文档库 最新最全的文档下载
当前位置:文档库 › 平面向量共线的基本表示

平面向量共线的基本表示

2.3.4平面向量共线的坐标表示

平面向量的坐标运算 平面向量共线的坐标表示 一、教学分析 1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算. 2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律. 3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的. 二、教学目标 1、知识与技能: 掌握平面向量的坐标运算;会根据向量的坐标,判断向量是否共线。 2、过程与方法: 通过对共线向量坐标关系的探究,提高分析问题、解决问题的能力。 3情感态度与价值观: 学会用坐标进行向量的相关运算,理解数学内容之间的内在联系。 三、教学重点与难点 教学重点:平面向量的坐标运算。 教学难点:向量的坐标表示的理解及运算的准确. 四、教学设想 (一)导入新课 思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B 不同时为零)何时所体现的两条直线平行向量的共线用代数运算如何体现 思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢 (二)推进新课、新知探究、提出问题 ①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗 ②如图1,已知A(x1,y1),B(x2,y2),怎样表示的坐标你能在图中标出坐标为(x2-x1,y2-y1)的P点吗标出点P 后,你能总结出什么结论 活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:

平面向量中三点共线定理探究

平面向量中“三点共线向量定理”探究 三点共线定理在教材中没有作为定理使用,但在各级考试中却应用广泛,笔者尝试通过 聚焦结论,优化思路,多维度揭示定理的价值所在. () 0.a b b a b a b λλ≠=r r r r r r r r 向量共线定理:对平面内的任意两个向量 、 , // 的充要条件是:存在唯一的 实数 ,使由该定理可以得到平面内三点共线定理: ()121212+= OA OB OP OP OA OB R λλλλλλ=+∈u u u r u u u r u u u r u u u r u u u r u u u r 三点共线定理:已知平面内一组基底 , 及任一向量 ,, , 则A ,B ,P 三点共线,当且仅当 1. ()() ()1122121,,1,=1,,+= A B P AP AB OP OA OB OA OP OA O OP OA O B B λλλλλλλλλλλλλ=?-=-?=-+-=+=u u u r u u u r u u u r u u u r u u u r u u u u u u r u u u r u u u r u u u r u u u r u u u r r 证明:如图 , 三点共线,当且仅当有唯一一个实数 , ,且使令则 1. ()()()()()() 1212112212=1,1;2+= OA OP OP OA OB OP OA OB OA AP AB OB OP OA OB λλλλλλλλλλλλλλ?-===-+?-=-?=+u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u r r u ur 的系数之和等于1 即为向量,的变化而变化的定理特.如图, 且1征:向量, 的系数点P 的位置是随着令 , 当点P 在线段AB 内()() ()() ()() 12121212121,1,,=10,10,1=1,01,0=10,,0=0=110 =1=10 1. λλλλλλλλλλλλλλλλλλλλλλλλλ-∈=∈-∈-∞=∈+∞<-<<>∈+∞=∈-∞-===-===此时 此时,0,当点P 在线段AB 的延长线上时, ,点P 在线段AB 反向延长线上时, ,当点P 与点A , ,当点P 与点B 重合时, 时此时此时此时,, ,重合时, 111AP PB OP OA OB λλλλ ?==+++u u u r u u u r u u u r u u u r u u u r 推论:在OAB 中,P 为直线AB 上的一点,且则 O 1()

平面向量共线的坐标表示

课时跟踪检测(二十一) 平面向量共线的坐标表示 层级一 学业水平达标 1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=????12 ,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12 e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B. 2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ―→,则实数λ的值为( ) A .-23 B.32 C.23 D .-32 解析:选C 根据A ,B 两点的坐标,可得AB ―→=(3,1), ∵a ∥AB ―→,∴2×1-3λ=0,解得λ=23 ,故选C. 3.已知A (2,-1),B (3,1),则与AB ―→平行且方向相反的向量a 是( ) A .(2,1) B .(-6,-3) C .(-1,2) D .(-4,-8) 解析:选D AB ―→=(1,2),向量(2,1),(-6,-3),(-1,2)与(1,2)不平行;(-4,-8) 与(1,2)平行且方向相反. 4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( ) A .-3 B .2 C .4 D .-6 解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6. 5.已知a =(-2,1-cos θ),b =? ???1+cos θ,-14,且a ∥b ,则锐角θ等于( ) A .45° B .30° C .60° D .15°

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解 一、平面向量中三点共线定理的扩展及其应用 一、问题的提出及证明. 1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是: .O A xOB yOC =+(O 为平面内任意一点),其中1x y +=. 那么1x y +<、1x y +>时分别有什么结证?并给予证明. 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+ 且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1 O A m O B n O C =+ 且1m n += 则 OA mOB nOC λ=+ m n OA OB OC λ λ ?=+ m x λ ∴= 、n y λ = 1 m n x y λ λ ++= = (1)1λ> 则 1x y +< 则 11 1 OA OA OA λ = < ∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1 01x y λ +=<<,此时OA 与1OA 反向 A 与O 在直线BC 的同侧(如图[2]) 图[2] B C A 1 O A O A 1 B C A 图[1]

(3)1o λ<<,则1x y +> 此时 111 OA OA OA λ => ∴ A 与O 在直线BC 的异侧(如图[3]) 图[3] 2、如图[4]过O 作直线平行AB , 延长BO 、AO 、将AB 的O 侧区 域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:0001x y x y ??<+??>??<+?? ????-<+

平面向量共线定理题型总结

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(,≠的充要条件是:存在唯一的实数λ,使b a λ= 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=. 特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy < 例1已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设 直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S += =,故选A. 例2 已知P 是ABC ?的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则y x 4 1+的最小值是 解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线 x>0,y>040,0y x x y ∴ >> 由基本不等式可知:4424y x y x x y x y +≥?=,取等号时4y x x y =224y x ∴=2y x ∴=±0,0x y >> 2y x ∴=1x y +=12 ,33 x y ∴==,符合 所以 y x 4 1+的最小值为9

例3如图,在△ABC中,1 3 AN NC =,点P是BC上的一点,若 2 11 AP mAB AC =+,则实数m的值为() A. 9 11 B. 5 11 C. 3 11 D. 2 11 解:,, B P N三点共线,又228 4 111111 AP mAB AC mAB AN mAB AN =+=+?=+ 8 1 11 m ∴+= 3 11 m ∴=,故选C 例4如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若AB=m AM,AC=n AN,则m+n的值为. 解:因为O是BC的中点,故连接AO,如图4,由向量加法的平行四边形法则可知: 1 () 2 AO AB AC ∴=+m AB AM =,AC nAN =又,, M O N三点共线, ∴由平面内三点共线定理可得:1 22 m n +=2 m n ∴+= 例5 如图所示:点是△的重心,、分别是边、上的动点,且、、三点共线. 设,,证明:是定值; 证明:因为G是OAB的重心,211 ()() 323 OG OA OB OA OB ∴=?+=+ 又,, P G Q三点共线,111 33 x y ∴+= 11 3 x y ∴+= 11 x y ∴+为定值3 G OAB P Q OA OB P G Q OA x OP=OB y OQ= y x 1 1 +

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

(完整版)向量共线的坐标表示

《平面向量共线的坐标表示》教案 教学目标 (1)知识目标:理解平面向量共线的坐标表示,会根据向量的坐标,判断向量是否共线,并掌握平面上两点间的中点坐标公式及定点坐标公式; (2)能力目标:通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力; (3)情感目标:在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识. 教学重点和难点 (1)重点:向量共线的坐标表示及直线上点的坐标的求解; (2)难点:定比分点的理解和应用。 教学过程 一、新知导入 (一)、复习回顾 1、向量共线充要条件: 2.平面向量的坐标运算: (1).已知 a =(x 1,y 1),b =(x 2,y 2)则 a + b =(x 1+x 2,y 1+y 2). a - b =(x 1-x 2,y 1-y 2). λa =(λx 1,λy 1). (2). 一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标. (二)、问题引入 已知下列几组向量: (1)a =(0,2),b =(0,4); (2)a =(2,3),b =(4,6); (3)a =(-1,4),b =(2,-8); (4)a =????12,1,b =??? ?-12,-1. 问题1:上面几组向量中,a 与b 有什么关系? 问题2:以上几组向量中a ,b 共线吗? ),,(),,(2211y x B y x A 若),(1212y y x x --=则. ,)(//λλ=?≠使存在唯一实数

二、新知探究 思考: 两个向量共线的条件是什么?如何用坐标表示两个共线向量? 设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a 。 由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ???==?21 21y y x x λλ 消去λ,x 1y 2-x 2y 1=0a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0 探究:(1)消去λ时能不能两式相除? (不能 ∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0) (2)能不能写成2 211x y x y = ? (不能。 ∵x 1, x 2有可能为0) (3)向量共线有哪两种形式? a ∥b (b ≠0)???===?. 01221y x y x b a λ 三、新知巩固(实例分析合作探究与指导应用) 1.向量共线问题: 例1. 已知(4,2)a =,(6,)b y =,且//a b ,求y . 变式练习1: 2.证明三点共线问题: 例2: 例2.已知 A(-1,-1),B(1,3),C(2,5),试判断A 、B 、C 三点之间的位置关系。 变式训练2:设向量=(k,12),=(4,5),=(10,k),求当k 为何值时,A 、B 、C 三点共线. 已知a //b,且a =(x,2),b =(2,1),求x 的值.

平面向量共线问题

平面向量共线问题的探讨 摘要:平面向量的平行与垂直是高中数学新课程向量部分的重要内容,本文旨在对平面向量平行(即共线)相关定理进行推广,得到两个更加具有一般性的结论,并举例说明它们的应用,使问题的解决更简捷。 关键词:平面向量、共线定理、推广、应用。 平面向量的共线,这部分内容比较重要,在各种考试中也频频出现,教材上就两个向量共线已给出两个定理: (1) 向量()≠与向量共线?存在唯一实数λ,使得a b λ=成 立。 (2) 向量()11,y x a =与向量()22,y x b =,则∥?01221=-y x y x 在此基础之上,笔者对向量共线问题,再做进一步探讨及推广,若有不当之处,请各位老师指正。对于定理(2)给出的结论,向量,b 的基底是单位正交向量:,j ,下面我们给出的结论中,涉及到的基底不一定是单位正交向量:i ,,而是任意一组基底:1e 与2e ,它更具有一般性。 推论1:若1e ,2e 是不共线的两个向量,2111e y e x a +=,2212e y e x +=,与b 共线 ?01221=-y x y x 证明:与b 共线,当且仅当=λ, ?2111e y e x +() 2212e y e x +=λ ?2111e y e x +2212e y e x λλ+= 由平面向量基本定理得:???==2121y y x x λλ ①2y ?-②2x ?消去λ得:01221=-y x y x ① ②

所以,a 与b 共线?01221=-y x y x 。 上述结论还可以进一步推广为: 推论2:对于任意向量1e ,2e ,若2111e y e x +=,2212e y e x +=,那么与共线 ?1e ∥2e 或01221=-y x y x 证明:分两种情况: 1e 与2e 平行和1e 与2e 不平行 (1)1e 与2e 平行时,结论成立。 (2)1e 与2e 不平行时,a 与共线,当且仅当a =b λ, 有:2111e y e x +() 2212e y e x +=λ 即:2111e y e x +2212e y e x λλ+= 由平面向量基本定理得:???==2121y y x x λλ ①2y ?-②2x ?消去λ得:01221=-y x y x 即:当且仅当01221=-y x y x 时,与b 共线 综合(1)(2)知:与b 共线?1e ∥2e 或01221=-y x y x 上述两个结论,尤其第二个,对向量共线的问题阐述得比较完备。 在高考、模拟考、联考等一系列考试中,常出现向量共线的问题,下面是两个结论针对一些考题的应用,所有例题都给出多种解法,其中“另解”应用了上述结论,多种解法进行对比后,我们可以看出应用上述结论可以使问题的解决更简捷,从而节省时间。 例1.(2009重庆卷文)已知向量)1,1(=a ,),2(x b = 若b a +与24-平行,则实数x 的值是 ( ) A .-2 B .0 C .1 D .2 解法1:因为)1,1(=a ,),2(x b = ,所以)1,3(+=+x b a ,① ②

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用 蒋李萍 2011年10月24日 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC = ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点共线的又一个性质; 3. 特别地,12λμ== 时,1 ()2 OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛. 应用举例: 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1 3 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=. 证明:由已知BD BA BC =+,又点N 在BD 上,且1 3 BN BD = ,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点, 1 2BM BA ∴=,即2BA BM = 21 33BN BM BC ∴=+ 而21133 += ∴M 、N 、C 三点共线. D A B C M N

人教版高中数学高一A版必修4 平面向量共线的坐标表示

主动成长 夯基达标 1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( ) A.e 1=(0,0),e 2=(1,-2) B.e 1=(-1,2),e 2=(5,7) C.e 1=(3,5),e 2=(6,10) D.e 1=(2,-3),e 2=(21,-4 3) 解析:平面内任意两个不共线的向量都可作为所在平面内所有向量的基底. 对于A,e 1=0与任何向量共线, C 中,2e 1=e 2,∴e 1与e 2共线. D 中,4 1e 1=e 2,∴e 1与e 2共线. 答案:B 2.已知a =(-1,3),b =(x,-1),且a 、b 共线,则x 等于( ) A.3 B.-3 C. 31 D.-31 解析:因为a 、b 共线,所以1=3x,∴x= 31. 答案:C 3.已知A(-1,-4),B(8, 2 1),且A 、B 、C 三点共线,则C 点的坐标为( ) A.(9,1) B.(-9,1) C.(9,-1) D.(-9,-1) 解析:设C(x,y),=(8, 21)-(-1,-4)=(9,29), =(x,y)-(8,21)=(x-8,y-2 1), =(x,y)-(-1,-4)=(x+1,y+4), ∵A 、B 、C 三点共线, ∴AB 与BC 与AC 三个向量共线. ∴??? ????+-=+--=-).1)(21()4)(8(),8(29)21(9x y y x x y 经检验x=9,y=1适合. 答案:A 4.设a =( 31,tanα),b =(cosα, 23),且a 、b 共线,则锐角α的值为( ) A.12π B.6π C.4π D.3 π 解析:∵a 、b 共线,∴31×2 3-tanα·cosα=0,

平面向量三点共线性质定理的推论及空间推广

平面向量三点共线定理的推论及空间推广 南昌外国语学校 梁懿涛 邮编:330025 地址:江西省南昌市桃苑西路126号南昌外国语学校 电话: 电子信箱: 一.问题的来源 平面向量三点共线定理:对于共面向量,,OA OB OC u u u r u u u r u u u r ,OC xOA yOB =+u u u r u u u r u u u r ,则A 、B 、C 三点共线的充要条件是1x y +=. 二.问题的提出 问题1.在上述定理中,如果1x y +<、1x y +>时,分别有什么结论 问题2.x 、y 有什么特定的意义吗 问题3.上述问题可以推广到空间吗 三.问题的解决 推论1. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)点C 在直线AB 外侧(不含点O 一侧)的充要条件是1x y +>. (2)点C 在直线AB 内侧(含点O 一侧)的充要条件是1x y +<. 证明:(1)必要性:如图1-1,连OC 交AB 于点C ',则存在实数λ,使得(1)OC OC λλ'=>u u u r u u u u r ,(1)OC x OA y OB x y '''''=++=u u u u r u u u r u u u r ,OC x OA y OB λλ''∴=+u u u r u u u r u u u r ,,x x y y λλ''==, ()1x y x y λ''∴+=+>. 充分性:1x y +>Q ,∴存在1λ>,使得,x x y y λλ''==且1x y ''+=. ()OC x OA y OB OC λλ'''∴=+=u u u r u u u r u u u r u u u u r ,C 'Q 在直线AB 上,C ∴在直线AB 外侧. 同理可证(2). 进一步分析,得: 推论1'. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)连接AB 得直线1l ,过点O 作平行于1l 的直线2l ,则1l 、2l 将平面OAB 分成三个区域,如图1-2点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:1x y +>;(Ⅱ)区:01x y <+<;(Ⅲ)区:0x y +<.特别地,当点C 落在1l 上时,1x y +=;当点C 落在2l 上时,0x y +=. (2)直线OA 、OB 将平面OAB 分成四个区域,如图1-3,则点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:00x y >??>?;(Ⅱ)区:00x y ?;(Ⅲ)区:00x y ??>,则点C 在线段AB 上;当0,0x y ><,则点C 在线段BA 的延长线上;当0,0x y <>,则点C 在线段AB 的延长线 上. 证明:OC xOA yOB =+u u u r u u u r u u u r Q 且1x y +=,OC xOC yOC xOA yOB ∴=+=+u u u r u u u r u u u r u u u r u u u r ,xCA yBC =u u u r u u u r , ||||||||AC y BC x ∴=。当0,0x y >>时,CA u u u r 与BC uuu r 同向,如图2-1所示,则点C 在线段AB 上;当0,0x y ><时,CA u u u r 与BC uuu r 反向,且||||AC BC <,如图2-2所示,则点C 在线段BA 的延长线上;当0,0x y <>时,CA u u u r 与BC uuu r 反向,且||||AC BC >,如图2-3所示,则点C 在线段AB 的延长线上.

平面向量中“三点共线定理”妙用教学文稿

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使 b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且 1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线,(设直线不过点O ),则S 200= ( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选 A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则 y x 4 1

平面向量补充讲义----三点共线定理(修改版)

平面向量补充讲义----三点共线定理 班级:__________姓名:___________ 三点共线定理:若平面内,向量12,OP OP 不共线,向量12OP OP OP λμ=+, 则12,,P P P 三点共线的等价条件是1λμ+=.(如图,共线时λ满足:221P P P P λ=) 说明1:若12,,P P P 三点共线,设221P P P P λ=,则11OP OP PP =+,则 例1.如图,在△ABC 中,13 AN NC =,点P 是BN 上的一点,若211 AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211 练习 例2.,点在边上,,设,则( ) 例3.如图,点是△的重心,、分别是边、上的动点, 且、、三点共线.设,,求: 的值 推论:如图,若平面内,向量12,OP OP 不共线,点P 为直线12P P 的 平行线上任意一点,且向量 12OP OP OP λμ=+,则λμ+为定值. (这条平行线称为等和线) 例4 .已知点G 为ABC ?重心,P 为GBC ?内动点(不包括边界),且AP AB AC λμ=+,则λμ+的取 值范围是__________________;2λμ+的取值范围是_______________________. OAB ?P AB 3AB AP =,OA a OB b ==OP =12.33A a b +21.33 B a b +. C 1233a b -. D 2133a b -G OAB P Q OA OB P G Q x =y =y x 11+2 12P 1

平面向量基本定理及共线向里之应用(精)

平面向量的概念及其线性运算1.向量的有关概念 名称定义备注 平行向 量方向相同或相反的非零向量 0与任一向量平行或共线 共线向 量方向相同或相反的非零向量又叫做共线向量 相等向 量 长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向 量 长度相等且方向相反的向量0的相反向量为0 2.向量的线性运算 向量 运算 定义法则(或几何意义)运算律 加法求两个向量 和的运算 三角形法则 平行四边形法则 (1)交换律:a+b=b+a. (2)结合律: (a+b)+c=a+(b+c) 减法求a与b的相反向量- b的和的运算叫做a与 b的差 三角形法则 a-b=a+(-b) 数乘数λ与 向量a的积 的运算 (1)|λa|=|λ||a|; (2)当λ>0时,λa的方向与a的方向 相同;当λ<0时,λa的方向与a的方 向相反;当λ=0时,λa=0 λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb

P C A B Q 【例4】若点O 是△ABC 所在平面的一点,且满足|OB →-OC →|=|OB →+OC →-2OA → |,则△ABC 的形 状为________. 【例5】在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC → =b , 试用a ,b 表示AG → . 【课堂巩固】 1. 如图,设P 、Q 为△ABC 的两点,且2155AP AB AC =+, AQ =23AB +1 4 AC ,则△ABP 的面积与△ABQ 的面积之比为( ) A .1 5 B . 45 C . 14 D .13 3.如图,在△ABC 中,已知2AB =,3BC =,60ABC ∠=?,AH BC ⊥于H ,M 为AH 的中点,若 AM AB BC λμ=+,则λμ+= . 3、向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则 λ μ =_________. 3、ABC ?的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m 的值是多少? A B C H ?M b c a

数学必修四人教A版 2.3.4平面向量共线的坐标表示(教、学案)

平面向量共线的坐标表示 【教学目标】 .会推导并熟记两向量共线时坐标表示的充要条件; .能利用两向量共线的坐标表示解决有关综合问题。 .通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力. 【教学重难点】 教学重点:向量共线的坐标表示及直线上点的坐标的求解. 教学难点:定比分点的理解和应用. 【教学过程】 一、〖创设情境〗 前面,我们学习了平面向量可以用坐标来表示,并且向量之间可以进行坐标运算。这就为解决问题提供了方便。我们又知道共线向量的条件是当且仅当有一个实数λ使得λ,那么这个条件是否也能用坐标来表示呢?因此,我们有必要探究一下这个问题:两向量共线的坐标表示。 二、〖新知探究〗 思考:共线向量的条件是当且仅当有一个实数λ使得λ,那么这个条件是否也能用坐标来表示呢? 设(, ) (, )(≠)其中≠ 由λ,(, ) λ(, ) 消去λ:- 结论:∥(≠) 注意:?消去λ时不能两式相除,∵, 有可能为,∵≠, ∴, 中至少有一个不为. ?充要条件不能写成∵, 有可能为. ?从而向量共线的充要条件有两种形式:∥(≠) 三、〖典型例题〗 例. 已知,,且,求. 解:∵,∴.∴. 点评:利用平面向量共线的充要条件直接求解. 变式训练:已知平面向量,,且,则等于. 例: 已知,,,求证:、、三点共线. 证明:,, 又,∴.∵直线、直线有公共点,

∴,,三点共线。 点评:若从同一点出发的两个向量共线,则这两个向量的三个顶点共线. 变式训练:若(,),(,),(,)三点共线,则的值为. 例:设点是线段上的一点,、的坐标分别是(,),(,). (1)当点是线段的中点时,求点的坐标; (2)当点是线段的一个三等分点时,求点的坐标. 解:()= 所以,点的坐标为 ()当时,可求得:点的坐标为: 当时,可求得:点的坐标为: 点评:此题实际上给出了线段的中点坐标公式和线段三等分点坐标公式. 变式训练:当时,点的坐标是什么? 四、〖课堂小结〗 .熟悉平面向量共线充要条件的两种表达形式; .会用平面向量平行的充要条件的坐标形式证明三点共线和两直线平行; .明白判断两直线平行与两向量平行的异同。 五、〖反馈测评〗 .已知,-,(-),则() . 、、三点共线、、三点共线 . 、、三点共线. 、、三点共线 .若向量(,)与(,)共线且方向相同,则为. .设,,,且,求角. 【板书设计】

向量法证明三点共线的又一方法及应用 -

向量法证明三点共线的又一方法及应用 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r ∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质; 3. 特别地,12λμ==时,1()2 OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V 中线OB 的一个向量公式,应用广泛. 应用举例 例 1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明 BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. D A B C M N

相关文档
相关文档 最新文档