文档库 最新最全的文档下载
当前位置:文档库 › [第25讲] 三角恒等变换(上)

[第25讲] 三角恒等变换(上)

[第25讲] 三角恒等变换(上)
[第25讲] 三角恒等变换(上)

几个很有用的三角恒等式:

1

sin sin(60)sin(60)sin34θθθθ-+=°°;

1

cos cos(60)cos(60)cos34

θθθθ-+=°°;

tan tan(60)tan(60)tan 3θθθθ-+=°°. 辅助角公式

22sin cos )a x b x a b x ?+=++,其中以a 为横坐标,b 为纵坐标的点(,)a b 落在辅助角?的终

边上,tan b

a

?=.

反三角函数

⑴ 反正弦函数

a r c s i n y x =,[1x ∈-,1],值域为π2?-??,π2?

??

,在区间[1-,1]上增,奇函数,对称中心为(0,0);

⑵ 反余弦函数

arccos y x =,[1x ∈-,1],值域为[0,π],在区间[1-,1]上减,对称中心为π0,2??

???

⑶ 反正切函数

a r c t a n y x =,x ∈R ,值域为π

2

?-??,π2???,在(),-∞+∞上增,奇函数,对称中心为(0,0).

⑷ ππ

arcsin arccos arctan arccot 22

αααα+=+=,.

9

三角恒等变换

【例 1】 求π3π1cos 1cos 55?

???++ ????

???的值.

【例 2】 已知sin sin()x m y z =-,sin sin()y n z x =-,sin sin()

z

p x y =-,求mn np pm ++之值.

【例 3】 证明下列三角恒等式:

111

cot cot 2sin 2sin 4sin 2n n

x x x x x

+++=-

【例 4】 若1x 、2x 是方程2sin cos 0x x αα-+=的两个根,且0πα<<,求12arctan arctan x x +的值.

【例5】求下列各式的值:

13

sin10

-

°

⑵sin5013

(°°);

⑶sin602sin603120

x x x

++--

(°)(°)(°).

【例6】(2007年全国高中数学联赛试题)

设函数()3sin2cos1

f x x x

=++.若实数a、b、c使得()()1

af x bf x c

+-=对任意实数x恒成

立,则

cos

b c

a

的值为________.

【例 7】 对一个由正整数组成的有限集X ,定义:1

()arctan

x X

X x

∈=∑∑. 设一个由正整数组成的有限集S ,满足π()2

S <

∑. 证明:至少存在一个由正整数组成的有限集T ,使得S T ?,且π()2

T =

∑.

习题 1. 设22sec tan csc cot 7m

x x x x n

+=+=,(m n ,没有大于1的公约数)

,则m n +=_________.

习题 2. 若a b c ,,均是整数(090)c <<98sin50sin a b c -=°°,则a b

c

+的值是______.

习题 3. 已知函数2()cos cos sin f x x x x θθθ=+的最小正周期为

π

2

,则()f x θ的最大值是__________.

习题 4. 已知1122cos cos cos 0n n A A A ααα+++= ,以及

1122cos(1)cos(1)cos(1)0n n A A A ααα++++++= ,求证:

对β?∈R ,有1122cos()cos()cos()0n n A A A αβαβαβ++++++= .

习题 5. 已知sin α,sin β,sin γ成等差数列,求证:1tan ()2βγ+,1tan ()2γα+,1

tan ()2

αβ+也成

等差数列(此处三个正切值均有意义).

习题 6. 已知02αβγπ<<<<,且sin sin sin 0αβγ++=,cos cos cos 0αβγ++=.

⑴求βα-的值.

⑵求证:222cos cos cos αβγ++为定值.

究竟是谁第一个发现的?(二)

6.伯努利极坐标

一般认为极坐标是伯努利创立的。现在有证据表明,极坐标的真正创始人是牛顿。

7.马雪罗尼几何作图

1797年,马雪罗尼(Mascheroni)发现一个惊奇的结果:凡是能用欧氏工具(即圆规和直尺)可作的欧氏几何图形,都可以只用圆规来做。为此他专门写了一本著作《圆规几何》。直到1928年,才发现比马雪罗尼早125年,一位不出名的丹麦数学家摩尔(Georg Mohr)就得到了大致相同的结果,并且做出了证明。

8.高斯复平面

其实比高斯较早发表于丹麦皇家学院1798年的学报上的关于复数几何表示的论文,是一位名叫维塞尔(Caspar Wessel)的挪威测量员写的。现在复平面称为高斯复平面而不是维塞尔复平面,显然维塞尔的工作未引起注意。

9.普雷菲尔公理

在平面上通过给定直线外一点,只能作一条和这条直线平行的直线。苏格兰物理学家、数学家普雷菲尔(John Playfair 1748-1819)应用了这个与著名的欧几里得第五公设相等价的公理,并使之广泛知晓。因此,这条公理称为普雷菲尔公理。然而,大约在1460年柏拉图式的哲学家Prolus对此就有详细论述。

10.丢番图方程

丢番图方程指的是线性不定方程。然而丢番图通常研究的是二次方程。因此称线性不定方程为丢番图方程是不适当的。印度中世纪数学家婆罗摩笈多(Brahmagupta 大约625年)对线性不定方程很感兴趣。

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换公式大全

三角函数 cos (a+ B)=CoS a'-cos B - sin a - sin B cos (a-B)=cos a-cos B + sin a - sin B sin (a+ B)=S in a'-cos B cos a - sin B sin (a-B)=sin a-cos B - cos ,a?sin B tan (a+ B)=(ta n a+ta n B)/ (1-tan a - tan B) tan (a-B)=(ta n a-ta n B)/ (1+ta n a - tan B) 二 倍 角 sin (2a) =2sin a - cos a =2tan (a) /[1-ta门(a)] cos (2 a) =cosA2 (a) -si 门八2 (a) =2cosA2 (a)-1=1-2si nA2 (a)=[1-ta 门 八(a)]/[1+tanA2 (a)] tan (2a) =2tan a /[1 -ta门八2 (a)] 三倍角 sin3 a =3sin a -4sinW (a) C0S3 a =4COS A3 (a) - 3C0S a tan3 a = (3tan a -ta门八3 (a))*( 1-3ta门八2 (a)) sin3 a =4sin aX sin ( 60- a) sin (60+a) C0S3 a =4cos aX COS ( 60- a) C0s ( 60+a) tan3 a =tan aX tan ( 60- a) tan (60+a) 半角公式 sin A2 (a /2 )= (1-cos a) /2 cosA2 (a /2 )= (1+cos a) /2 tan A2 (a /2 )= (1-CoS a) / ( 1+cos a) tan ( a /2 ) =sin a / ( 1+cos a) = ( 1- CoS a) /si n a 半角变形 sinA2 (a /2 ) = (1-cos a) /2 sin(a/2 ) =V[ (1-cos a) /2] a/2 在一、二象限 =-V[ (1-cos a) /2] a/2 在三、四象限 C0SA2 (a /2 ) = (1+cos a) /2 cos(a/2 ) =V[ (1+cos a) /2] a/2 在一、四象限 =-V[ (1+cos a) /2] a/2 在二、三象限 tan A2 (a 12 ) = ( 1-COS a) / ( 1+COS a) tan (a /2 ) =S in a / ( 1+COS a) =( 1- COS a) /si n a =V[ ( 1-COS a) / ( 1+COS a)] a/2在一、三象限 =-V [ ( 1- COS a) / ( 1+COS a) ] a/2 在二、四象限

第25讲 简单的三角恒等变换(讲)(解析版)

第25讲 简单的三角恒等变换 思维导图 知识梳理 题型归纳 题型1 三角函数式的化简 【例1-1】(2020春?临渭区期末)已知(0,)απ∈(1sin cos )(cos sin ) 2 α α αα+ +-= . 【分析】由条件利用二倍角公式、以及三角函数在各个象限内的符号,化简要求的式子,可得结果.

【解答】解:(0,)απ∈, ∴ 2(1sin cos )(cos sin )(12sin cos 2cos 1)(cos sin )2ααααααα αα++-++--= 2cos (sin cos )(cos sin )2cos cos 2 22222cos |2cos |2cos 22 α α αα αα αααα +-= ==, 故答案为:cos α. 【跟踪训练1-1】(2019秋?淮安期末)设4 2 x π π ,则 ( + ) A .2sin x B .2cos x C .2sin x - D .2cos x - ,然后结合已知角的范围进行化简即可. 【解答】解: 4 2 x π π , sin cos sin cos 2sin x x x x x =++-=. 故选:A . 【跟踪训练1-2】(2019秋?徐州期末)若α可以化简为( ) A .2 sin α - B . 2 cos α C .2 tan α - D .2tan α- 【分析】由a 为第四象限角,结合已知条件利用同角三角函数基本关系式求解. 【解答】解:α为第四象限角, ∴ 1sin 1sin 2sin 2tan cos cos cos ααα αααα -+--==-. 故选:D . 【名师指导】 1.三角函数式的化简要遵循“3看”原则

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

三角恒等变换~最全的总结·学生版

三角恒等变换---完整版 三角函数------三角恒等变换公式: 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。(3)结合同角三角函数,化为二次函数求最值 (4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用

(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”快速进行逻辑判断。注意构造两角和差因子 1、(二倍角公式)(2007文)下列各式中,值为 3 2 的是( ) A .2sin15cos15 B .2 2 cos 15sin 15- C .2 2sin 151- D .22 sin 15cos 15+ 2、(二倍角公式+平方差公式)(2008六校联考)(sin 75sin15)(cos15cos 75)-+的值是 A.1 B. 1 2 C. 22 D. 32 3、(两角和差公式+诱导公式)(2009四校联考) 84cos 54sin 6cos 36sin -等于 A .-1 2 B .12 C .- 32 D . 32 4.(两角和差公式)下列各式中值为的是(). A . s in45°cos15°+cos45°sin15° B . sin45°cos15°﹣cos45°sin15° C . cos75°cos30°+sin75°sin30° D . 5、(拆角+两角和差公式)(一中2014届高三10月段考数学(理)试题)化简三角式=- 5 cos 5sin 355cos 2() A . 2 3 B .1 C .2 D .3 6、(补全公式)(2013六校联考回归课本题)cos20°·cos40°·cos60°·cos80°=( ) A . 14 B .18 C .116 D .1 32 常见变式:计算sin 10°sin 30°sin 50°sin 70°的=__. 7、(构造两角和差因子+两式平方后相加)若sin α-sin β=32,cos α-cos β=12,则cos(α-β)的值为()A.1 2 B. 32C.3 4 D .1 8.(诱导公式)【2015高一期末】sin163°sin223°+sin253°sin313°等于 B A .- 12 B. 12 C 33 9、(构造两角和差因子+两边平方)【2015高考,理12】=+ 75sin 15sin .. 10、(逆向套用公式)tan 23°+tan 37°+3tan 23°tan 37°的值是________.

2021年新高考数学一轮复习题型归纳与达标检测:25 简单的三角恒等变换(试题)(解析版)

『高考复习·精推资源』『题型归纳·高效训练』

第25讲 简单的三角恒等变换(达标检测) [A 组]—应知应会 1.(2020?赤峰模拟)1 tan15(tan15?-=? ) A .B .C .-D .4 【分析】把正切转化为正弦和余弦,再结合二倍角公式的逆用即可求解结论. 【解答】解:因为221sin15cos151515cos30tan151tan15cos15sin15cos15sin15sin 302 sin cos ???-?-? ?- =-===-?????? 故选:C . 2.(2020?赣州模拟)若cos78m ?=,则sin(51)(-?= ) A .B .C D 【分析】由已知利用诱导公式可得cos102m ?=-, 利用二倍角的余弦函数公式可求sin51?=,进而根据诱导公式化简所求即可求解sin(51)-?的值. 【解答】解:cos78m ?=, cos(18078)cos102cos78m ∴?-?=?=-?=-,可得212sin 51cos102m -?=?=-, 21sin 512 m +∴?= ,解得:sin51?= sin(51)∴-?= 故选:A . 3.(2019秋?临沂期末)若θ ( ) A .2tan θ B .2 tan θ - C .2tan θ- D . 2 tan θ 【分析】因为θ为第四象限角,所以sin 0θ<,再利用221cos sin θθ-=化简即可. 【解答】解:θ为第四象限角,sin 0θ∴<, ∴ 原式1cos 1cos 2cos 2 sin sin sin tan θθθθθθθ -+=-==--, 故选:D . 4.(2019秋?沙坪坝区校级期末) sin53sin 23cos30(cos23?-?? =? )

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

(完整word)2018年高考数学总复习三角恒等变换

第三节 三角恒等变换 考纲解读 会用向量的数量积推导出两角差的余弦公式. 能利用两角差的余弦公式导出两角差的正弦,正切公式. 能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系. 能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆). 命题趋势探究 高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度. 考题以考查三角函数式化简,求值和变形为主. 化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲 常用三角恒等变形公式 和角公式 sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=- tan tan tan()1tan tan αβ αβαβ ++= - 差角公式 sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+ tan tan tan()1tan tan αβ αβαβ --= + 倍角公式 sin 22sin cos ααα= 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan α αα =- 降次(幂)公式 2211cos 21cos 2sin cos sin 2;sin ;cos ;222 αα ααααα-+=== 半角公式 sin 2 2α α==

sin 1cos tan .21cos sin a α αα α-= =+ 辅助角公式 sin cos ),tan (0),b a b ab a ααα??+=+=≠角?的终边过点(,)a b ,特殊 地,若sin cos a b αα+=,则tan .b a α= 常用的几个公式 sin cos );4π ααα±=± sin 2sin();3 π ααα=± cos 2sin();6 π ααα±=± 题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示 推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例4.33 证明 (1):cos()cos cos sin sin ;C αβαβαβαβ++=- (2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβ αβαβ +++= - 解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于 12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得 2 221212122()PP OP OP OP OP cos αβ=+-?+ 22[cos cos()][sin sin()]22cos()αβαβαβ?--+--=-+ 22(cos cos sin sin )22cos()αβαβαβ?--=-+ :cos()cos cos sin sin .C αβαβαβαβ+?+=- 证法二:利用两点间的距离公式. 如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++ 3(cos(),sin()),P ββ--由231;OAP OP P ???得,213.AP PP =故

三角恒等变换知识点总结

、知识点总结 1、两角和与差的正弦、 ⑴cos cos ⑶sin si n 三角恒等变换专题 余弦和正切公式: cos sin si n :⑵ cos cos cos si n si n cos cos si n :⑷ sin si n cos cos si n ⑸tan tan tan 1 tan tan ⑹ta n tan tan 1 tan tan 2、二倍角的正弦、 余弦和正切公式: ⑴ sin 2 2si n cos 1 sin 2 ⑵ cos2 cos 2 ?2 sin 2cos 2 升幕公式 1 cos 2cos 2 — 2 降幕公式 2 cos cos2 1 (tan (tan 1 cos 2 ,1 sin 2 .2 sin tan tan 2 cos tan tan 2 sin cos tan tan tan tan (si n ) ; ). cos )2 1 2si n 2 2sin 2 — 2 1 cos2 ⑶tan2 1 2ta n tan 2 万能公式 半角公式 2 tan a cos - 2 a tan - 2 1 "一个三角函数,一个角,一次方”的y A sin ( x a 2 2 a tan — 2 2 a tan - 2 4、合一变形 把两个三角函数的和或差化为 形式。 sin 2 si n ,其中tan 5. (1)积化和差公式 1 cos = [sin( 2 1 cos =— [cos( 2 和差化积公式 si n cos (2) si n + )+sin( + )+cos( +sin = 2 sin ------ cos --- 2 2 )] )] cos si n si n 1 sin = [sin( + )-sin( 2 1 sin = - — [cos( + )-cos( 2 )] )] -sin = 2 cos ----- sin --- 2 2

知识讲解-三角恒等变换-基础

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=m ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα = -2()T α。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是 的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 21 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

2020届高考一轮复习理科数学(人教版)练习:第25讲 倍角公式及简单的三角恒等变换

第25讲 倍角公式及简单的三角恒等变换 1.sin 47°-sin 17°cos 30°cos 17°的值为(C) A .-32 B .-12 C.12 D.32 原式=sin (30°+17°)-sin 17°cos 30°cos 17° = sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12 . 2.(2017·山西太原4月模拟)已知α为锐角,若sin(α-π6)=13,则cos(α-π3 )=(A) A.26+16 B.3-28 C.3+28 D.23-16 (方法1)因为α为锐角,sin(α-π6)=13 , 所以cos(α-π6)=223 , 所以cos(α-π3)=cos[(α-π6)-π6 ] =cos(α-π6)cos π6+sin(α-π6)sin π6 =223×32+13×12=26+16 . (方法2)令α-π6=θ,则sin θ=13,cos θ=223 , 所以cos(α-π3)=cos(θ-π6 ) = 32×cos θ+12×sin θ=26+16 . 3. (2018·佛山一模)已知tan θ+1tan θ=4,则cos 2(θ+π4)=(C ) A .12 B .13 C .14 D .15 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ =4, 即sin 2θ+cos 2θsin θcos θ=4,所以sin θcos θ=14,

所以cos 2(θ+π4)=1+cos (2θ+π2)2=1-sin 2θ2 =1-2sin θcos θ2=1-2×142=14 . 4.(2018·全国卷Ⅰ·文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=2 3,则|a -b|=(B ) A .15 B .5 5 C .25 5 D .1 由cos 2α=2 3,得cos 2α-sin 2α=2 3, 所以cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=2 3, 所以tan α=±5 5,即b -a 2-1=±55,所以|a -b|=5 5. 5.(经典真题)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ= -10 5 . 因为tan(θ+π4)=12,所以1+tan θ1-tan θ=1 2, 解得tan θ=-1 3, 所以(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ sin 2θ+cos 2θ =tan 2θ+2tan θ+1tan 2θ+1=19-2 3+1 19+1 =2 5, 因为θ为第二象限角,tan θ=-1 3, 所以sin θ+cos θ<0, 所以sin θ+cos θ=-10 5. 6.(2016·浙江卷)已知2cos 2x +sin 2x =A sin (ωx +φ)+b (A >0),则A = 2 ,b = 1 . 因为2cos 2x +sin 2x =1+cos 2x +sin 2x =1+ 2sin (2x +π 4), 所以1+ 2sin(2x +π 4)=A sin(ωx +φ)+b ,

必修四三角函数和三角恒等变换知识点及题型分类的总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n n α ∈N 所在象限的方法:先把各象限均分n 等份, 再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

高中数学函数、三角函数、三角恒等变换公式

函数、三角函数、三角恒等变换重要公式 1. B A = {|,}x x A x B ∈∈或 ;B A = {|,}x x A x B ∈∈且; {|,}U C A x x U x U =∈?且 2、 当n 为奇数时, a a n n =;当n 为偶数时,a a n n =. 3、 ⑴m n m n a a =()1,,,0*>∈>m N n m a ; ⑵()01 >= -n a a n n ; 4、 运算性质: ⑴()Q s r a a a a s r s r ∈>=+,,0;⑵()()Q s r a a a rs s r ∈>=,,0;⑶()()Q r b a b a ab r r r ∈>>=,0,0. 5、指数函数解析式:()1,0≠>=a a a y x 6、指数函数性质: 7、指数与对数互化式:log x a a N x N =?=; 8、对数恒等式:log a N a N = 9、基本性质:01log =a ,1log =a a . 10、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=?? ? ??;⑶M n M a n a log log =. 11、换底公式:a b b c c a log log log = ()0,1,0,1,0>≠>≠>b c c a a . 12、重要公式:log log n m a a m b b n = 13、倒数关系:a b b a log 1 log = ()1,0,1,0≠>≠>b b a a .

相关文档
相关文档 最新文档