文档库 最新最全的文档下载
当前位置:文档库 › 2015中考动点问题集锦

2015中考动点问题集锦

2015中考动点问题集锦
2015中考动点问题集锦

中考压轴 动点问题

1、如图11,在△ABC 中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH (HF ∥DE ,∠HDE=90°)的底边DE 落在CB 上,腰DH 落在

CA 上,且DE=4,∠DEF=∠CBA ,AH ∶AC=2∶3 (1)延长HF 交AB 于G ,求△AHG 的面积.

(2)操作:固定△ABC ,将直角梯形DEFH 以每秒1个 单位的速度沿CB 方向向右移动,直到点D 与点B 重合时停止,设运动的时间为t 秒,运动后的直角梯 形为DEFH ′(如图12).

探究1:在运动中,四边形CDH ′H 能否为正方形?若能,

解:(1)∵AH ∶AC=2∶3,AC=6AH=23

AC=23

×6=4 又∵HF ∥DE ,∴HG ∥CB ,∴△AHG ∽△ACB (1)

AH

AC

=

HG BC

,即

46

=

8

HG ,∴HG=16

3

∴S △AHG=12

AH ·HG=12

×4×16

3

=323

(2)①能为正方形∵HH ′∥CD ,HC ∥H ′D ,∴四边形CDH ′H

又∠C=90°,∴四边形CDH ′H 为矩形 又CH=AC-AH=6-4=2 ∴当CD=CH=2时,四边形CDH ′H

此时可得t=2秒时,四边形CDH ′H 为正方形 ②(Ⅰ)∵∠DEF=∠ABC ,∴EF ∥AB t=4秒时,直角梯形的腰EF 与BA 重合.

当0≤t ≤4时,重叠部分的面积为直角梯形DEFH ′的面积

过F 作FM ⊥DE 于M ,

FM ME

=tan ∠DEF=tan ∠ABC=

AC BC

=68

=

34

∴ME=43FM=43×2=83,HF=DM=DE-ME=4-83=4

3

∴直角梯形DEFH ′的面积为12(4+43)×2=16

3

y=163

(Ⅱ)∵当4<t ≤51

3时,重叠部分的面积为四边形CBGH 的面积-矩形CDH ′H 的面积.S 边

形CBGH=S △ABC-S △AHG=12×8×6-323=40

3S 矩形CDH ′H =2t ∴y=

403

-2t

(Ⅲ)当51

3<t ≤8时,如图,设H ′D 交AB 于P.

BD=8-t

PD DB

=tan ∠ABC=3

4

∴PD=34DB=34(8-t )∴重的面积y=S ,△PDB=12PD ·DB=12·3

4(8-t )(8-t )=38(8-t )2=38t2-6t+24y

与t y=3

16(0≤t ≤4

403-2t (4<t ≤513

38t2-6t+24(51

3<t ≤8)

2、已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;

(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;

(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.

(1) ∵A ,B 两点的

坐标分别是A(10,0)和

B(8,32),

(2) ∴38

103

2OAB tan =-=

∠,∴?=∠60OAB 当点A ′在线段AB 上时,∵?=∠60OAB ,TA=TA ′,∴

△A ′TA

是等边三角形,且A T TP '⊥,∴)t 10(2

3

60sin )t 10(T P -=

?-=,)t 10(2

1

AT 21AP P A -==

=',

2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '?'?-=∵△A ′EB 的高是?'60sin B A ,∴23)4t 10(21)t 10(83S 22?----=

34)2t (8

3

)28t 4t (8322+--=++-= 当t=2时,S 的值最大是34;当2t 0<<,即当点A ′和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ′与CB 的交点,F 是TP 与CB 的交点),

∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4,

∴343242

1

OC EF 21S =??=?=

综上所述,S 的最大值是34,此时t 的值是2t 0≤<.

3、如图(1)在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1 cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ。若设运动的时间为t(s)(0<t<2).根据以上信息,解答下列问题:

(1)当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?

(2)设四边形PQCB的面积为y(),直接写出y与t之间的函数关系式;

(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,那么是否存在某一时刻t,使组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由.

------------2分

(2)

③当沿AQ翻折时,PQ=AP,过P点作PH⊥AC于H,则点H必为AQ的中点,

∴Rt△AHP∽Rt△ACB,∴即,解得:>2(不合题意应舍去)

综上所述,当时,所形成的四边形为菱形.-------------------

4.如图24-1,在ABC △中,90A ∠=,4AB =,3AC =.M 是边AB 上的动点(M 不与A B ,重合),MN BC ∥交AC 于点N ,AMN △关于MN 的对称图形是PMN △.设AM x =. (1)用含x 的式子表示AMN △的面积(不必写出过程); (2)当x 为何值时,点P 恰好落在边BC 上; (3)在动点M 的运动过程中,记PMN △与梯形MBCN 重叠部分的面积为y ,试求y 关于x 的函数关系式;并求x 为何值时,重叠部分的面积最大,最大面积是多少?

可求得相等的线x=y=x 由题意知△=x BPM x=AB=2)以下分两种情况讨论:y=x ∴,∴∴

∴y=

(ii )∵当0<x≤2时,y=x 2∴易知y 最大=

(11分)

又∵当2<x <4时,y=x 2+6x-6=(x-)2+2.∴当

时(符合2<x <4),y 最大=2,

综上所述,当

时,重叠部分的面积最大,其值为2.(13分)

二次函数类型题

等腰三角形问题

1、如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;

(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.

1、解:(1)将A (-1,0)、B (3,0)、C (0,3)代入抛物线y =ax 2+bx +c 中,得: ∴抛物线的解析式:y =-x 2+2x +3.

(2)连接BC ,直线BC 与直线l 的交点为P ;设直线BC 的解析式为y =kx +b ,将B (3,

0),C (0,3)代入上式,∴直线BC 的函数关系式y =-x +3;当x -1时,y =2,即P 的坐标(1,2). (3)抛物线的解析式为:x =-

=1,设M (1,m),已知A (-1,0)、C (0,3),则:

MA 2=m 2+4,MC 2=m 2-6m +10,AC 2=10;①若MA =MC ,则MA 2=MC 2,得:

m 2+4=m 2-6m +10,得:m =1;②若MA =AC ,则MA 2=AC 2,得:m 2+4=10,得:m =±;

③若MC =AC ,则MC 2=AC 2,得:m 2-6m +10=10,得:m =0,m =6; 当m =6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去; 综上可知,符合条件的M 点,且坐标为 M (1,)(1,-

)(1,1)(1,0).

面积问题

2、如图,已知抛物线经过点A (﹣1,0)、B (3,0)、C (0,3)三点. (1)求抛物线的解析式.

(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用m 的代数式表示MN 的长.

(3)在(2)的条件下,连接NB 、NC ,是否存在m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.

2(2)设直线BC 的解析式为:y=kx+b ,则有:

3k +b =0b =3???,解得k=1

b=3-???

。∴直线BC 的解析式:y=﹣x+3。

已知点M 的横坐标为m ,则M (m ,﹣m+3)、N (m ,﹣m 2

+2m+3); ∴MN=﹣m 2

+2m+3﹣(﹣m+3)=﹣m 2

+3m (0<m <3)。

3)存在。如图;∵S △BNC =S △MNC +S △MNB =

12MN (OD+DB )=1

2

MN?OB , ∴S △BNC =

12

(﹣m 2

+3m )?3 =﹣

32(m ﹣32)2+278(0<m <3)。∴当m=32时,△BNC 的面积最大,最大值为278

。 3、已知抛物线y=ax 2+2x+c 的图象与x 轴交于点A (3,0)和点C ,与y 轴交于点B (0,3). (1)求抛物线的解析式;

(2)在抛物线的对称轴上找一点D ,使得点D 到点B 、C 的距离之和最小,并求出点D 的坐标;

(3)在第一象限的抛物线上,是否存在一点P ,使得△ABP 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.

3(2)∵()2

2y x 2x 3x 14=-++=--+,∴对称轴为x=1。 令2y x 2x 30=-++=,解得x 1=3,x 2=-1,∴C (-1,0)。

如图1所示,连接AB ,与对称轴x=1的交点即为所求之D 点,由于A 、C 两点关于对称轴对称,则此时DB+DC=DB+DA=AB 最小。

设直线AB 的解析式为y=kx+b ,由A (3,0)、B (0,3)可得:

3k b 0 b 3+=??=?,解得k 1

b 3=-??

=?

。∴直线AB 解析式为y=-x +3。当x=1时,y=2,∴D 点坐标为(1,2)。(3)结论:存在。如图2,设P (x ,y )是第一象限的抛物线上一点,过点P 作PN ⊥x 轴于点N ,则ON=x ,PN=y ,AN=OA

-ON=3-x .ABP

PNA AOB

PNOB S S S S ???=+-梯形111

OB PN ON PN AN OA OB 222

111393y x y 3x 33x y 22222

=+?+?-?=+?+?--??=+-()()()() ∵P (x ,y )在抛物线上,∴2y x 2x 3=-++,代入上式得22ABP 3

933327S x y x 3x x 22222 8

?=+-

=--=--+()()()。∴当x= 32时,S △ABP 取得最大值。当x= 32 时,2

3315y 23=224??

=-+?+ ???

,∴P (32,154 )。

四边形问题

4、如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=3

4

x2+bx+c经过点B,且对称

轴是直线x=﹣5

2

(1)求抛物线对应的函数解析式;

(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上.

(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD 于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E 为顶点的四边形是平行四边形.

4、(2)∵A(4,0)、B B(0,3),∴OA=4,OB=3,AB5。

若四边形ABCD是菱形,则BC=AD=AB=5,∴C(﹣5,3)、D(﹣1,0).

将C(﹣5,3)代入y=3

4

x2+

15

4

x+3中,得:

3

4

×(﹣5)2+

15

4

×(﹣5)+3=3,

∴点C在抛物线上;同理可证:点D也在抛物线上。

5、如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

)三点在抛物线上,

∴,解得y=x﹣

y=,∴其对称轴为直线﹣﹣

,﹣

∴,解得y=﹣

=,∴,﹣

∴△ND=OC=点的纵坐标为.

∴=,解得x=2+,∴2+)﹣)

,﹣),)或(﹣,

6、如图1,在平面直角坐标系中,已知抛物线经过A (-4,0)、B (0,-4)、C (2,0)三点.

(1)求抛物线的解析式;

(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△MAB 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值;

(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

图1 图2

7、2.把△MAB 分割为共底MD 的两个三角形,高的和为定值OA .

3.当PQ 与OB 平行且相等时,以点P 、Q 、B 、O 为顶点的四边形是平行四边形,按照P 、Q 的上下位置关系,分两种情况列方程.

满分解答(1) 因为抛物线与x 轴交于A (-4,0)、C (2,0)两点,设y =a (x +4)(x -2).代入点B (0,-4),求得1

2

a =

.所以抛物线的解析式为211

(4)(2)4

22

y x x x x =

+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么

2211

(4)(4)222

MD m m m m m =---+-=--.所以

21

42

MDA MDB S S S MD OA m m ??=+=?=--2(2)4m =-++.

因此当2m =-时,S 取得最大值,最大值为4.

(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4.

设点Q 的坐标为(,)x x -,点P 的坐标为2

1(,

4)2

x x x +-.

①当点P 在点Q 上方时,2

1(4)()42

x x x +---=.解得2x =-±.

此时点Q 的坐标为(2-+-(如图3),或(2--+(如图4).

②当点Q 在点P 上方时,2

1()(4)42

x x x --+-=.

解得4x =-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).

初中数学动点问题专题复习

初中数学动点问题练习题 1、(宁夏回族自治区)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在 ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. 1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形 MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 2、如图,在梯形ABCD 中,3545AD BC AD DC AB B ====?∥,,,.动点 M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长. (2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形. 3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? C P Q B A M N C B

初一上数学线段动点问题

数学的动点问题 1. 已知数轴上两点A、B对应的数分别为一1, 3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A、点B的距离相等,求点P对应的数;(1) (2)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若不存在, 请说明理由? ( -1.5,3.5 ) (3)当点P以每分钟一个单位长度的速度从0点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等? (2/23) 2. 数轴上点A对应的数是一1,B对应的数是1, 一只小虫甲从点B出发沿着数轴的正方向以每秒4 个单位长度的速度爬行至C点,再立即返回到A点,共用了4秒。 (1)求点C对应的数;(8) (2)若小虫甲返回到A点后作如下运动:第1次向右爬行2个单位长度,第2次向左爬行4个单位长 度,第3次向右爬行6个单位长度,第4次向左爬行8个单位长度,…依次规律爬下去,求它第10次所停在点所对应的数.(-11 ) (3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位长度的速度爬行,这时另一只小虫乙从点C出发沿着数轴的负方向以每秒7个单位长度的速度爬行,设小虫甲爬行后对应的点为E,小虫乙爬行后对应的点为F.设点A、E、F、B所对应的数分别是X A、X E、X F、X B,当运动时间t不超过1 时,|x A-x E|-|X E-X F|+|X F-X B|的值是否发生变化?若变化,请说明理由;若不变,请求出其值。 3. 如图,点0为直线AB上一点,过点0作射线0C使/ BOC=120 ?将直角三角板的直角顶点放在点0处,一边0M在射线0B上,另一边ON在直线AB的下方. (1)将图1中的三角板绕点0逆时针旋转至图2,使一边0M在/ BOC的内部,且恰好平分/ BOC 问:此时直线ON是否平分/ AOC请说明理由. (2) 将图1中的三角板绕点0以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角/ AOC求t的值. (3)将图1中的三角板绕点0顺时针旋转至图3,使ON在/ AOC的内部,求/ AOM/ NOC勺度数. AT

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

初一数学动点问题答题技巧与方法

初一数学动点问题答题技巧与方法 关键:化动为静,分类讨论。解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数等等。动点问题定点化是主要思想。比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。 步骤:①画图形;②表线段;③列方程;④求正解。 数轴上动点问题 数轴上动点问题离不开数轴上两点之间的距离。为了便于大家对这类问题的分析,首先明确以下几个问题: 1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。即数轴上两点间的距离=右边点表示的数—左边点表示的数。 2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b 个单位后所表示的数为a+b。 3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。 问题引入:如图,有一数轴原点为O,点A所对应的数是﹣1,点A沿数轴匀速平移经过 原点到达点B. (1)如果OA=OB,那么点B所对应的数是什么? (2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数. 【考点】数轴;比较线段的长短.【专题】数形结合. 【分析】(1)由于OA=OB,可得点B所对应的数是点A所对应的数的相反数; (2)先求出AB的距离,再根据速度=路程÷时间求解; (3)先求出AC的距离,得到点C所对应的数,由KC=KA,得到点K所对应的数. 【解答】解:(1)∵OA=OB,点A所对应的数是﹣1,∴点B所对应的数是1; (2)[1﹣(1)]÷3=3÷3=1.故该点的运动速度每秒为1. (3)1×9=9,9÷2=4.5,∴点C所对应的数为﹣1+9=7, 点K所对应的数为﹣1+4.5=3.故点C所对应的数为7,点K所对应的数为3. 【点评】考查了数轴和路程问题,熟练掌握数轴上两点间的距离的求法,本题虽有几题,但基础性较强,难度不大. 练习:

人教版七年级下册数学动点问题教学内容

动点问题 1、如图6-7,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发. (1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短? 2.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴 和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0) 20b -=. (1) 则A 点的坐标为___________,C 点的坐标为__________; (2) 已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是(1,2),设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP = S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由; (3) 点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连OG ,使得∠AOG =∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC ∠+∠∠的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由. 3.如图1,在平面直角坐标系中,第一象限内长方形ABCD , AB ∥y 轴,点A (1,1),点C (a , b ),

满足035=-+-b a . (1)求长方形ABCD 的面积. (2)如图2,长方形ABCD 以每秒1个单位长度的速度向右平移,同时点E 从原点O 出发沿x 轴以每秒2 个单位长度的速度向右运动,设运动时间为t 秒. ①当t=4时,直接写出三角形OAC 的面积为 ; ② 若AC ∥ED ,求t 的值; (3)在平面直角坐标系中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点, 已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A . ①若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ; ②若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 . 4、如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积; (2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由. y x P O C B A 5、如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使 2ACP ABC S S =V V ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使 D C B A E O y x 24题图2 24题图1 D C B A O y x

专题_解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题 学大分教研中心 周坤 轨迹方程的探解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。解答这类问题,需要善于揭示问题的部规律及知识之间的相互联系。本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。OK ,不废话了,开始进入正题吧... Part 1 几类动点轨迹问题 一、动线段定比分点的轨迹 例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。 ()()()00P x y A a B b 解:设,,,,,, ()( )0 11101a a x x y b b y λλλλλλλ+???=+=??? +??++?=??=? ?+? , 2225a b +=代入 () () 2 2 2 2 2 1125y x λλλ +++ = () () 2 2 2 2 2 125 2511x y λλλ+ =++

2225 14 P x y λ=+= 当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;② 01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③; 例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程. ()()113P x y B x y AB BP =-解:设,,,,有 ()()()()11 33131313x x y y ?+-= ?+-? ? +-?=?+-? 11332 312 x x y y -?=??? -?=??化简即: 22114x y +=代入 22 3331422x y --???? += ? ????? 得 所以点P 的轨迹为()2 2 116139x y ? ?-+-= ?? ? 二、两条动直线的交点问题 例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x = AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,,

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

七年级下册动点问题及压轴题

七年级下册动点问题及压轴题 1.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象, (1)参照图②,求a、b及图②中的c值; (2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒 后,△APD的面积是矩形ABCD面积的. 2.

4. 如图,△ABC 是等腰直角三角形,∠C =90°,CD ∥AB ,CD =AB =4cm ,点P 是边AB 上一动点,从点A 出发,以1cm/s 的速度从点A 向终点B 运动,连接PD 交AC 于点F ,过点P 作PE ⊥PD ,交BC 于点E ,连接PC ,设点P 运动的时间为)(s x (1)若△PBC 的面积为)(2cm y ,写出y 关于x 的关系式; (2)在点P 运动的过程中,何时图中会出现全等三角形?直接写出x 的值以及相应全等三角形的对数。

5.如图在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,动点E以2cm/秒的速度从点A向点C运动(与点A,C不重合),过点E作EF∥AB交BC于F点. (1)求AB的长; (2)设点E出发x秒后,线段EF的长为ycm. ①求y与x的函数关系式,并写出自变量x的取值范围;②试问在AB上是否存在P,使得△EFP为等腰直角三角形?若存在,请说出共有几个,并求出相应的x的值;若不存在,请简要说明理由. 6.在直角三角形ABC中,BC=6,AC=8,点D在线段AC上从C向A运动.若设CD=x,△ABD的面积为y. (1)请写出y与x的关系式; (2)当x为何值时,y有最大值,最大值是多少?此时点D在什么位置? (3)当△ABD的面积是△ABC的面积的一半时,点D在什么位置? 7.如图,在△ABC中,∠B<∠C<∠A,∠BAC和∠ABC的外角平分线AE、BD分别与BC、CA的延长线交于E、D.若∠ABC=∠AEB,∠D=∠BAD.求∠BAC的度数. 8.一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:

动点的轨迹问题

动点的轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法: 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。 4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。 5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。 6.转移法:如果动点P 随着另一动点Q 的运动而运动,且Q 点在某一已知曲线上运动,那么只需将Q 点的坐标来表示,并代入已知曲线方程,便可得到P 点的轨迹方程。 7.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。 8.待定系数法:求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。 9.点差法:求圆锥曲线中点弦轨迹问题时,常把两个端点设为),(),,(2211y x B y x A 并代入圆锥曲线方程,然而作差求出曲线的轨迹方程。 此部分内容主要考查圆锥曲线,圆锥曲线的定义是根本,它是相应标准方程和几何性质的“源”。对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略。 二、注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

初一上数学线段动点问题

数学线段动点问题 1.已知数轴上两点A 、B 对应的数分别为—1,3,点P 为数轴上一动点,其对应的数为x. (1)若点P 到点A 、点B 的距离相等,求点P 对应的数;(1) (2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值。若不存在,请说明理由?(-1.5,3.5) (3)当点P 以每分钟一个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度向左运动,点B 一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等?(2/23) 2.数轴上点A 对应的数是-1,B 对应的数是1,一只小虫甲从点B 出发沿着数轴的正方向以每秒4个单位长度的速度爬行至C 点,再立即返回到A 点,共用了4秒。 (1)求点C 对应的数;(8) (2)若小虫甲返回到A 点后作如下运动:第1次向右爬行2个单位长度,第2次向左爬行4个单位长度,第3次向右爬行6个单位长度,第4次向左爬行8个单位长度,…依次规律爬下去,求它第10次所停在点所对应的数.(-11) (3)若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位长度的速度爬行,这时另一只小虫乙从点C 出发沿着数轴的负方向以每秒7个单位长度的速度爬行,设小虫甲爬行后对应的点为E ,小虫乙爬行后对应的点为F.设点A 、E 、F 、B 所对应的数分别是x A 、x E 、x F 、x B ,当运动时间t 不超过1时, |x A -x E |-|x E -x F |+|x F -x B |的值是否发生变化?若变化,请说明理由;若不变,请求出其值。 如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=120°.将直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC .问:此时直线ON 是否平分∠AOC ?请说明理由. (2)将图1中的三角板绕点O 以每秒6°的 速度沿逆时针方向旋转一周,在旋转的过程中, 第t 秒时,直线ON 恰好平分锐角∠AOC ,求t 的值. (3)将图1中的三角板绕点O 顺时针旋转至 图3,使ON 在∠AOC 的内部,求∠AOM-∠NOC 的度数. 3.已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x 。

初一数学动点问题解题技巧

初一数学动点问题解题技巧 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想。 1、有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C 所对应的数。 2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度. 3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A 与点B重合时,点P所经过的总路程是多少? 4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒. (1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度; (2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置? 5、在数轴上,点A表示的数是-30,点B表示的数是170. (1)求A、B中点所表示的数. (2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.

立体几何中的动点轨迹问题讲解

立体几何中的动点轨迹问题讲解 这类问题在高考中并不常见,或者说在高考中出现得并不明显,但在用空间向量求二面角时偶尔会遇到一种题目,即需要用到的点并不是一个确定的点,而是在一个面上的动点,且这个点还满足一些特定的值或平面几何关系,此时需要根据条件确定出动点所在的轨迹,在每年高考前的模拟题中也会遇到这种题目,若在选填中,则一般位于压轴或次压轴位置,求几何体中动点的轨迹或者与轨迹求值相关的问题,在解析几何中满足条件的动点都会有特定的轨迹,动点绝不是乱点,在几何体中依旧如此。 这种题目做法和平面几何求轨迹方程类似,因为点在面内(非平面),所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型,这四种情况没有过于明显的界限,知道就好,下列题目中就不再分门别类的去叙述了。 立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别。 题目中可以找到与AM垂直且包含OP的平面,这样动点P的轨迹就知道了,从O点向底面作垂线,垂足为O',连接BO',可知AM⊥平面OO'B,即可得知P的轨迹。

但题目是在规则的正方体中,直线OP和AM为异面直线,两者成90°的特殊角度,根据射影法求异面直线的夹角方法,我们只需确定出OP在底面上的投影位置即可。 与上题类似,需要找到一个与BD1垂直且包含AP的平面,根据三垂线定理可知BD1⊥AC,BD1⊥AB1,所以BD1⊥平面ACB1,平面ACB1与有侧面的交线为B1C,所以点P的轨迹为线段B1C

初一数学动点问题例题集

初一数学动点问题集锦 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B点向C 点运动,同时,点Q 在线段CA 上由C 点向A点运动. ①若点Q的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与 CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米, ∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =.

又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.?(4分) ②∵ P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间 4 33BP t = =秒, ∴ 515 443Q CQ v t = ==厘米/秒. (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 32104x x =+?, 解得 80 3x = 秒. ∴点P 共运动了80 380 3?=厘米. ∵8022824=?+, ∴点P 、点Q 在AB 边上相遇, ∴经过80 3秒点P 与点Q 第一次在边AB 上相遇. (12分) 2、直线3 6 4y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从 O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每 秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;

初一数学动点问题集锦

1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。 ⑴若点P到点A、点B的距离相等,求点P对应的数; ⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若 不存在,请说明理由? ⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向 左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、 点B的距离相等? 2.数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单 位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。 (1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数; -5 (2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B点表示的数; A B -5 (3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙到乙的距 离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由。 A B -5 3.已知数轴上有顺次三点A, B, C。其中A的坐标为-20.C点坐标为40,一电子蚂蚁甲从C点出发, 以每秒2个单位的速度向左移动。 (1)当电子蚂蚁走到BC的中点D处时,它离A,B两处的距离之和是多少? (2)这只电子蚂蚁甲由D点走到BA的中点E 处时,需要几秒钟? (3)当电子蚂蚁甲从E点返回时,另一只电子蚂蚁乙同时从点C出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B点5个单位长度,求B点的坐标 4.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。 ⑴求AB中点M对应的数; ⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇, 求C点对应的数;

最新七年级数学动点问题(北师大版)整理

例1 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0 (1)求A、B两点之间的距离; (2)若在数轴上存在一点C,且AC=2BC,求C点表示的数; (3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略 球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒), ①分别表示甲、乙两小球到原点的距离(用t表示); ②求甲、乙两小球到原点的距离相等时经历的时间.例2如图,有一数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B. (1)如果OA=OB,那么点B所对应的数是什么? (2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置; (2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在 两个动点正中间; (3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单 位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应 的数为x. (1)若点P到点A,点B的距离相等,求点P对应的数; (2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由; (3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时 点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P 所经过的总路程是多少?

人教版七年级上册数学动点问题(精编版)

初一上册数学动点问题精编(打印版) 1.已知a、b满足(a﹣2)2+|ab+6|=0,c=2a+3b,且有理数a、b、c在数轴上对应的点分别为A、B、C. (1)则a=,b=,c=. (2)点D是数轴上A点右侧一动点,点E、点F分别为CD、AD中点,当点D运动时,线段EF的长度是否发生变化,若变化,请说明理由,若不变,请求出其值; (3)若点A、B、C在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A 和点B分别以每秒3个单位和每秒2个单位的速度向右运动.请问:是否存在一个常数m 使得m?AB﹣2BC不随运动时间t的改变而改变.若不变,请说明理由。 2.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|,当A、B两点都不在原点时, 点A、B都在原点的右边,如图2,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|; 点A、B在原点的左边,如图3,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|; 点A、B在原点的两边,如图4,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|. 综上,数轴上A、B两点的距离|AB|=|a﹣b|.回答下列问题: (1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是; (2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2那么x为. (3)当代数式|x+1|+|x﹣2|取最小值时,相应x的取值范围是. (4)若未知数x、y满足(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6,则代数式x+2y的最大值是,最小值是。

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题 1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16. (1)求C点坐标; (2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数. (3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由. 【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0, ∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16. ∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5, ∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4) (2)如图, 延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°, ∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=

∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90° (3)不变,∠ANM=45° 理由:如图, ∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD, ∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°, ∴D点在运动过程中,∠N的大小不变,求出其值为45° 2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补. (1)试判断直线AB与直线CD的位置关系,并说明理由; (2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH; (3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 ~ 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.

P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值. 作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求. O 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a>0时,y有最小值k;当a<0时,y有最大值k. 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) ~ 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

相关文档
相关文档 最新文档