文档库 最新最全的文档下载
当前位置:文档库 › 采暖管径估算资料

采暖管径估算资料

采暖管径估算资料
采暖管径估算资料

分类:燃气锅炉技术交流

采暖供热设备的估算方法

简介:为解决供热设备选型,造价作出估算及验算负荷或在施工中需要作局部变更,或需编制供暖锅炉的耗煤计划,常因缺乏数据而不能进行工作,这些琐碎的工作给设计部门增添麻烦。本人根据从事暖通专业工作多年的经验,撰写此文,供从事咨询工作的人员参考。

关键字:设备选型造价估算耗煤

相关站中站:锅炉及锅炉房专题负荷计算技术专题

供暖系统由锅炉、供热管道、散热器三部分组成。

建筑物的耗热量和散热器的确定以及供热管道管径和系统压力损失的计算是一项周密细致

和复杂的设计过程。一般由设计部门暖通设计人员承担。但是对于我们咨询行业要为某业主在初建、扩建或可研阶段,对供热设备(散热器、管道、锅炉)的选型,造价作出估算及验算供热管道和锅炉的负荷或在施工中需要作局部变更,或需编制供暖锅炉的耗煤计划,常因缺乏数据而不能进行工作,况且这些零星琐碎的工作也不便给设计部门增添麻烦。

为解决上述问题,本人根据从事暖通专业工作多年的经验,特撰写此文,仅供从事咨询工作的人员参考。

一、建筑物的供热指标(q0)

供热指标是在当地室外采暖计算温度下,每平方米建筑面积维持在设计规定的室内温度下供暖,每平方米所消耗的热量(W/m2)。

在没有设计文件不能详细计算建筑物耗热量,只知道总建筑面积的情况下,可用此指标估算供暖设备,概略地确定系统的投资,q0值详见表-1。

各类型建筑物热指标及采暖系统所需散热器的片数表-1

序号建筑物类型q o(W/m2) 1片/m2(热水采暖) 1片/m2(低压蒸气采暖)

1 多层住宅60 0.65

2 不宜采用

2 单层住宅95 1.032 0.779

3 办公楼、学校70 0.761 不宜采用

4 影剧院10

5 1.141 0.861

5 医院、幼儿园70 0.761 不宜采用

6 旅馆65 0.70

7 0.533

7 图书馆60 0.652 0.492

8 商店75 0.815 0.615

9 浴室140 1.522 1.148

10 高级宾馆145 1.576 1.189

11 大礼堂、体育馆140 1.522 1.148

12 食堂、餐厅130 1.413 1.066

说明:1).此表散热器是恒定在64.5℃温差情况下的数量。

2).此表所列散热器片数可根据q0的变更作相应修正。

二、散热器散热量及数量的估算

1.以四柱640型散热器为准,采暖供回水温度95-70℃

热水采暖时,一片散热器的Q值为:

Q水=K×F×Δt=7.13×0.20×64.5=92(W/片)

式中:K=3.663Δt0.16

K=3.663×(100 -18)0.16=7.13W/m2·℃

当采用低压蒸汽采暖时:

Q汽= K×F×Δt =7.41×0.20×(100-18)=122(W/片)

式中:K=3.663Δt0.16

K=3.663×(100-18)0.16=7.41W/m2·℃

根据热平衡原理,将建筑物热指标和所需散热器片数列表1(以四柱640型为准)。

2.各种散热器之间的换算

若需将四柱640型散热器改为其它类型的散热器其片数转换可按下式:K1×F1×Δt= K2×F2×Δt 即K1×F1= K2×F2进行换算。

3.房间内散热器数量的调整

1).朝向修正:朝南房间减一片,朝北房间加一片;既面积、窗墙比相同的两个房间,南、北向相差2片。

2).窗墙比修正:有门窗的房间比只有窗无外门面积、朝向均相同的房间多2片。

3).角隅房间(具有两面外墙的房间):按估算数附加100%。

散热器数量经过修正后,可根据适用、经济、美观的要求,选用所需散热器型号,并用互换公式换算所需订购的散热器数量。

4).如要求相对精确,散热器片数的确定,可参见暖通设计手册或其它有关资料。

三、供暖管道的估算

1.供暖管道的布置形式:

供暖管道布置形式多种多样,按干管位置分上供下回、下供下回和中供式,按立管又分双管和单管,单管又有垂直与水平串联之别,蒸汽采暖又有干式与湿式回水之分等等。根据介质流经各环路的路程是否相等,还可分为:

1).异程式:介质流经各环路的路程不相等,近环路阻力小,流量大,其散热器会产生过热,远环路阻力大,流量小,散热器将出现偏冷现象;中环路散热器温度适合,特别是在环路较多的大系统中,这种热的不平衡现象更易发生,且难调节。但异程系统能节约管材,但采暖系统作用半径小。

2).同程式:介质流过各环路的路程大体一致,各环路阻力几乎相等,易于达到水力平衡,因而流量分配也比较均匀,不致象异程系统那样产生热不均匀现象。但同程系统比异程系统多用管材。但调试简单方便,供热安全可靠,建议采用同程采暖系统为最佳选择。

2.采暖管道的估算

1).采暖管道管径的估算是根据允许单位摩擦阻力(热水采暖R=80-120Pa/m;蒸气采暖R=60Pa/m和不超过管内热媒流动的最大允许流速来确定的(见表-2、表-3、表-4)。管径估算表中Q、W、R、N值为常用估算值,而Q max、W max、R max、N max值为最大值,适用于距锅炉房近,作用半径小,环路小的采暖系统。

2).利用此表可按管道负担的散热器片数迅速决定管径,也可用于系统局部变更或检验管道是否超负荷。

3).根据低压蒸气管与凝结水管同径热负荷的比较,DN70以下的蒸气管所用的凝结水管比蒸气管<1号;DN70以上的蒸气管所用的凝结水管比蒸气管<2号。

四、供暖系统压力损失的估算

1.公式:

ΣH水=1.1Σ(RL+Z) Pa

ΣH汽=1.1Σ(RL+Z)+2000 Pa

式中:R—单位管长度沿程压力损失,按100Pa/m估算。

1.1—因施工增加阻力和计算误差等因素考虑的系数。

热水采暖系统管径估算表表-2

DN(mm) Q Q max R R max V V max N N max

W Pa/m m/s

负担四柱640型散

热器片数

15 5814 9302.4 120.48 297.13 0.29 0.46 63 101 20 1.37×104 2.33×104131.30 367.88 0.37 0.64 146 253 25 2.44×104 4.80×104116.17 431.98 0.41 0.81 265 518 32 5.23×10410.47×104118.39 458.80 0.51 1.01 568 1112 40 8.43×10420.93×104146.89 876.83 0.62 1.54 916 2275 50 17.44×10434.88×104159.85 625.46 0.77 1.54 1896 3792 65 33.43×10455.23×104156.36 420.44 0.89 1..48 3634 6067 80 58.14×10481.40×104192.70 401.26 1.11 1.61 6320 9101 100 98.83×104151.16×104130.73 302.46 1.09 1.66 10745 16433 125 168.61×104203.49×104124.48 180.44 1.22 1.47 18330 22754 150 261.63×104261.63×104119.44 119.44 1.33 1.33 30339 30339

说明:此表t=95℃、r=983.248kg/m3、K=0.2mm

低压蒸气采暖系统管径估算表表-3

DN(mm) Q Q max R R max V V max N

W Pa/m m/s

负担四柱640型散热

器片数

15 2500 3500 38 84 5.1 7.6 10 20 5500 8000 40 80 6.2 9 22 25 9500 1.6×10435 90 6.9 11.2 39 32 2.4×104 3.0×10447 73 9.6 12 98 40 3.2×104 4.4×10440 76 9.7 13.4 137 50 6.5×1048.5×10443 73 11.8 15.5 270 65 13×10415×10446 61 14.4 16.6 539 80 19×10422×10439 53 14.8 17.2 784 100 32×10436×10437 46 16.4 18.5 1470 125 50×10455×10428 33 16.4 18.0 2059 150 70×10475×10421 24 15.9 17.1 2941

说明:此表P=200Kpa(绝对压力)、K=0.2mm

低压蒸气采暖干式凝结水管径估算表表-4

15 20 25 32 40 50 70 80 100

横管4652 1.74×1043.26×104 7.91×10412.1×10425×10450×10469.78×104 145.38×104四柱

640片

20 75 140 340 520 1075 2150 3000 6250

立管6978 2.56×1044.88×10411.63×10

4

18.03×10

4

37.22×10

4

74.43×10

4

104.67×10

4

215.16×104

四柱

640片

30 110 210 500 775 1600 3400 4500 9250

说明:对不利环路起始端管径,考虑空气和锈渣的影响,一般不小于DN25。

2.热水供暖循环泵的估算

1)流量:G=(1.2~1.3)

式中:Δt=t G-t H=95℃-70℃=25℃

c—水的比热。取c=1

1. 2~1.3—储备系数

2)扬程:根据下列公式估算

H=1.1(H1+H2+H3)KPa

式中:H1—锅炉房内部压力损失(70KPa~220KPa)

H2—室外管网最不利环路的压力损失(KPa)

H3—室内最长、最高环路的压力损失,一般为10-20Kpa;有暖风机的为20-50Kpa;水平串联系统为50-60Kpa;带混水器的为80-120Kpa。R值按100Pa/m计算。

根据上列公式和数据,计算出水泵的流量和扬程,即可选择水泵。

沿程阻力及局部阻力概率分配率

系统种类系统压力消耗所占百分比(%)沿程阻力局部阻力

室内热水系统50 50 低压蒸气系统60 40

室外热水系统80-90 20-10

低压蒸气系统50-70 50-30

3.低压蒸气采暖系统对锅炉定压的要求

在蒸气量能满足系统采暖负荷的情况下,可按照低压蒸气系统压力损失估算法来确定锅炉的压力。

室外压力损失:H1=1.1×RL/0.7 +2000Pa

式中:R值取100Pa/m

L为室外管道长度m

室内压力损失H2可按20Kpa估算

锅炉内的压力损失储备系数取1.2

锅炉定压值P=1.2×(H1+H2) ×10-4 MPa

五.锅炉供暖负荷面积的估算

1.新型锅炉的效率η=0.75以上。

0.7MW蒸发量锅炉的供热面积可按下式计算:

F= 1X70X104/qom2

F= 0.8X1X70X104/70=8000 m2

式中:0.8—考虑锅炉和室外采暖管道损失占20%,室内占80%。

q0—按70W/m2估算

2.煤的发热量

焦煤:7.6kW/kg;无烟煤:7.0kW/kg;烟煤:6.0kW/kg;褐煤:5.0kW/kg;泥煤:3.54kW/kg;

3.一天的燃烧量

B2=B1×每日供暖小时(T/日)

4.一年采暖期的燃煤量

B3=B2×采暖期天数(T/年)

5.锅炉燃煤量的经验数字

0. 7MW蒸发量的锅炉需要的燃煤量:

无烟煤:180kg/h;烟煤:270kg/h;褐煤:360kg/h。

供热基础知识

2007-03-26 09:12

1、水和水蒸汽有哪些基本性质?

答:水和水蒸汽的基本物理性质有:比重、比容、汽化潜热、比热、粘度、温度、压力、焓、熵等。水的比重约等于1(t/m3、kg/dm3、g/cm3)蒸汽比容是比重的倒数,由压力与温度所决定。水的汽化潜热是指在一定压力或温度的饱和状态下,水转变成蒸汽所吸收的热量,或者蒸汽转化成水所放出的热量,单位是:KJ/Kg。水的比热是指单位质量的水每升高1℃所吸收的热量,单位是KJ/ Kg·℃,通常取4.18KJ。水蒸汽的比热概念与水相同,但不是常数,与温度、压力有关。

2、热水锅炉的出力如何表达?

答:热水锅炉的出力有三种表达方式,即大卡/小时(Kcal/h)、吨/小时(t/h)、兆瓦(MW)。

(1)大卡/小时是公制单位中的表达方式,它表示热水锅炉每小时供出的热量。

(2)"吨"或"蒸吨"是借用蒸汽锅炉的通俗说法,它表示热水锅炉每小时供出的热量相当于把一定质量(通常以吨表示)的水从20℃加热并全部汽化成蒸汽所吸收的热量。

(3)兆瓦(MW)是国际单位制中功率的单位,基本单位为W (1MW=10^6W)。正式文件中应采用这种表达方式。

三种表达方式换算关系如下:

60万大卡/小时(60×104Kcal/h)≈1蒸吨/小时〔1t/h〕≈0.7MW

3、什么是热耗指标?如何规定?

答:一般称单位建筑面积的耗热量为热耗指标,简称热指标,单位w/m2,一般用qn表示,指每平方米供暖面积所需消耗的热量。黄河流域各种建筑物采暖热指标可参照表2-1

建筑物类型住宅综合

居住

学校

办公

场所

旅馆食堂餐厅

非节能型建筑56~64

60~8

60~80 60~70 115~140

节能型建筑 38~48 50~7

55~70 50~60 100~130

上表数据只是近似值,对不同建筑结构,材料、朝向、漏风量和地理位置均有不同,纬

度越高的地区,热耗指标越高。

4、如何确定循环水量?如何定蒸汽量、热量和面积的关系?

答:对于热水供热系统,循环水流量由下式计算:

G=[Q/c(tg-th)]×3600=0.86Q/(tg-th)式中:G - 计算水流量,kg/h

Q - 热用户设计热负荷,W

c - 水的比热,c=4187J/ kgo℃

tg﹑th-设计供回水温度,℃

一般情况下,按每平方米建筑面积2~2.5 kg/h估算。对汽动换热机组,

由于供回水温差设计上按20℃计算,故水量常取2.5 kg/h。

采暖系统的蒸汽耗量可按下式计算:

G=3.6Q/r ⊿h

式中:G - 蒸汽设计流量,kg/h

Q - 供热系统热负荷,W

r - 蒸汽的汽化潜热,KJ/ kg

⊿h - 凝结水由饱和状态到排放时的焓差,KJ/ kg

在青岛地区作采暖估算时,一般地可按每吨过热蒸汽供1.2万平方米建筑。

5、系统的流速如何选定?管径如何选定?

答:蒸汽在管道内最大流速可按下表选取:

单位:(m/s )

蒸汽性质公称直

径>200

公称直径≤200

过热

蒸汽

80 60

饱和

蒸汽

60 35

蒸汽管径应根据流量、允许流速、压力、温度、允许压降等查表计算选取。

6、水系统的流速如何选定?管径如何选定?

答:一般规定,循环水的流速在0.5~3之间,管径越细,管程越长,阻力越大,要求流速越低。为了避免水力失调,流速一般取较小值,或者说管径取偏大值,可参考下表:管径

(mm)

DN20 DN25 DN32 DN40 DN50 DN65 DN80

流速

(m/s)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

在选择主管路的管径时,应考虑到今后负荷的发展规划。

7、水系统的空气如何排除?存在什么危害?

答:水系统的空气一般通过管道布置时作成一定的坡度,在最高点外设排气阀排出。排气阀有手动和自动的两种,管道坡度顺向坡度为0.003,逆向坡度为0.005。管道内的空气若不排出,会产生气塞,阻碍循环,影响供热。另外还会对管路造成腐蚀。空气进入汽动加热器会破坏工作状态,严重时造成事故。

8、系统的失水率和补水率如何定?失水原因通常为何?

答:按照《城市热力网设计规范》规定:闭式热力网补水装置的流量,应为供热系统循环流量的2%,事故补水量应为供热循环流量的4%。失水原因:管道及供热设施密封不严,系统漏水;系统检修放水;事故冒水;用户偷水;系统泄压等。

9、水系统的定压方式有几种?分别是如何实现定压的?系统的定压一般取多少?

答:热水供热系统定压常见方式有:膨胀水箱定压、普通补水泵定压、气体定压罐定压、蒸汽定压、补水泵变频调速定压、稳定的自来水定压等多种补水定压方式。采用混合式加热器的热水系统应采用溢水定压形式。

(1)膨胀水箱定压:在高出采暖系统最高点2-3米处,设一水箱维持恒压点定压的方式称为膨胀水箱定压。其优点是压力稳定不怕停电;缺点是水箱高度受限,当最高建筑物层数较高而且远离热源,或为高温水供热时,膨胀水箱的架设高度难以满足要求。

(2)普通补水泵定压:用供热系统补水泵连续充水保持恒压点压力固定不变的方法称为补水泵定压。这种方法的优点是设备简单、投资少,便于操作。缺点是怕停电和浪费电。

(3)气体定压罐定压:气体定压分氮气定压和空气定压两种,其特点都是利用低位定压罐与补水泵联合动作,保持供热系统恒压。氮气定压是在定压罐中灌充氮气。空气定压则是灌充空气,为防止空气溶于水腐蚀管道,常在空气定压罐中装设皮囊,把空气与水隔离。气体定压供热系统优点是:运行安全可靠,能较好地防止系统出现汽化及水击现象;其缺点是:设备复杂,体积较大,也比较贵,多用于高温水系统中。

(4)蒸汽定压:蒸汽定压是靠锅炉上锅筒蒸汽空间的压力来保证的。对于两台以上锅炉,也可采用外置膨胀罐的蒸汽定压系统。另外,采用淋水式加热器和本公司生产的汽动加热器也可以认为是蒸汽定压的一种。

蒸汽定压的优点是:系统简单,投资少,运行经济。其缺点是:用来定压的蒸汽压力高低取决于锅炉的燃烧状况,压力波动较大,若管理不善蒸汽窜入水网易造成水击。

(5)补水泵变频调速定压:其基本原理是根据供热系统的压力变化改变电源频率,平滑无级地调整补水泵转速而及时调节补水量,实现系统恒压点的压力恒定。

这种方法的优点是:省电,便于调节控制压力。缺点是:投资大,怕停电。

(6)自来水定压:自来水在供热期间其压力满足供热系统定压值而且压力稳定。可把自来水直接接在供热系统回水管上,补水定压。

这种方法的优点是显而易见的,简单、投资和运行费最少;其缺点是:适用范围窄,且水质不处理直接供热会使供热系统结垢。

(7)溢水定压形式有:定压阀定压、高位水箱溢水定压及倒U型管定压等。

运行中,系统的最高点必然充满水且有一定的压头余量,一般取4m左右。由于系统大都是上供下回,且供程阻力远小于回程阻力,因此,运行时,最高点的压头高于静止时压头。因此,静态定压值可适当低一些,一般为1~4m为宜。最大程度地降低定压压值,是为了充分

利用蒸汽的做功能力。

10、运行中如何掌握供回水温度?我国采暖系统供回水温差通常取多少?

答:我国采暖设计沿用的规定:供水温度95℃,回水温度70℃,温差为25℃。但近年来,根据国内外供热的先进经验,供回水温度及温差有下降趋势,设计供回水温度有取80/60℃,温差20℃的。

11、什么是比摩阻?比摩阻系数通常选多少?水系统的总阻力一般在什么范围?其中站内、站外各为多少?

答:单位长度的沿程阻力称为比摩阻。一般情况下,主干线采取30~70Pa/m,支线应根据允许压降选取,一般取60~120Pa/m,不应大于300 Pa/m。一般地,在一个5万m2的供热面积系统中,供热系统总阻力20 ~25m水柱,其中用户系统阻力2~4m,外网系统阻力4~8m 水柱,换热站管路系统阻力8~15m水柱。

12、热交换有哪几种形式?什么是换热系数?面式热交换器的主要热交换形式是什么?

答:热交换(或者说传热)有三种形式:导热、对流和辐射。对面式热交换器来说,换热的主要形式是对流和导热,对流换热量的计算式是:Q=αA(t2-t1),导热换热量的计算式是:Q=(λ/δ)A(t2-t1)。在面式热交换器中的传热元件两侧都发生对流换热,元件体内发生导热。

13、面式热交换器有哪些形式?其原理、优缺点各为何?

答:面式热交换器的主要形式有:管壳式换热器、板式换热器、热管式换热器等。它可细分成很多形式,其共同的缺点:体积大,占地大、投资大,热交换效率低(与混合式比较),寿命短;它们的优点是凝结水水质污染轻,易于回收。

14、普通的混合式热交换器有什么缺点?

答:普通的混合式热交换器,蒸汽从其侧面进入,水循环完全靠电力实现,它虽具有体积小、热效率高的优点,但存在下列缺点:

1、不节电,任何情况下都不能缺省循环水泵;

2、不稳定,当进汽压力较低,或进水压力较高时,皆会出现剧烈的振动和噪声;

3、同样,也存在凝结水回收难的问题。

15、供热系统常用到哪几种阀门,各有什么性能?

答:供热系统常用到的阀门有:截止阀、闸阀(或闸板阀)、蝶阀、球阀、逆止阀(止回阀)、安全阀、减压阀、稳压阀、平衡阀、调节阀及多种自力式调节阀和电动调节阀。

其中

截止阀:用于截断介质流动,有一定的节调性能,压力损失大,供热系统中常用来截断蒸汽的流动,在阀门型号中用"J"表示截止阀

闸阀:用于截断介质流动,当阀门全开时,介质可以象通过一般管子一样,通过,无须

改变流动方向,因而压损较小。闸阀的调节性能很差,在阀门型号中用"Z"表示闸阀。

逆止阀:又称止回阀或单向阀,它允许介质单方向流动,若阀后压力高于阀前压力,则逆止阀会自动关闭。逆止阀的型式有多种,主要包括:升降式、旋启式等。升降式的阀体外形象截止阀,压损大,所以在新型的换热站系统中较少选用。在阀门型号中用"H"表示。

蝶阀:靠改变阀瓣的角度实现调节和开关,由于阀瓣始终处于流动的介质中间,所以形成的阻力较大,因而也较少选用。在阀门型号中用"D"表示。

安全阀:主要用于介质超压时的泄压,以保护设备和系统。在某些情况下,微启式水压安全阀经过改进可用作系统定压阀。安全阀的结构形式有很多,在阀门型号中用"Y"表示。

16、除污器有什么作用?常安装于系统的什么部位?

答:除污器的作用是用于除去水系统中的杂物。站内除污器一般较大,安装于汽动加热器之前或回水管道上,以防止杂物流入加热器。站外入户井处的除污器一般较小,常安装于供水管上,有的系统安装,有的系统不安装,其作用是防止杂物进入用户的散热器中。新一代的汽动加热器自带有除污器

17、有时候发现有的用户暖气片热而有的不热,何故?如何解决?

答:这叫作系统水力失调,导致的原因较复杂,大致有如下原因:

(1)管径设计不合理,某些部位管径太细;

(2)有些部件阻力过大,如阀门无法完全开启等;

(3)系统中有杂物阻塞

(4)管道坡度方向不对等原因使系统中的空气无法排除干净;

(5)系统大量失水;

(6)系统定压过低,造成不满水运行;

(7)循环水泵流量,扬程不够;

要解决系统失调问题,首先要查明原因,然后采取相应措施

18、汽暖和水暖各有什么优缺点?

答:汽暖系统虽有投资省的优点,但能源浪费太大,据权威部门测算,汽暖比水暖多浪费能源约30%,因此近年汽暖方式正逐步被淘汰。汽暖浪费能源主要表现在:(1)国内疏水器质量不过关,使用寿命短,性能差,汽水一块排泄;

(2)管系散热量大,除工作温度高的原因外,保温破坏,不及时维修也是原因之一;

(3)系统泄漏严重,同样的泄漏面积,蒸汽带出的热量比水大得多。汽暖除了不经济之外,还不安全,易发生人员烫伤和水击暴管事故。很多系统运行中伴随有振动和水击声,影响人的工作和休息。另外,汽暖房间空气干燥,让人感到不舒适。水暖系统虽适当增加了投资,但克服了上述弊端。

类别:相关| 添加到搜藏| 浏览() | 评论(4)

最近读者:

网友评论:

1 2007-04-03 13:33 | 回复

谢谢^_^

2 2007-08-02 21:45 | 回复

读过了,谢谢!

3 2007-11-13 16:18 | 回复

1吨锅炉每小时产20度升至50度热水多少升

4 2007-11-14 10:03 | 回复

简单计算一下,60万大卡相当于2万kg的水从20度升至50度所需热量,考虑锅

炉的热效率80%计算,就是1.6万kg的水。

供热管径计算

当已知建筑面积时,供热指标按下列值选用 住宅 地暖:45~60w/m暖气包:60~70w/m 办公楼:60~80 w/m 旅馆:65~70 w/m 商店:65~75 w/m 厂房:80~100w/m 俱乐部:100~120 w/m 以上为华北地区采暖热指标 热负荷计算 Q=F×q×10(kw) 式中Q——-采暖热负荷(kw) F-—-采暖用建筑面积m q-——采暖热指标w/m 三、热水循环泵总流量按下式计算: G= 式中G=热水总流量(即循环泵总流量) △t—---供回水温差(即t-t) 1。163---常数 四、循环水泵得扬程计算: H=1.1×(H+H) 式中H--——循环水泵扬程(m)

H-—-换热设备压力降(Pa) H--—供热厂区中继站管道压力降(Pa) 五、补水泵流量计算: G=G×1%× 式中G—--补水泵流量 G—--循环水泵流量 1%--—正常补水量 4———事故补水量倍数值 3---水泵得工作系数 六、补水量扬程计算 H=1.1(H+H) 式中H—--补水泵扬程 ?1、1—-——管道阻力系数 ?H---资用压力(Pa) H—--楼层高度拆合压力(Pa) 七、供热用户得流量按下式计算 =0 式中---—流量 Q--—-计算热负荷k卡/时 C--—-谁得比热k卡/时(近视取1大卡/公斤℃) t---供水得温度℃ t——--—-回水温度℃

八、供热管径计算 D=18、8 式中D-----管道管径mm 18。8-—-——常数 Q------供热负荷 ——-平均流速(热水取0。8~2m/s) 九、散热器(暖气包)散热面积计算 F=×××(m) 式中F---散热面积 t---平均温度 t----室内设计温度 ----散热器得传热系数 -—--连接系数 --——安装系数 十、散热器得总片数 n=(片) 式中n----散热器得总片数 F——--散热器 f-—--每片散热器得总面积

采暖设计计算书1

设计题目:某住宅采暖系统设计

目录 第一章绪论 设计内容及原始资料、设计目的 第二章热负荷计算 围护结构基本传热量、附加传热量、 冷风渗透传热量计算 第三章散热器计算选型 散热器面积、片数计算、设备选型 第四章采暖系统水力计算 系统布置、水力计算 第五章设计成果 参考文献

第一章绪论 一、设计内容 本工程为哈尔滨市一民用住宅楼,住宅楼为六层,每一层有 8个用户,建筑总面积为 5740 ㎡。 二、原始资料 1.设计工程所在地区:哈尔滨 45°41′N 126°37 ′E 2.室外设计参数:冬季大气压 100.15KPa 供暖室外计算温度 -26℃ 冬季室外平均风速 3.8m/s 冬季主导风向东南风 供暖天数 179 天 供暖期日平均温度 -9.5℃ 最大冻土层深度 205cm 3.建筑资料 (1)建筑每层层高 3m; (2)建筑围护结构概况 外墙:砖墙,厚度为 240mm,保温层为水泥膨胀珍珠岩 l190mm,双面抹灰δ20mm;K0.45W/m2K 地面:不保温地面,K 值按地带划分,一共为四个地带; 屋顶:钢筋混凝土板,砾砂外表层 5mm,保温层为沥青膨胀岩l150mmK0.47W/(m2K) 外窗:单层钢窗,塑料中空玻璃(空气 12mm)K2.4 W/(m2K)

外门:木框双层玻璃门(高 2.0 米),K2.5W/m2.K。2100mm×1500mm,门型为无上亮的单扇门。 4.室内设计参数: 室内计算温度:卧室、起居室 18℃厨房 10℃ 门厅、走廊、楼梯间 16℃盥洗室 18℃ 三、设计目的 对该建筑进行室内采暖系统的设计,使其能达到采暖设计标准,同时符合建筑节能规范。 第二章热负荷计算 一、围护结构基本传热量 1.外围护结构的基本耗热量计算公式如下: Q= KF( tn- t w) a q ——围护结构的基本耗热量,W; K——围护结构的传热系数, F——围护结构的面积 tn——冬季室内计算温度 t w ——供暖室外计算温度 α——围护结构的温差修正系数 整个建筑的基本耗热量 Q1. j 等于它的围护结构各部分基本耗热量

供热管径计算

供热管径计算 当已知建筑面积时,供热指标按下列值选用住宅 地暖:45~60w/m2暖气包:60~70 w/m2 2 办公楼:60~80 w/m 旅馆:65~70 w/m2 商店:65~75 w/m2 厂房:80~100 w/m2 俱乐部:100~120 w/m2 以上为华北地区米暖热指标热负荷计算 3 Q=FX qx 10 (kw) 式中Q---米暖热负荷(kw) F---米暖用建筑面积m? 一 2 q---采暖热指标w/m 三、热水循环泵总流量按下式计算: G=1.163 t n 吨/ 式中G二热水总流量时(即循环泵总流量) △ t—供回水温差(即t g-t n) 1、163---常数 四、循环水泵的扬程计算: H=1、1X (H1+H2)

式中H----循环水泵扬程(m) H 1 ---换热设备压力降(Pa) H 2---供热厂区中继站管道压力降(Pa) 五、补水泵流量计算: 4 G A =Gx 1%x 3 4---事故补水量倍数值 3---水泵的工作系数 六、补水量扬程计算 H B =1、1(H 1+H 2 ) 式中 H B ---补水泵扬程 1、1----管道阻力系数 H 1 ---资用压力(Pa) H 2---楼层高度拆合压力(Pa) 七、供热用户的流量按下式计算 q =0 3 t n 式中q ----流量 n Q----计算热负荷 k 卡/时 C----谁的比热 k 卡/时(近视取1大卡/公斤C ) 供热管径计算 供热管径计算 式中G A ---补水泵流量 G---循环水泵流量 1%---正常补水量 t n t n t n

t g---供水的温度 C t n——回水温度C 八、供热管径计算 式中D——管道管径mm 18、8-----常数 Q------供热负荷 W---平均流速叹(热水取0、8~2m⑸九、散热器(暖气包)散热面积计算 Q F=k ( t p t n) X 1 X 2 X 3(m2) 式中F---散热面积 t p---平均温度 t n----室内设计温度 散热器的传热系数 1---- 2------ 连接系数 3----安装系数 十、散热器的总片数 n=Ff(片) 式中n----散热器的总片数 F——散热器 f----每片散热器的总面积 供热管径计算

供热管径计算

供热管径计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

当已知建筑面积时,供热指标按下列值选用住宅 地暖:45~60w/m2暖气包:60~70 w/m2办公楼:60~80 w/m2 旅馆:65~70 w/m2 商店:65~75 w/m2 厂房:80~100 w/m2 俱乐部:100~120 w/m2 以上为华北地区采暖热指标 热负荷计算 Q=F×q×103 (kw) 式中Q---采暖热负荷(kw) F---采暖用建筑面积m2 q---采暖热指标w/m2 三、热水循环泵总流量按下式计算:

G=n t t 163.1Q ?? 式中G=热水总流量 时吨 (即循环泵总流量) △t----供回水温差(即t g -t n ) 常数 四、循环水泵的扬程计算: H=×(H 1+H 2) 式中H----循环水泵扬程(m ) H 1---换热设备压力降(Pa ) H 2---供热厂区中继站管道压力降(Pa ) 五、补水泵流量计算: G A =G ×1%×34 n t 式中G A ---补水泵流量 n t G---循环水泵流量 n t 1%---正常补水量 n t 4---事故补水量倍数值

3---水泵的工作系数 六、补水量扬程计算 H B=(H1+H2) 式中 H B---补水泵扬程n t 管道阻力系数 H1---资用压力(Pa) H2---楼层高度拆合压力(Pa)七、供热用户的流量按下式计算 q =03 n t 式中q ----流量n t Q----计算热负荷 k卡/时 C----谁的比热 k卡/时(近视取1大卡/公斤℃) t g---供水的温度℃ t n------回水温度℃ 八、供热管径计算

采暖管道水力计算

采暖供热管道水力计算表说明 1 电算表编制说明 1.1 采暖供热管道的沿程损失采用以下计算公式: ΔP m =L λρ?v 2 d j ?2 (1.1) ;式中:△Pm——计算管段的沿程水头损失(Pa) L ——计算管段长度(m); λ——管段的摩擦阻力系数; d j ——水管计算内径(m),按本院技术措施表A.1.1-2~A.1.1-9编制取值; 3 ρ——流体的密度(kg/m),按本院技术措施表A.2.3编制取值;v —— 流体在管内的流速(m/s)。 1.2 管道摩擦阻力系数λ 1.2.1采用钢管的采暖供热管道摩擦阻力系数λ采用以下计算公式: 1 层流区(R e ≤2000) λ=

64 Re 2 紊流区(R e >2000)一般采用柯列勃洛克公式 1 ?2. 51K /d j =?2lg?+?λ?Reλ3.72 ?K 68? ?λ=0.11?+??d ?j Re? 0. 25 ???? 简化计算时采用阿里特苏里公式 雷诺数 Re= v ?d j γ 以上各式中 λ——管段的摩擦阻力系数;Re ——雷诺数; d j ——管子计算内径(m),钢管计算内径按本院技术措施表A.1.1-2取值;

- K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m,室外供热管网 - K =0.5×103m ; v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s); ,根据供回水平均温度按按本院技术措施表A. 2.1取值。γ—— 热媒的运动粘滞系数(m2/s) 1.2.2塑料管和内衬(涂)塑料管的摩擦阻力系数λ,按下式计算: λ={ d j ? b 1. 312(2 lg 3. 7??b 0. 5?+ lg Re s?1?2 ?? 3. 7d j lg K ?????? }2

采暖系统水力计算

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少?

实例:

附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成) 6.2.1水力计算界面: 菜单位置:【计算】→【采暖水力】(cnsl)菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示的对话框。 功能:进行采暖水力计算,系统的树视图、数据表格和原理图在同一对话框中,编辑数据的同时可预览原理图,直观的实现了数据、图形的结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示的部分,根据计算习惯定制快捷工具条内容;树视图:计算系统的结构树;可通过【设置】菜单中的【系统形式】和【生成框架】进行设置; 原理图:与树视图对应的采暖原理图,根据树视图的变化,时时更新,计算完成后,

可通过【绘图】菜单中的【绘原理图】将其插入到dwg中,并可根据计算结果进行标注;数据表格:计算所需的必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面是菜单对应的下拉命令,同样可通过快捷工具条中的图标调用; [文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存的水力计算工程,后缀名称为.csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算的方法等; [编辑] 提供了一些编辑树视图的功能; 对象处理:对于使用天正命令绘制出来的平面图、系统图或原理图,有时由于管线间的连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算] 数据信息建立完毕后,可以通过下面提供的命令进行计算; [绘图] 可以将计算同时建立的原理图,绘制到dwg图上,也可将计算的数据赋回到原图上; [工具] 设置快捷命令菜单; 6.2.2采暖水力计算的具体操作: 1.下面以某住宅楼为例进行计算:住宅楼施工图如下:

地暖设计管径确定

地暖设计管径确定 1、地暖盘管管径的确定 1.1.1一般说来,地暖盘管管径不需要计算,在大多数民用建筑中,用De20(DN15)的管径就可以满足要求。查《地面辐射供暖技术规程》附录A “单位地面面积的散热量和向下传热损失”选择合适的平均水温和地暖盘管的间距就可以满足要求。请注意:附录A给出计算条件是加热管公称外径为20mm、填充层厚度为50mm、聚苯乙烯泡沫塑料绝热层厚度20mm、供回水温差10℃时PE-X管或PB管时数据。表中给出了地面为水泥或陶瓷、塑料类材料、木地板、铺厚地毯几种情况下“单位地面面积的散热量和向下传热损失”。如果是其他材料,如PE-RT 、PP-R和PP-B,按照《地面辐射供暖技术规程》3.4.2条要求,应通过计算确定单位地面面积的散热量和向下传热损失(可参阅该规程“3.4地面散热量的计算”进行精确计算)。实际上,在缺乏相关专业资料的情况下,附录A也可以作为其他管材设计时的参考数据。 1.1.2举例说明:某20℃房间计算热指标为40 W/m2地面层为木地板,平均水温40℃时,当平均水温40℃时,选用DN15的PE-X时可查附录A.1.3确定单位地面面积的散热量和向下传热损失。如下表(这是附录A.1.3的一部分),间距300即满足要求(66.8-26.3=40.5满足要求房间耗热量40W/m2的要求)

1.1.3顺便加以说明:选择地暖盘管时,管材、管径确定之后,还要根据采暖系统设计运行温度、压力选择壁厚,这样地暖管才算选完。这部分请参看《地面辐射供暖技术规程》“附录B加热管的选择”。这里也给出一个范例:一般六层住宅楼,平均水温40℃时,用壁厚2mm,DN15的PE-RT管子就可以了。 2、立管管径的确定朋友们应该还记得负荷计算的方法。 假设我们已经通过负荷计算确定了建筑物各部分的负荷。下面先介绍一个公式。流量计算公式:GL=0.86×∑Q/(tg-th)Kg/h 其中:GL—流量,Kg/h;∑Q—热负荷,W;tg、th—供回水温度,℃。我们把计算的负荷与供回水温度代入上边的公式,就可以得出相应的流量。 接下来接着介绍一个参数:比摩阻,可以简单的理解为一米管道的阻力。室内采暖系统的经济比摩阻应控制在60~120Pa/m。 室内采暖立管常采用焊接钢管。可以在暖通专业的设计手册(如:《供

采暖管径估算资料

分类:燃气锅炉技术交流 采暖供热设备的估算方法 简介:为解决供热设备选型,造价作出估算及验算负荷或在施工中需要作局部变更,或需编制供暖锅炉的耗煤计划,常因缺乏数据而不能进行工作,这些琐碎的工作给设计部门增添麻烦。本人根据从事暖通专业工作多年的经验,撰写此文,供从事咨询工作的人员参考。 关键字:设备选型造价估算耗煤 相关站中站:锅炉及锅炉房专题负荷计算技术专题 供暖系统由锅炉、供热管道、散热器三部分组成。 建筑物的耗热量和散热器的确定以及供热管道管径和系统压力损失的计算是一项周密细致 和复杂的设计过程。一般由设计部门暖通设计人员承担。但是对于我们咨询行业要为某业主在初建、扩建或可研阶段,对供热设备(散热器、管道、锅炉)的选型,造价作出估算及验算供热管道和锅炉的负荷或在施工中需要作局部变更,或需编制供暖锅炉的耗煤计划,常因缺乏数据而不能进行工作,况且这些零星琐碎的工作也不便给设计部门增添麻烦。 为解决上述问题,本人根据从事暖通专业工作多年的经验,特撰写此文,仅供从事咨询工作的人员参考。 一、建筑物的供热指标(q0) 供热指标是在当地室外采暖计算温度下,每平方米建筑面积维持在设计规定的室内温度下供暖,每平方米所消耗的热量(W/m2)。 在没有设计文件不能详细计算建筑物耗热量,只知道总建筑面积的情况下,可用此指标估算供暖设备,概略地确定系统的投资,q0值详见表-1。 各类型建筑物热指标及采暖系统所需散热器的片数表-1 序号建筑物类型q o(W/m2) 1片/m2(热水采暖) 1片/m2(低压蒸气采暖) 1 多层住宅60 0.65 2 不宜采用 2 单层住宅95 1.032 0.779 3 办公楼、学校70 0.761 不宜采用 4 影剧院10 5 1.141 0.861 5 医院、幼儿园70 0.761 不宜采用 6 旅馆65 0.70 7 0.533 7 图书馆60 0.652 0.492 8 商店75 0.815 0.615 9 浴室140 1.522 1.148

供热管径计算

当已知建筑面积时,供热指标按下列值选用 以上为华北地区采暖热指标 热负荷计算 3 Q=FXqx 10 (kw) 式中Q---采暖热负荷(kw ) ■ _ __ 2 F---米暖用建筑面积m 一 一 2 q---采暖热指标w/m 三、热水循环泵总流量按下式计算: _Q_/ G=1.163 t/n 吨/ 式中G=热水总流量 加(即循环泵总流量) △ t----供回水温差(即t g -t n ) 常数 四、循环水泵的扬程计算: H=x (H 1+H 2) 地 暖: 2 45~60w/m 办公楼: 2 60~80 w/m 旅 馆: 2 65~70 w/m 商 店: 2 65~75 w/m 厂 房: 2 80~100 w/m 俱乐部: 100~120 w/m 住宅 2 2 暖气包:60~70 w/m

式中H----循环水泵扬程(m) H1 ---换热设备压力降(Pa) H2---供热厂区中继站管道压力降(Pa) 五、补水泵流量计算: G A=GX 1%x I % 式中G A---补水泵流量% G---循环水泵流量% 1%---正常补水量/ 4---事故补水量倍数值3---水泵的工作系数 六、补水量扬程计算 H B=(H1+H2)式中 H B---补水泵扬程% 管道阻力系数 H1 ---资用压力(Pa) H2---楼层高度拆合压力(Pa) 七、供热用户的流量按下式计算 q=o3% 式中q----流量% Q----计算热负荷 * 2) F=k( t p t n) X 1 X 2 X 3( m 式中F---散热面积 t P ---平均温度t n----室内设计温度 1----散热器的传热系数

供热管径计算

当已知建筑面积时,供热指标按下列值选用 住宅 地 暖:45~60w/m 2 暖气包:60~70 w/m 2 办公楼:60~80 w/m 2 旅 馆:65~70 w/m 2 商 店:65~75 w/m 2 厂 房:80~100 w/m 2 俱乐部:100~120 w/m 2 以上为华北地区采暖热指标 热负荷计算 Q=F ×q ×103-(kw) 式中Q---采暖热负荷(kw ) F---采暖用建筑面积m 2 q---采暖热指标w/m 2 三、热水循环泵总流量按下式计算: G=n t t 163.1Q ?? 式中G=热水总流量 时吨(即循环泵总流量) △t----供回水温差(即t g -t n ) 1.163---常数 四、循环水泵的扬程计算: H=1.1×(H 1+H 2)

式中H----循环水泵扬程(m ) H 1---换热设备压力降(Pa ) H 2---供热厂区中继站管道压力降(Pa ) 五、补水泵流量计算: G A =G ×1%×34 n t 式中G A ---补水泵流量 n t G---循环水泵流量 n t 1%---正常补水量 n t 4---事故补水量倍数值 3---水泵的工作系数 六、补水量扬程计算 H B =1.1(H 1+H 2) 式中 H B ---补水泵扬程 n t 1.1----管道阻力系数 H 1---资用压力(Pa ) H 2---楼层高度拆合压力(Pa ) 七、供热用户的流量按下式计算 q =03 n t 式中q ----流量 n t Q----计算热负荷 k 卡/时 C----谁的比热 k 卡/时(近视取1大卡/公斤℃)

采暖系统水力计算

在《供热工程》P97与P115有下面两段话:可以瞧出对于单元立管平均比摩阻得选择需要考虑重力循环自然附加压力得影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻得取值就是多少? 实例: 附件6、2关于地板辐射采暖水力计算得方法与步骤(天正暖通软件辅助完成) 6.2。1水力计算界面: 菜单位置:【计算】→【采暖水力】(c nsl )菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示得对话框。

功能:进行采暖水力计算,系统得树视图、数据表格与原理图在同一对话框中,编辑数据得同时可预览原理图,直观得实现了数据、图形得结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示得部分,根据计算习惯定制快捷工具条内容;树视图:计算系统得结构树;可通过【设置】菜单中得【系统形式】与【生成框架】进行设置; 原理图:与树视图对应得采暖原理图,根据树视图得变化,时时更新,计算完成后,可通过【绘图】菜单中得【绘原理图】将其插入到dwg中,并可根据计算结果进行标注; 数据表格:计算所需得必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面就是菜单对应得下拉命令,同样可通过快捷工具条中得图标调用;

[文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存得水力计算工程,后缀名称为、csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算得方法等; [编辑]提供了一些编辑树视图得功能; 对象处理:对于使用天正命令绘制出来得平面图、系统图或原理图,有时由于管线间得连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算]数据信息建立完毕后,可以通过下面提供得命令进行计算; [绘图] 可以将计算同时建立得原理图,绘制到dwg图上,也可将计算得数据赋回到原图上; [工具] 设置快捷命令菜单; 6。2。2采暖水力计算得具体操作: 1、下面以某住宅楼为例进行计算:住宅楼施工图如下:

热水采暖(供热)热源、管道参数计算一例

热水采暖(供热)热源、管道参数计算一例 在小型热水锅炉供热工程建设中,一般可能会没有正规的设计文件和图纸,常会遇到如何确定热源、热网的各参数的困难,即锅炉热功率,循环水泵流量、扬程,一、二级网管径,大小的确定,下面用一个热水锅炉供热的实例予以说明。供所需者参考。 一、基础条件 1、供热面积:400000 (m2 ); 2、室内采暖温度:18 ℃ 3、供水温度:一级网115 ℃,二级70 ℃; 4、回水温度:一级网70 ℃,二级50 ℃; 5、热源、一级网、换热站分布如图: 二、热负荷计算 正规的热负荷计算是,依据当地的气象资料、室内采暖温度、建筑物维护结构等条件,计算出建筑物的总耗热损失,确定出采暖总热负荷。这样计算比较麻烦,比较简捷的是参考当地的经验数据和已经计算过的结构条件相同的建筑物的单位面积热负荷,如在黑龙江某城市,对于多层砖混结构的楼房,室内采暖温度18℃,可选择单位面积热负荷为65W/m2。则总热负荷为: Q’= q ’● F/1000 (kw); 式中:Q’——采暖总热负荷(kw); q ’——采暖面积热负荷(采暖热指标)(w/ m2); F ——采暖面积(建筑面积)(m2 ); 总热负荷: Q’总= 65X400000/1000 = 26000(kw); A、B、C区热负荷: Q’A = 65X120000/1000 = 7800(kw);

Q’B = 65X180000/1000 = 11700(kw); Q’B = 65X100000/1000 = 6500(kw); 三、确定热水锅炉的额定热功率及台数 26000/1000=26.0 (MW) 26.0/0.7=37.14 (t/h) 依据上述计算,选择两台额定热功率14MW(20t/h)的热水锅炉。条件允许可增加一台14MW(20t/h)的备用锅炉。 四、一级网水力计算 1、计算循环水量 式中:G Q’——采暖总热负荷(kw); t h’——供水温度(℃ ); t g’——供水温度(℃ ); 总循环水量: (以下是按各区的供热面积计算,如果考虑未来发展情况,也可已按三台锅炉计算, B区循环水量: 2计算各管段管径(以1—2管段为例) 计算原则:规范中规定,外网管道经济“比摩阻”(每米管道的沿程阻力)为40——80pa/m时,比较经济合理。以下是在最大经济比摩阻=80pa时计算出的最小管径, 式中:d ——管道内径(m); K ——管道内表面粗糙度(m );取K=0.5mm

给排水采暖燃气工程清单项目设置与计算规则

一、概况 1.给排水、采暖、燃气工程 给排水、采暖、燃气工程系指生活用给排水工程、采暖工程、生活用燃气工程安装,及其管道、附件、配件安装和小型容器制作等。 2.清单项目内容 清单项目内容包括暖、卫、燃气的管道安装,管道附件安装,管支架制作安装,暖、卫、燃气器具安装,采暖工程系统调整等项目。 3.适用范围 适用于采用工程量清单计价的新建、扩建的生活用给排水、采暖、燃气工程。 4.与其他相关工程的界限划分 (1)室内外界限的划分 1)给水管道以建筑外墙皮1.5m处为分界点,入口处设有阀门的以阀门为分界点。 2)排水管道以排水管出户后第一个检查井为分界点,检查井与检查井之间的连接管道为室外排水管道。 3)采暖管道以建筑外墙皮l.5m处为分界点,入口处设有阀门的以阀门为分界点。 4)燃气管道由地下引入室内的以室内第一个阀门为分界点,由地上引入的以墙外三通为界点。 (2)与市政管道的界限划分

1)给水管道以计量表为界,无计量表的以与市政管道碰头点为界。 2)排水管道以室外排水管道最后一个检查井为界,无检查井的以与市政管道碰头点为界。 3)由市政管网统一供热的按各供热点的供热站为分界线,由室外管网至供热站外墙皮1.5m处的主管道为市政工程,由供热站往外送热的管道以外墙皮1.5m处分界,分界点以外为采暖工程。 4)与锅炉房内的管道界限划分:锅炉房内的生活用给排水、采暖工程,属本附录工程内容。锅炉房内锅炉配管、软化水管、锅炉供排水、供气、水泵之间的连接管等属工业管道范围。由锅炉房外墙皮以外的给排水、采暖管道属本工程范围。 5.说明 (1)项目特征项目特征是工程量清单计价的关键依据之一,由于项目的特征不同,其计价的结果也相应发生差异,因此招标人在编制工程量清单时,应在可能的情况下明确描述该工程量清单项目的特征。投标人按招标人提出的特征要求计价。 (2)工程量清单计算规则 l)工程量清单的工程量必须依据工程量计算规则的要求编制,工程量只列实物量,所谓实物量即是工程完工后的实体量,如挖管沟的土石方工程,其挖填土石方工程量只能按设计沟断面尺寸乘沟长度计算,不能将放坡的土石方量计入工程量内。绝热工程量只能按设计要求的绝热厚度计算,不能将施工的误差增加量计入绝热工程量。投标人在投标报价时,可以按自己的企业技术水平和施工方案的具体情况,将土石方挖填的放坡量和绝热的施工误差量计入综合单价内。增加的量越小越有竞标能力。

管道的水力计算及强度计算(精)

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流 流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm /s。 图3—3管流中流速、流量、过流断面关系示意图

流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。当管径减小时,流速增大;而当管径增大时,流速即减小。然而,当流速一定时,流量的变化随管径成几何倍数变化,而不是按算术倍数变化。因为在管流中,管道的过流断面面积与管径的平方成正比。也就是说,管径扩大到原来的2倍、3倍、4倍时,面积增加到原来的4倍、9倍、16倍。如DN50mm的管子过流断面面积是DN25mm的管子的4倍,那么在流速相等的条件下,DN50mm管子中所通过的流量即是DN25mm管子的4倍;同理,DNlOOmm的管道内所通过的流量应是DN25mm管子的16倍。在日常施工中,常有人认为在流速一定时,管径之比就是所输送的流量之比,这无疑是错误的。 以上提到的以m3/h和cm3/s等为单位的流量又称为体积流量。如果指的是在单位时间内通过过流断面的流体质量时,该流量则称为质量流量,以符号qm表示,常采用的单位为kg/h或kg/s。质量流量与体积流量之间的关系为 qm=ρq v 而由式(3—1)知 q v=vA 则 q m=ρvA (3—2) 式中q m——质量流量(kg/s); ρ——流体的密度,即单位体积流体的质量(ks/m3); V——流体通过过流断面的平均流速(m/s); A——过流断面面积(m2)。 例管径为DNlOOmm的管子,输送介质的流速为lm/s时,其小时流量为多少? 解DNlOOmm管子的过流断面面积为 A=πD3/4=3.14×0.12/4=0.00785m2 则q v=1×0.00785×3600=28.3m3/h 答:该管道的小时流量为28.3m3/h。 第二节管道的阻力损失 流体在管渠中流动时,过流断面上各点的流速并不是相同的。例如在河沟中,靠近岸边的水,流动较慢;而河沟中心的水,流速就较大。管道内流动的流体也是如此,靠近管内壁面的流体流速较小,处在管中心的流体流速最大。产生这一现象的原因在于,流体流动时与管内壁面发生摩擦产生阻力,同时管内流体各流层之间由于流速的变化而引起相对运动所产生的内摩擦阻力,也阻挠流体的运动。流体在流动中,为了克服阻力就要消耗自身所具有的机械能,我们称这部分被消耗掉的能量为阻力损失。流体的性质不同,流动状态相同,流动时所产生的阻力损失大小也不同。流动是产生阻力损失的外部条件,流速越高,流体与管壁及流体自身之间的摩擦就越剧烈,阻力也就越大。相反,流速越小,摩擦减弱,阻力也就越

地热盘管的水力计算

摘要: 有时候我们需要计算采暖系统的阻力,以便校核采暖入口的资用压力是否够用。有的时候需要给系统选泵,需要计算系统阻力,以确定水泵的扬程。本节就谈谈这个问题。 关键词:地暖水力计算 选择采暖管道管径,是最简单的水力计算,即根据经济比摩阻选择。我们在以前的《管径确定》专题已经介绍过了手算和软件计算的方法,在此不再重复。 单元式住宅的系统阻力由以下部分组成:户内末端盘管阻力,分户热表、集分水器等设备,采暖立管、采暖入户干管,单元热力入口组成。 1) 户内末端盘管阻力 一套80多平米的住宅的分集水器大概带了3~4个环路,每个环路的长度不同,所带的负荷也不同,原则上应该分别计算各个环路的阻力,然后取阻力最大的环路作为最不利环路,进行下一部的计算。一个环路有时候可能穿越两个房间。如果是这样,计算此环路所带负荷的时候,应该把两个房间的负荷进行累加。假如某环路穿越的是某个整个房间和另一个房间的一部分,可以这样处理:取那个整个房间的负荷与那个穿越部分房间的部分负荷(可以用相对 盘管面积,相对负荷的原则,按他们所占的面积进行取值。如果这部分靠近外围护结构,应该把其适当地放大,比如乘以1.2的修正系数,以减少实际情况与理论分析的误差。)知道了盘管所带的负荷就可以用我们以前介绍过的方法确定环路的流量、流速、单位长度的沿程阻力。局部阻力的计算方法有两种:一种是逐个数出此管段倒角(管道绕弯)的个数,将其看成90度弯头,查设计手册,得到局部阻力系数,进而得到局部阻力;另一种是用折算长度的方法,把总的局部阻力看成沿程阻力的某个倍数,比如取0.3。局部阻力和沿程阻力的和就是我们所要求的该环路的末端阻力。依此方法,逐个计算各个环路的阻力,取最大数值,作为住户末端阻力。 2)分户热表、集分水器等设备 接下来要确定分水器、集水器、过滤器、热表、测温调节锁闭阀的阻力了。 热表的阻力可以查厂家样本或设计手册,各个厂家的参数不同,笔者就不给参考数值了,以免误导读者。需要指出的是,热表的阻力和实际流量有关,同一热表流量越大,阻力越大。我们要计算用户的设计流量,查出该型号热表的流量--阻力曲线,确定热表的阻力。 集分水器的阻力计算:实际是计算和最不利环路接在一起集分水器的阻力。可分别视为分流三通、合流三通,查局部阻力系数确定之。请注意,不要把盘管各环路上小阀门的阻力丢掉,还是用查局部阻力系数的方法确定阻力。过滤器、测温调节锁闭阀如果样本没有给出阻力,可以查阅设计手册查局部阻力系数的方法确定阻力。

采暖系统水力计算

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少? 实例: 附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成) 6.2.1水力计算界面: 菜单位置:【计算】→【采暖水力】(cnsl)菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示的对话框。 功能:进行采暖水力计算,系统的树视图、数据表格和原理图在同一对话框中,编辑数据的同时可预览原理图,直观的实现了数据、图形的结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示的部分,根据计算习惯定制快捷工具条内容; 树视图:计算系统的结构树;可通过【设置】菜单中的【系统形式】和【生成框架】进行设置; 原理图:与树视图对应的采暖原理图,根据树视图的变化,时时更新,计算完成后,可通过【绘图】菜单中的【绘原理图】将其插入到dwg中,并可根据计算结果进行标注; 数据表格:计算所需的必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面是菜单对应的下拉命令,同样可通过快捷工具条中的图标调用; [文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存的水力计算工程,后缀名称为.csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算的方法等; [编辑] 提供了一些编辑树视图的功能; 对象处理:对于使用天正命令绘制出来的平面图、系统图或原理图,有时由于管线间的连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算] 数据信息建立完毕后,可以通过下面提供的命令进行计算; [绘图] 可以将计算同时建立的原理图,绘制到dwg图上,也可将计算的数据赋回到原图上;[工具] 设置快捷命令菜单; 6.2.2采暖水力计算的具体操作: 1.下面以某住宅楼为例进行计算:住宅楼施工图如下:

采暖循环泵流量扬程计算

(转)循环泵的流量和扬程计算 2011-12-07 16:25 事例见最后 1、先计算出建筑的热负荷然后 0.86*Q/(Tg-Th)=G 这是流量 2、我设计的题目是沧州市某生活管理处采暖系统的节能改造工程。这个集中供热系统的采暖面积是33.8万平方米。通过计算可知,该系统每年至少可节煤5000吨。换句话说,30%多的能量被浪费了。如果我的设计被采纳,这个管理处每年可以节约大约一百万元的经费(如果煤价是200元/吨)。而我所做的仅仅是装调节阀,平衡并联管路阻力;安装温度计,压力表,对采暖系统进行监控;换掉了过大的循环水泵和补给水泵;编制了锅炉运行参数表。 原始资料 1. 供热系统平面图,包括管道走向、管径、建筑物用途、层高、面积等。 2. 锅炉容量、台数、循环水泵型号及台数等。本系统原有15吨锅炉三台,启用两台;10吨锅炉三台,启用一台;配有12SH-9A型160KW循环水泵三台,启用两台。 3. 煤发热量为23027KJ/kg(5500kcal/kg)。 4. 煤耗量及耗煤指标,由各系统资料给出。采暖面积:33.8万m2;单位面积煤耗量:39.54kg/m2?年。 5. 气象条件:沧州地区的室外供热计算温度是-9℃,供热天数122天,采暖起的平均温度-0.9℃。 6. 锅炉运行平均效率按70%计算。 7. 散热器以四柱为主,散热器相对面积取1.5。 8. 系统要求采用自动补水定压。 设计内容 1.热负荷的校核计算 《节能技术》设计属集中供热系统的校核与改造。鉴于设计任务书所提供的原始资料有限,拟采用面积热指标法进行热负荷的概算。 面积热指标法估算热负荷的公式如下: Qnˊ= qf × F / 1000 kW 其中:Qnˊ——建筑物的供暖设计热负荷,kW; F ——建筑物的建筑面积,㎡; qf ——建筑物供暖面积热指标,W/㎡;它表示每1㎡建筑面积的供暖设计热负荷。 因此,为求得建筑物的供暖设计热负荷Qnˊ,需分别先求出建筑物供暖面积热指标qf 和建筑物的建筑面积F。 1.1 热指标的选择 由《节能技术》附表查得:住宅的热指标为46~70W/㎡。

地暖设计管径确定

地暖设计管径确定1、地暖盘管管径的确定 1.1.1一般说来,地暖盘管管径不需要计算,在大多数民用建筑中,用De20(DN15)的管径就可以满足要求。查《地面辐射供暖技术规程》附录A “单位地面面积的散热量和向下传热损失”选择合适的平均水温 和地暖盘管的间距就可以满足要求。请注意:附录A给出计算条件是加热管公称外径为20mm、填充层厚度为50mm、聚苯乙烯泡沫塑料绝热层厚度20mm、供回水温差10℃时PE-X管或PB管时数据。表中给出了地面为水泥或陶瓷、塑料类材料、木地板、铺厚地毯几种情况下“单 位地面面积的散热量和向下传热损失”。如果是其他材料,如PE-RT 、PP-R和PP-B,按照《地面辐射供暖技术规程》3.4.2条要求,应通过计算确定单位地面面积的散热量和向下传热损失(可参阅该规程“3.4地面散热量的计算”进行精确计算)。实际上,在缺乏相关专业资料的情况下,附录A也可以作为其他管材设计时的参考数据。 1.1.2举例说明:某20℃房间计算热指标为40 W/m2地面层为木地板, 平均水温40℃时,当平均水温40℃时,选用DN15的PE-X时可查附录A.1.3确定单位地面面积的散热量和向下传热损失。如下表(这是附录A.1.3的一部分),间距300即满足要求(66.8-26.3=40.5满

足要求房间耗热量40W/m2的要求) 1.1.3顺便加以说明:选择地暖盘管时,管材、管径确定之后,还要根据采暖系统设计运行温度、压力选择壁厚,这样地暖管才算选完。这部分请参看《地面辐射供暖技术规程》“附录B加热管的选择”。这里也给出一个范例:一般六层住宅楼,平均水温40℃时,用壁厚2mm,DN15的PE-RT管子就可以了。 2、立管管径的确定朋友们应该还记得负荷计算的方法。 假设我们已经通过负荷计算确定了建筑物各部分的负荷。下面先介绍一个公式。流量计算公式:GL=0.86×∑Q/(tg-th)Kg/h 其中:GL—流量,Kg/h;∑Q—热负荷,W;tg、th—供回水温度,℃。我们把计算的负荷与供回水温度代入上边的公式,就可以得出相应的流量。 接下来接着介绍一个参数:比摩阻,可以简单的理解为一米管道的阻力。室内采暖系统的经济比摩阻应控制在60~120Pa/m。 《供室内采暖立管常采用焊接钢管。可以在暖通专业的设计手册(如:暖通风设计手册》P345)中找到“热水供暖系统管道水力计算表”,用控制比摩阻的方法,根据流量和比摩阻选择管径。 这是计算的原理,下面介绍个管径选择的好工具:“鸿业水力计算器”,

供热计算

六、城市供热工程规划 (一)城市热负荷计算 1.计算法 ①采暖热负荷计算 Q=q·A·10-3(6-11) 式中,Q为采暖热负荷(MW),q为采暖热指标(W/m2,取60~67W/m2),A为采暖建筑面积(m2)。 ②通风热负荷计算 Q T=KQn (6-12) 式中,Q T为通风热负荷(MW),K为加热系数(一般取0.3~0.5),Qn为采暖热负荷(MW)。 ③生活热水热负荷计算 Qw=Kq w F (6-13) 式中,Qw为生活热水热负荷(W),K为小时变化系数,q w为平均热水热负荷指标(W/m2),F为总用地面积(m2)。当住宅无热水供应、仅向公建供应热水时,q w取2.5~3W/m2;当住宅供应洗浴用热水时,q w取15~20W/m2。 ④空调冷负荷计算 Qc=βq c A10-3 (6-14) 式中,Qc为空调冷负荷(MW),β为修正系数,q c为冷负荷指标(一般为70~90W/m2),A为建筑面积(m2)。对不同建筑而言,β的值不同,详见表6-6。 表6-50 城市建筑冷负荷指标 建筑类型旅馆住宅办公楼商店体育馆影剧院医院冷负荷指标βq c 1.0q c 1.0q c 1.2q c0.5q c 1.5q c 1.2~1.6q c0.8~1.0q c 注:当建筑面积<5000m2时,取上限;建筑面积>10000m2时,取下限。 ⑤生产工艺热负荷计算 对规划的工厂可采用设计热负荷资料或根据相同企业的实际热负荷资料进行估算。该项热负荷通常应由工艺设计人员提供。 ⑥供热总负荷计算 将上述各类负荷的计算结果相加,进行适当的校核处理后即得供热总负荷,但总负荷中的采暖、通风热负荷与空调冷负荷实际上是同一类负荷,在相加时应取两者中较大的一个进行计算。 2.概算指标法

地暖管路管径计算

地暖管路管径计算 在日常工作中我们需要对热水采暖户进行图纸审核,图纸审核中有一项重要的工作就是校核该用户一次水供回水管径,掌握热水供热管路管径的计算非常重要。 1. 热水供热管路管径计算方法 2.1流量、流速法 根据管段的设计流量、管段的允许流速、管内流体的密度,求出管段的设计管径。此种方法最为简单易行,便于日常使用,比较适用较大流量管道的计算,对于小流量的管路来说,所得口径值偏小,为了弥补以上不足,对于小流量的管路尽量采用较低的流速。 2.2流量、比摩阻法 根据管段的设计流量、管段的比摩阻、管道粗糙度、管内流体的密度,求出管段的设计管径。此种方法也比较简单易行,便于日常使用,比较适用较小流量管道的计算,对于较大流量的管路来说,所得口径值偏小,为了弥补以上不足,对于大流量的管路尽量采用较小的比摩阻。 2.3流速、比摩阻法 根据管段的允许流速、管段的比摩阻、管道粗糙度、管内流体的密度,求出管段的设计管径。此种方法也比较简单易行,便于日常使用,适用于各种流量管道的计算。 2.4流速、总压力损失法 根据管段的允许流速、管段的总压力损失、管道粗糙度、管内流体的密度、管段的长度、管段的局部阻力系数,求出管段的设计管径。此种方法比较复杂,不便于日常使用。 2.5流量、总压力损失法 根据管段的设计流量、管段的总压力损失、管道粗糙度、管内流体的密度、管段的长度、管段的局部阻力系数、管段的假设管径,求出管段的设计管径。种方法最为复杂,需要通过迭代方法多次计算,不 便于日常使用。 3. 热水供热管路管径计算的实现途径 我们可以采用查表的途径进行热水供热管路管径计算,此种方法最为简单,但数据不全,不能解 决所有问题。 我们可以采用公式手工计算的途径进行热水供热管路管径计算,此种方法是热水供热管路管径计算方法的基础,理论上可以完全解决热水供热管路管径计算问题,但通过手算由于过于繁琐,最好是辅助采用编制中小型的科学计算程序,通过计算机去具体完成复杂的计算,最后得出结果,可以达到最佳效果。

相关文档