

2

;7、10;8

、)+∞;9、(-2,1);10、{|12}x x -<<; 11、5.充分不必要;12、1,a a ??

???;13、(]0,8-;14、2a ≤;15、A ; 16、B ;

二、17、解:(2,4)A =-;(,)B a =-∞

①当A B φ=I 时,2a ≤-; ②当A B ?时,4a ≥。 18、解:(2)()0x a x a -+< 当0a >时,原不等式解集为(,2)a a -; 当0a =时,原不等式解集为φ; 当0a <时,原不等式解集为(2,)a a -;

19、解:①当0m =时,80≥0m ∴=成立; ②当0m ≠,则2

364(8)32(1)0

m m m m m m >???=-+=-≤? 01m ∴<≤ 由①②可知,01m ≤≤

20、解:设花卉的宽度为x 米,则2800x <且2600x <

0300x ∴<<

草皮面积为1

(8002)(6002)8006002S x x =--≥??

解之得600100x x ≥≤或, 又0300x <<。

0100x ∴<≤,即花卉宽度的范围是0100x ∴<≤ 21、A B =?Q U

∴A B ==?,即二次方程:22430x ax a -+-=

与2220x a a -+++=均无实数解,

212244(43)084(2)0a a a a ??--<∴??=-++

故当13a <<时,A B =?U

不等式解法性质与证明

第五讲 不等式的解法、性质与证明 一、不等式的性质: ⑴(对称性或反身性⑵(传递性)a b b c a c >>?>,; ⑶(可加性)a b a >?;(同向可相加)a b c d a c b d ?>>+>+, ⑷(可乘性)0a b c ac bc ?>>>,; 0a b c ac bc ?><<,. (正数同向可相乘)00a b c d ac bd ?>>>>>, ⑸(乘方法则)00n n a b n N a b >>∈?>>()⑹(开方法则)0,20n n a b n N n a b >>∈>(≥) ⑺(倒数法则)11 0a b ab a b ? >><, 1、判断下列命题是否正确,并说明理由。 (1)若a>b ,则ac 2>bc 2 ; (2)若 a c 2>b c 2 ,则a>b ; (3)若a>b ,且ab ≠0,则1a <1b ; (4)若a>b ,c>d ,则ac>bd ; (5)若a>b ,且k ∈N +,则a k >b k ; (6)若a>b>0,则a a >a b ;(7)若a>b>0,则b 2 +1a 2 +1 > b 2a 2 2、比较下列各组数的大小,其中x ∈R 。(1)x 2+3与3x ;(2)x 6+1与x 4+x 2 ;3)11+x 与1-x 。 3、已知a,b 为正数,试比较a b +b a 与 a +b 的大小。 4、已知a>b ,则不等式(1)a 2>b 2,(2)1a < 1b ,(3)1a -b >1 a 中不能成立的个数是( D ) A 、0个 B 、1个 C 、2个 D 、3个 5、已知12+x x 的解集是_____________。 3、不等式 13 1 2>+-x x 的解集为 。 4、如果x x sin 2 log 3 log 2 1 2 1,那么π π ≥- 的取值范围是为_____________-。 5、) ,的解集是的不等式,关于且已知0(110-∞>≠>x a x a a ,则0)1 (l o g >-x x a 的解集为____。 6、不等式333 2)21 (2 2---

{高中试卷}高三数学一轮复习:不等式性质及解法练习题3[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点:

监考老师: 日 期: 第7章 第1节 一、选择题 1.(文)(20XX·深圳市深圳中学)不等式(x -1)x +2≥0的解集是( ) A .{x|x>1} B .{x|x≥1} C .{x|x≥1且x =-2} D .{x|x≥1或x =-2} [答案] D [解析] 不等式化为????? x -1≥0x +2≥0或x +2=0, ∴x≥1或x =-2,故选D. (理)(20XX·天津文,7)设集合A ={x|x -a|<1,x ∈R},B ={x|1<x <5,x ∈R},若A∩B =?,则实数a 的取值范围是( ) A .{a|0≤a≤6} B .{a|≤2,或a≥4} C .{a|a≤0,或a≥6} D .{a|2≤a≤4} [答案] C [解析] |x -a|<1?a -1

函数,函数y =f ′(x)的图象如图所示.若实数a 满足f(2a +1)<1,则a 的取值范围是( ) x -2 0 4 f(x) 1 -1 1 A.????0,32 B.??? ?-12,32 C.????12,72D.??? ?-32,32 [答案] D [解析] 由f ′(x)的图象知,f(x)在[-2,0]上单调递减,在[0,+∞)上单调递增,又由表知若f(2a + 1)<1,则-2<2a +1<4,∴-321,则下列不等式成立的是( )

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

专题2.1 不等式的性质及常见不等式解法(精练)(原卷版)

专题2.1 不等式的性质及常见不等式解法 一、选择题 1.(2019·北京高考真题(文))已知集合A ={x |–11},则A ∪B =( ) A .(–1,1) B .(1,2) C .(–1,+∞) D .(1,+∞) 2.(2019·全国高考真题(理))已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A .}{43x x -<< B .}{42x x -<<- C .}{22x x -<< D .}{23x x << 3.(2020·山西省高三其他(理))已知集合2 {|20}A x x x =+->,{1,0,1,2}B =-,则( ) A .{2}A B = B .A B R = C .(){1,2}R B C A =- D .(){|12}R B C A x x =-<< 4.(2020·山东省高三二模)已知集合11A x x ?? = B .3a > C .1a < D .13a << 6.(2020·福建省高三其他(文))已知全集U =R ,集合{ }21M x x =-≤,则U C M =( ) A .()1,3 B .[]1,3 C .()(),13,-∞?+∞ D .(,1][3,)-∞+∞ 7.(2020·上海高三二模)不等式1 02 x x -≤-的解集为( ) A .[1,2] B .[1,2) C .(,1][2,)-∞?+∞ D .(,1)(2,)-∞?+∞ 8.(2020·浙江省高一期末)已知a ,b ∈R ,若0a b +<,则( ) A .22<0a b - B .>0a b - C .0a b +< D .>0+a b 9.(2020·黑龙江省鹤岗一中高一期末(文))如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞ C .(),1-∞ D .(] ,1-∞ 10.(2020·上海高三二模)已知x ∈R ,则“1x >”是“|2|1x -<”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件

1.1不等式的性质与解集

科 目数学授课 日期 课 时 4 教学 内容 1.1不等式的性质与解集班级 授 课 方 式 讲授法、练习法课型新授课 教学目的1、理解实数的大小与比较,会用数轴上的点表示实数 并比较大小 2、理解不等式的性质,并学会应用性质比较大小 3、理解集合的概念,掌握集合的表示方法,并学会表 示不等式的解集 教 具 多媒体 重点1、用数轴上的点表示实数并比较大 小 2、应用不等式性质比较大小 3、不等式解集的表示 难 点 应用不等式性质比较大小 课后 分析 说 明 审阅签名:年月日 教学环节教师活动学生活动设计意图及资源准备 组织教学10分钟1、师生互相问候 2、检查学生出勤 1、师生互相问 候 2、向教师报告 出勤情况 设计意图: 营造课堂气氛 资料准备: 多媒体课件

新课导入10分钟日常生活中,我们在考察事物的时候经常要进行大 小、轻重、长短的比较。在数学中常应用不等式 知识来研究这类问题。不等式是进一步学习数学 和其他科学的基础,在本章中,我们将学习不等式 的性质及其解法。 对问题进行思考 以及回答 设计意图: 导入本节课内容。 资料准备: 多媒体课件 讲授新课60分钟一、实数的大小 我们知道,实数与数轴上的点之间可以建立一一对 应关系 例如,点A与数2对应,点B与-3对应等,可以 看到,当数轴上一点P从左向右移动时,它对应的 实数就从小到大变化 数轴上的任意两点中,右边的点对应的实数比左边 的点对应 的实数大 例如,点A位于点B的右边,则点A对应的实数2 比点B 对应的实数-3大,即2>-3 在数轴上,如果点A在点B的右边,点A对应的实 数为a 点B对应的实数为b,则有a>b或b0?a>b a-b=0?a=b a-b<0?ab,那么a+m>b+m 如果ab且m>0,那么am>bm 如果a0,那么amb且m<0,那么ambm 1、学习实数的大 小 2、学习不等式的 性质 设计意图: 1、让学生掌握比较两个 实数大小的方法。 2、让学生了解并掌握集

一元一次不等式的解法(教师版).doc

初二下册第二章一元一次不等式及不等式组 一元一次不等式的解法(基础)知识讲解 【学习目标】 1.理解并掌握一元一次不等式的概念及性质; 2.能够熟练解一元一次不等式; 3.掌握不等式解集的概念并会在数轴上表示解集. 【要点梳理】 要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如, 2 x50 是一个一元一次不等式. 3 要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式( 单项式或多项式 ) ; ②只含有一个未知数; ③未知数的最高次数为 1. (2)一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<” 、“≤”、“≥”或“>”连接,不等 号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不 等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法: 与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:x a (或 x a )的形式,解一元一次不等式的一般步骤为:(1) 去分母; (2) 去括号; (3) 移项; (4) 化为ax b(或ax b)的形式(其中a 0); (5) 两边同除以未知数的系数,得到不等式的 解集 . 要点诠释: (1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意: ①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号; ③去括号时,若括号前面是负号,括号里的每一项都要变号; ④在不等式两边都乘以( 或除以 ) 同一个负数时,不等号的方向要改变. 要点三、不等式的解及解集 1.不等式的解: 能使不等式成立的未知数的值,叫做不等式的解. 2.不等式的解集: 对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 要点诠释: 不等式的解是具体的未知数的值,不是一个范围 不等式的解集是一个集合,是一个范围.其含义:

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

人教版初一下数学-不等式的定义及性质 ]讲义(教师版)

1.了解不等式的意义,理解不等式解集的含义,会在数轴上表示解集; 2.理解不等式的三条基本性质,并会用它们解简单的一元一次不等式. 重点:不等式的定义、列不等式和不等式的性质; 难点:不等式的解、解集的表示方法以及不等式性质的运用. 第12讲不等式定义及其性质

不等式的定义 1.不等式:用不等号表示不相等关系的式子,叫做不等式. 例如:2 ≤≥等都是不等式.-<-+>-+++>≠ 52,314,10,10,0,35 a x a x a a 2.常见的不等号有5种:“≠”、“>”、“<”、“≥”、“≤”. 注意:不等式32 ≥成立. =成立,所以不等式33≥成立;而不等式33 ≥也成立,因为33 3.不等号“>”和“<”称为互为相反方向的符号,所谓不等号的方向改变,就是指原来的不等号的方向改变成与其相反的方向,如:“>”改变方向后,就变成了“<”. 例1.下列式子<y+5; 1>2; 3m﹣1≤4;a+2≠a﹣2中,不等式有()个. A.2 B.3 C.4 D.1 【答案】C 【解析】<y+5;1>2;3m﹣1≤4;a+2≠a﹣2都是不等式. 练习1.下列数学表达式中,①﹣8<0;②4a+3b>0;③a=3;④a+2>b+3,不等式有() A.1个 B. 2个 C.3个 D.4个 【答案】C 【解析】①②④都是表示不等关系,③表示相等关系. 练习2.在式子﹣3<0,x≥2,x=a,x2﹣2x,x≠3,x+1>y中,是不等式的有() A.2个 B.3个 C.4个 D.5个 【答案】C 【解析】﹣3<0,x≥2,x≠3,x+1>y都是表示不等关系的式子. 利用不等式的定义,表示不等关系的式子叫不等式. 列不等式 1.根据已知条件列不等式,实际上就是用不等式表示代数式间的不等关系,重点是抓住关键词,弄清不等关系. 2.步骤:①正确列出代数式;②正确使用不等号

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

不等式的性质及解集

一.选择题(共27小题) 1.已知a>b,则在下列结论中,正确的是() A.a﹣2<b﹣2 B.﹣2a<﹣2b C.|a|>|b|D.a2>b2 2.若x+a<y+a,ax>ay,则() A.x>y,a>0 B.x>y,a<0 C.x<y,a>0 D.x<y,a<0 3.若a<b,则下列各式中一定正确的是() A.a﹣b>0 B.a+b>0 C.ab>0 D.﹣a>﹣b 4.已知实数a,b满足a+1>b+1,则下列选项错误的为() A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b 5.当x<a<0时,x2与ax的大小关系是() A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax 6.实数a,b,c满足a<b<0<c,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<﹣c D.﹣a﹣c>﹣b﹣c 7.如果c为有理数,且c≠0,下列不等式中正确的是() A.3c>2c B.C.3+c>2+c D.﹣3c<﹣2c 8.如果0<x<1,则下列不等式成立的是() A.B.C.D. 9.若a<b<0,则下列各式错误的是() A.a﹣2<b﹣2 B.C.D.2a﹣1<2b﹣1 10.已知a<b,则下列不等式一定成立的是() A.a2<ab B.ab<b2C.D.7a﹣7b<0 11.若0<x<1,则下列不等式成立的是() A.x2>>x B.>x2>x C.x>>x2D.>x>x2 12.如果a<b<0,那么下列不等式中成立的是() A.﹣3a<﹣3b B.a3<b3C.a2<b2D.c﹣a<c﹣b 13.已知﹣4x>3,则下列不等式中,错误的是() A.﹣4x+1>4 B.﹣4x﹣3>0 C.x>﹣D.﹣x>1

高中数学知识点:不等式的性质及解法

不等式的性质及解法 知识要点: 不等式与等式有许多不同,主要包括: 1、等式两边同乘(或除)以一个数(或式),等式仍然成立;不等式两边同乘(或除)以一个数(或式),不等式能否成立,要考虑该数(式)的符号, 即a b ac bc c ac bc c ac bc c >?>>>=<?->?< 这个性质等式中也存在,即a b b a =?=, 对称性说明了每一个已知的不等式都有两种形式,如:a b ab a b R +≥∈2(,) 这个基本不等式本身就有a b ab 222+≥及222ab a b ≤+两种形式,要能灵活运用。当然若进行等价转化还会有许多变式。 (2) 传递性 a b b c a c >>?>, 这个性质是媒介法比较两个实数大小的依据,是放缩法证明不等式的依据。 (3) 移项法则 a b a c b c >?+>+ 如:x x +>?>-321,相当于在x +>32这个不等式两边同时加上-3得到的。 3、运算性质: (1)加法运算:a b c d a c b d >>?+>+, (2)减法运算:统一成加法运算 a b c d a b d c a d b c >>?>->-?->-,, (3)乘法运算:a b o c d ac bd >>>>?>>,00 (4)除法运算:统一成乘法运算 a b c d a b d c a d b c >>>>?>>>>?>>0001100,, (由y x =1在(0,+∞)上是减函数,c d d c >>?>>011 0) (5)乘方运算:a b a b n N n n n >>?>∈≥02(,) (6)开方运算:a b a b n N n n n >>?>∈≥02(,)

高考数学-不等式的性质及其解法

不等式的性质及其解法 第一部分:基础回顾 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,;bc ac c b a 0,;bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 0>? 0=? 0a )的图象 ) )((212x x x x a c bx ax y --=++= ) )((212x x x x a c bx ax y --=++= c bx ax y ++=2 一元二次方程 ()的根 00 2>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21x x x x << ? ? 注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

不等式的概念、性质及解法

姓名学科韦日辉 数学 学生姓名 年级年级 填写时间 教材版本 2014-- 北师大版 阶段观察期□:第()周维护期□本人课时统计第()次课共()课时 课题名称 课时计划 共()课时 (全程或具体时间) 上课时间:00-:00同步教学知识内容 教学目标 个性化学习问题解决 教学重点 教学难点 不等式的概念、性质及解法中考要求 内容 不等式(组) 不等式的性质 基本要求 能根据具体问题中的大小 关系了解不等式的意义. 理解不等式的基本性质. 了解一元一次不等式(组) 略高要求 能根据具体问题中的数量关系列 出不等式(组). 会利用不等式的性质比较两个实 数的大小. 会解一元一次不等式和由两个一 较高要求 能根据具体问题中的数量关系列 解一元一次不 等式(组) 的解的意义,会在数轴上表元一次不等式组成的不等式组,并出一元一次不等式解决简单问 示(确定)其解集. 例题精讲 会根据条件求整数解.题.

⑴ x 的 与 6 的差大于 2 ; ⑵ y 的 与 4 的和小于 x ; > ) < ) 板块一、不等式的概念和性质 ?不等式的概念 1.不等式:用不等号表示不相等关系的式子,叫做不等式,例如: -5 < -2, a + 3 > -1 + 4, x + 1 ≤ 0, a 2 + 1 > 0, x ≥ 0,3 a ≠ 5a 等都是不等式. 2.常见的不等号有5种:“≠”、“>”、“<”、“≥”、“≤”. 注意:不等式3≥2成立;而不等式3≥3也成立,因为3=3成立,所以不等式3≥3成立. 3.不等号“ > ”和“< ”称为互为相反方向的符号,所谓不等号的方向改变,就是指原来的不等号的方向改变成与其 相反的方向,如:“ > ”改变方向后,就变成了“ < ”。 【例1】用不等式表示数量的不等关系. (1) a 是正数 (2) a 是非负数 (3) a 的相反数不大于 1 (4) x 与 y 的差是负数 (5) m 的 4 倍不小于 8 (6) q 的相反数与 q 的一半的差不是正数 (7) x 的 3 倍不大于 x 的 1 3 (8) a 不比 0 大 【巩固】用不等式表示: 1 2 5 3 ⑶ a 的 3 倍与 b 的 1 2 的差是非负数; ⑷ x 与 5 的和的 30% 不大于 -2 . 【巩固】用不等式表示: ⑴ a 是非负数; ⑵ y 的 3 倍小于 2 ; ⑶ x 与1 的和大于 0 ;⑷ x 与 4 的和大于1 ?不等式的性质 不等式基本性质: 基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变. 如果 a > b ,那么 a ± c > b ± c 如果 a < b ,那么 3x + 2 ≥ a( x - 1) 基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变. 如果 a > b ,并且 c > 0 ,那么 ac > bc (或 如果 a < b ,并且 c > 0 ,那么 ac < bc (或 a b c c a b c c 基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.

不等式及其解集教案

《不等式及其解集》教案 秭归县新滩中学 郑少琼 教学目标: 一、知识与能力: 了解不等式概念; 理解不等式的解集; 能用数轴表示不等式的解集; 二、过程与方法: 经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 三、情感、态度与价值观: 通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域. 教学重点: 正确理解不等式及不等式解与解集的意义,把不等式的解集正确地表示到数轴上. 教学难点: 正确理解不等式解集的意义. 教具: 课件 教学过程: 一、创设情景,导入新课 1、很多人在自己的童年生活中,都做过跷跷板的游戏,当一个大人和一个小孩同时坐上等臂长的跷跷板的两边时会发生什么现象呢?这是什么原因呢? 2、一辆匀速行驶的汽车在11:20时距离A 地50千米,要在12:00到达A 地,车速应该具备什么条件?如果要在12:00之前驶过A 车速又应该满足什么条件? 问题一:汽车能在12:00准时到达A 地 问题二:汽车能在12:00之前到达A 地 (意图:从实际问题引入不等式,同时从等式自然的过度到不等式) 50x 3 2或32x 50==32x 50?50x 3 2?

二、探究新知 (一)不等式的概念 上面的两组式子有什么不同点. 在学生对比的基础,师生共同归纳得出,用不等符号连接表示不等关系的式子叫不等式 练习1:下列式子是否是不等式? (1)-2<5 (2)x +3>2x (3)4x -2y <0 (4)a -2b (5)x 2 -2x +1<0 (6)a +b ≠c (7)5m +3=8 (8)x ≤-4 练习2:用不等式表示: (1)a 与1的和是正数; (2)a 是非负数; (3)a 与b 的和不小于7; (4)a 与2的差大于-1; (5)a 的4倍不大于8; (6)a 的一半小于3. (二)不等式的解、不等式的解集 x +3>7中x =5满足不等式吗? 我们把x =5带入不等式发现,左边=8右边=7 8>7成立,所以5是不等式x +3>7的解,不等式x +3>7还有其它的解吗? 什么是不等式的解? 学生总结: 1、不等式的解就是能使不等式成立的未知数的值; 2、不等式的解不止一个; 师生归纳: 一般的,一个含有未知数的不等式的所有的解组成这个不等式的解集.求不等式的解集的过程叫解不等式 练习 3.下列说法正确的是( ) A.x =3是2x >1的解 B.x =3是2x >1的唯一解 C.x =3不是2x >1的解 D.x =3是2x >1的解集 4.下列数值哪些是不等式x +3>6的解?你能确定它的解集吗? -4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12 50x 3 2或3250==x 32x 50?50x 3 2?

不等式的性质、解集与解法

不等式的基本性质及其解集 一、不等式的性质 1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变. c a b a +?> c a b a c b +?<+, c b + 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 若:0,>>c b a ,可得ac bc . 3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 若ac c b a ?<>0, bc . 二.不等式的解集 1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集. 2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体) 3.不等式解集的表示方法. 1-≤x ①用不等式表示。如1-≤x 或x <-1等。 x < ②用数轴表示.(注意实心圈与空心圈的区别) 4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需 要变号。 典型例题 例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7

(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围. 例3.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。 A 、x >-1 B 、x <-1 C 、x <-2 D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围. 思考题.设c b a ,,均为正数,若a c b c b a b a c +<+<+,试确定c b a ,,三个数的大小. y k 2x (第3题图)

高考数学不等式解题方法技巧

高考数学不等式解题方法 技巧 Newly compiled on November 23, 2020

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或 >4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若;④b a b a 11,0<<<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答: 137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______(答:12,2??-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较2 1log log 21+t t a a 和的大小(答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或43 x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43 x =时,1+3log x =2log 2x )

相关文档
相关文档 最新文档