文档库 最新最全的文档下载
当前位置:文档库 › 基于模态灵敏度分析的机载控制台尺寸优化

基于模态灵敏度分析的机载控制台尺寸优化

CAD/CAE/CAPP/CAM现代制造工程(ModernManufacturingEngineering)2018年第2期

基于模态灵敏度分析的机载控制台尺寸优化*

朱维兵,巫发茂,晏静江,王和顺

(西华大学机械工程学院,成都610039)

摘要:机载控制台杆件较多,结构复杂,尺寸优化过程中设计变量较多,在尺寸优化前必须对其进行灵敏度分析。以多目标拓扑优化后的某机载控制台下台体为研究对象;以下台体各构件的厚度尺寸作为设计变量;以质量为约束条件;以第一、第二阶固有频率作为优化目标进行灵敏度分析。获得了下台体第一、第二阶模态频率及质量对杆件厚度的灵敏度变化情况及第一、第二阶固有频率相对于质量的灵敏度值。以下台体质量作为优化目标函数;结构第一、第二阶模态频率作为约束条件;选择第一、第二阶模态频率对质量的灵敏度绝对值较大的杆件厚度尺寸作为设计变量进行尺寸优化。分析结果表明,尺寸优化后结构的低阶固有频率明显提高,质量稍有减少,具有较好的动态性能。为下台体结构尺寸的确定提供依据。

关键词:机载控制台;尺寸优化;灵敏度分析;固有频率

中图分类号:TP391 文献标志码:A文章编号:1671-3133(2018)02-0092-07

DOI:10.16731/j.cnki.1671-3133.2018.02.017

Dimensionaloptimizationofairborneconsolebasedon

modalsensitivityanalysis

ZhuWeibing,WuFamao,YanJingjiang,WangHeshun

(SchoolofMechanicalEngineering,XihuaUniversity,Chengdu610039,China)

Abstract:Theairborneconsoleconsistsofanumberofbars,thestructureiscomplex,therearemanydesignvariablesinthesizeoptimizationprocess,sensitivityanalysismustbeperformedpriortoitssizeoptimization.Basedontheconceptualdesignandre-constructionmodelofmulti-objectivetopologyoptimization,thethicknessofeachbarcomponentistakenasdesignvariable,thequalityofairborneconsoleistakenasconstraints,andthefirstandsecondordernaturalfrequenciesaretakenastheoptimizationtargets,thesensitivityanalysisiscarriedout.Thesensitivityofthefirstandsecondordermodalfrequencyandthemasstothethicknessofthebarisobtained,andthesensitivityvaluesofthefirstandsecondnaturalfrequencieswithrespecttothemassaregot.Themassofdownthebodyistakenasoptimizationobjectivefunction,thefirstandsecondordermodalfrequenciesareusedasconstraints,selectthebarwhosesensitivityabsolutevalueofthefirstandsecondordermodalfrequencyrespecttothemassislargerasadesignvariable,sizeoptimizationiscarriedout.Theresultsshowthatthenaturalfrequencyofthesizeoptimizationstructureisimprovedobviously,thequalityisslightlyreducedandthedynamicperformanceisgood,whichprovidesbasisforde-terminingthesizeofthesubstructure.

Keywords:airborneconsole;sizeoptimization;sensitivityanalysis;naturalfrequency

0 引言

航空电子设备种类繁多,其特点、要求及使用环境等也各不相同,对设备体积、重量及耐力学环境等也要求很高。机载设备在工作中通常会面临严酷的振动环境条件,大量级、较低频率经常会使其产生疲劳损坏。目前对机载设备的结构优化设计研究已经开始从传统的定性、定量设计方法向CAD与CAE技术相结合的智能设计方法转变,其理论也在不断完善。结构拓扑优化较尺寸优化与形状优化更为复杂,在产品开发过程中通过拓扑优化设计法,使产品结构设计结果达到综合最优或较优[1-4]。某机载控制台主要由上台体、下台体和设备控制盒安装架等组成,下台体是整个控制台的主要承载部分。下台体结构优

29*教育部“春晖计划”合作科研项目(Z2014072);四川省教育厅重点项目(15ZA0126)万方数据

机械结构实验模态分析实验报告书

《机械结构实验模态分析》实验报告 开课实验室:汽车结构实验室 2019年月日 学院 姓名 成绩 课程 名称 机械结构实验模态分析 实验项目 名 称 机械结构实验模态分析 指导教师 教师评语 教师签名: 年 月 日 机械结构实验模态分析实验报告 一、实验目的和意义 模态分析技术是近年来在国内外得到迅速发展的一门新兴科学技术,广泛应用于航空、航天、机械制造、建筑、汽车等许多领域,在识别系统的动力学参数、动态优化设计、设备故障诊断等许多方面发挥了日益重要的作用。 本实验采用CCDS-1模态分析微机系统,对图1所示的框架结构进行分析。通过该实验达到如下目的: 212019 1817 16 1514 13121110 987 6 5 4 3 222120 20 202090 9090 90 90909090113 113 113 113 113 113 115 115 115 115 图1 框架结构图 详细了解CCDAS-1模态分析微机系统,并熟练掌握使用本系统的全过程,包括 了解测量点和激振点的选择。 了解模态分析实验采用的仪器,实验的连接、安装和调整。 1、 激励振时各测点力信号和响应信号的测量及利用这些测量信号求取传递函数,并分析影响传递 函数精度的因素。 2、 SSDAS-1系统由各测点识别出系统的模态参数的步骤。 3、 动画显示。 4、 灵敏度分析及含义。 通过CCDAS-1模态分析的全部过程及有关学习,能祥述实验模态的一般步骤。 通过实验和分析,大大提高综合分析能力和动手能力。

CCDAS-1系统模态分析的优缺点讨论并提出改进实验的意见。 二、测试及数据处理框图 加速度传感器 力传感器 脉冲锤 四个点由橡胶绳悬挂 1724 打印机 IBM PC 微型计算机 含AD板 CCMAS-1模态分析软件 双通道低 通滤波器 电荷放大器 电荷放大器 图2 测量及数据处理系统框图 三、实验模态分析的基本原理 对于一个机构系统,其动态特性可用系统的固有频率、阻尼和振型来描述,与模态质量和模态刚度一起通称为机械系统的模态参数。模态参数既可以用有限元的方法对结构进行简化得到,也可以通过激振实验对采集的振动数据进行处理识别得到。通过实验数据求取模态参数的方法就是实验模态分析。只要保证测试仪器的精度、实验条件和数据分析处理的精度就能获得高质量的模态参数。 一个线性系统,若在某一点j 施加激振力j F ,系统各点的振动响应为i X 1,2,...,i n =,系统任意两点的传递函数ij h 之间的关系可用矩阵表示如下: 11112122122212()... 0()...()...()...0n n j n n n nn x h h h x h h h F x h h h ωωωω?????? ???????????? =??? ??????????????? ??????M M M O M (1-1) 可记为:{}{}[]X H F = []H 称为传递函数矩阵。其中的任意元素ij h 可以通过激振实验得到 () () i ij j X h F ωω= ()i X ω,()j F ω分别表示响应i X 与激振力j F 的傅立叶变换。 测量方法是给系统施加一有限带宽频率的激振力(冲击也是一有限带宽激振力),同时测量系统的响应,将力和响应信号进行滤波,A/D 转换并离散采样,进行双通道FFT 变换,计算出激振力j F 与响应i X 之间的传递函数ij h 。 对测量的传递函数进行曲线拟和得到模态参数,一个多自由度系统曲线拟和传递函数的解析式为:* * 1 ()[]n ijk ijk ij k k k r r h S S P S P == - --∑ (1-3)

基于模态分析法的结构动载荷识别研究

文章编号:1000-1506(2000)04-0011-04 基于模态分析法的结构动载荷识别研究 文祥荣,智 浩,缪龙秀 (北方交通大学机械与电气工程学院,北京100044) 摘 要:分析了基于模态分析法的动载荷识别时域方法,应用薄板实例进行了验证,结果表明该方法具有较高精度,并对该方法在转向架结构应用中的一些问题进行了探讨. 关键词:动载荷识别;时域分析;模态分析 中图分类号:U453 文献标识码:A R esearch on Structural Dynamic Load Identif ication B ased on Modal Analysis Method WEN Xiang 2rong ,ZHI Hao ,M IAO Long 2xiu (College of Mechanical and Electrical Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :A dynamic load identification method in time domain based on modal analysis is analyzed.The method is verified with a flat thin plate and the results show its high accuracy.Some problem in the application of this method to identify dynamic load of bogie of rolling stock are also presented in this paper. K ey w ords :dynamic load identification ;time domain analysis ;modal analysis 动态载荷识别是根据已知系统的动态特性和实测的动力响应反算结构所受的动态激励.动载荷的确定是一个较难的问题,但又是结构动态设计的关键之一.动载荷的识别在结构动力响应计算、结构动态设计及故障分析中是十分重要的,为结构的动态计算、设计及分析提供可靠的依据.载荷识别方法主要分为时域和频域两大类.频域法发展较早,理论与计算方法较为成熟,应用也较广泛,在直升飞机动态力、汽车装配梁激振力、掘进机受载、海洋平台冰载、机床切削力、发动机活塞力等方面得到了应用[1].采用频域法虽然可确定动态力谱的均值与方差,但对于识别动态力确切的时间历程还有一定困难,特别是可能会出现奇异值和不稳定现象.时域法的最大特点是可以不经动态力谱而直接在时域内求解载荷时间历程,便于工程应用[2,3]. 将动载荷识别技术应用于铁路机车车辆结构受载状况的确定在国内外均未见报道.通过对机车车辆结构,尤其是转向架结构在运用条件下的动载荷识别,有助于制定转向架疲劳设计载荷谱,为转向架的动态设计与疲劳设计提供可靠的依据.我国的高速客车转向架正处于研制开发阶段,缺乏实践运用经验,各铁路工厂亦迫切需要这些载荷数据,以便完善转向架结构的 收稿日期:2000203201作者简介:文祥荣(1971— ),男,江西南康人,博士生.em ail :wen -xiangrong @https://www.wendangku.net/doc/4613716770.html, 2000年8月第24卷第4期 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Aug.2000 Vol.24No.4

如何做结构设计优化

如何做结构设计优化 一、结构设计优化必不可少 设计优化对于成本控制来说具有极端重要性,不可不察。而设计优化往往是被忽略的,更多的则是不具备这个能力。 设计优化主要是从成本控制的角度对原设计进行排查,排除设计的盲区和死角,发现差错、纠正不足,降低不安全因素,为您找回流失的成本。剔除原来设计中的虚高的, 无用的,不安全的,不合理的成本。 结构设计优化,也如同人减去多余脂肪,达到健美目的,杜绝不必要的浪费。加大构件截面,提高配筋率,并不一定增加结构的安全度,有时反而是坏事,如增加建筑自重,形成超筋破坏等反作用。 结构设计优化并不是单纯的“挑毛病”,而是通过交流、沟通,找到更为合理、更经济的设计。结构设计的优化,不是以牺牲建筑适用性、结构安全度和抗震性能来求得经济效益。 在所有的设计优化中,结构设计优化空间最大,结构成本的弹性和离散性大,最有成本控制的意义,是优化的重点。 二、结构设计优化重点 结构设计优化根据优化深度难易分几个层次,一是结构体系与基础类型的优化与比 选;二是规范方面解理错误的纠正;三是结构说明不适用条款的修正;四是钢筋构造不合理的改正;五是设计图纸纠错。 结构优化不是单方面以降低成本减少含量钢量为目的,结构优化是对原结构设计改 进,不是追求局部最优,而是为了达到整体最优。 通过对多种结构方案进行选型和经济分析,提供决策依据;对影响结构的因素(如地

勘、安评报告等)进行分析,统一技术措施;对构件截面及布置等进行调整,对荷载、计算参数等进行复核。 注重概念设计,从宏观上控制结构安全,根据力学概念和工程经验进行判断。 结构设计优化有“尺寸优化,形状优化,拓扑优化,布局优化、配筋优化、构造优化“等。 结构设计优化着重于以下几个方面: 1、选择规则的平面方案和立面方案,避免过大的外挑和内收,避免应力的突变,避免薄弱层,保持受力的均衡。尽量不设转换层,尤其是高位转换,同一建筑不要做多功能多用途设计。这受制于建筑设计。建筑设计往往追求外观的新奇现代,天马行空,不计成本,也不考虑抗震等因素。越是复杂的不规则的建筑造型其抗震性能下降建筑成本增加。应该追求简约而美的设计理念,摒弃复杂而丑的设计风格。 2、刚度与延性的平衡。结构刚度大,含钢量高,延性反而差,地震反应大,抗震 性能低。延性的本质是提高结构的变形能力,控制结构整体破坏形态。可以通过减少刚 度增加延性既提高抗震能力又能节约钢筋。 3、如结构体系的选择对造价影响甚大,如异形柱框架比普通框架含钢量大;短肢剪力墙含钢量比普通剪力墙结构高。 4、选择合理的基础形式,基础形式有独基、条基、桩基、筏基、基础梁、承台等, 般选择复合基础,即几种基础类型的组合,组合种类不宜过大,基础体系应简洁, “承台+筏板”、“基梁+筏板”、“承台+基梁”等,尽量设计成无梁板。当底板采用梁板式时,基础梁计算应充分考虑承台的作用。特别是裂缝宽度计算时,梁取承台边处的弯矩进行控制,承台算至柱边。

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

基于模态灵敏度分析的机载控制台尺寸优化

CAD/CAE/CAPP/CAM现代制造工程(ModernManufacturingEngineering)2018年第2期 基于模态灵敏度分析的机载控制台尺寸优化* 朱维兵,巫发茂,晏静江,王和顺 (西华大学机械工程学院,成都610039) 摘要:机载控制台杆件较多,结构复杂,尺寸优化过程中设计变量较多,在尺寸优化前必须对其进行灵敏度分析。以多目标拓扑优化后的某机载控制台下台体为研究对象;以下台体各构件的厚度尺寸作为设计变量;以质量为约束条件;以第一、第二阶固有频率作为优化目标进行灵敏度分析。获得了下台体第一、第二阶模态频率及质量对杆件厚度的灵敏度变化情况及第一、第二阶固有频率相对于质量的灵敏度值。以下台体质量作为优化目标函数;结构第一、第二阶模态频率作为约束条件;选择第一、第二阶模态频率对质量的灵敏度绝对值较大的杆件厚度尺寸作为设计变量进行尺寸优化。分析结果表明,尺寸优化后结构的低阶固有频率明显提高,质量稍有减少,具有较好的动态性能。为下台体结构尺寸的确定提供依据。 关键词:机载控制台;尺寸优化;灵敏度分析;固有频率 中图分类号:TP391 文献标志码:A文章编号:1671-3133(2018)02-0092-07 DOI:10.16731/j.cnki.1671-3133.2018.02.017 Dimensionaloptimizationofairborneconsolebasedon modalsensitivityanalysis ZhuWeibing,WuFamao,YanJingjiang,WangHeshun (SchoolofMechanicalEngineering,XihuaUniversity,Chengdu610039,China) Abstract:Theairborneconsoleconsistsofanumberofbars,thestructureiscomplex,therearemanydesignvariablesinthesizeoptimizationprocess,sensitivityanalysismustbeperformedpriortoitssizeoptimization.Basedontheconceptualdesignandre-constructionmodelofmulti-objectivetopologyoptimization,thethicknessofeachbarcomponentistakenasdesignvariable,thequalityofairborneconsoleistakenasconstraints,andthefirstandsecondordernaturalfrequenciesaretakenastheoptimizationtargets,thesensitivityanalysisiscarriedout.Thesensitivityofthefirstandsecondordermodalfrequencyandthemasstothethicknessofthebarisobtained,andthesensitivityvaluesofthefirstandsecondnaturalfrequencieswithrespecttothemassaregot.Themassofdownthebodyistakenasoptimizationobjectivefunction,thefirstandsecondordermodalfrequenciesareusedasconstraints,selectthebarwhosesensitivityabsolutevalueofthefirstandsecondordermodalfrequencyrespecttothemassislargerasadesignvariable,sizeoptimizationiscarriedout.Theresultsshowthatthenaturalfrequencyofthesizeoptimizationstructureisimprovedobviously,thequalityisslightlyreducedandthedynamicperformanceisgood,whichprovidesbasisforde-terminingthesizeofthesubstructure. Keywords:airborneconsole;sizeoptimization;sensitivityanalysis;naturalfrequency 0 引言 航空电子设备种类繁多,其特点、要求及使用环境等也各不相同,对设备体积、重量及耐力学环境等也要求很高。机载设备在工作中通常会面临严酷的振动环境条件,大量级、较低频率经常会使其产生疲劳损坏。目前对机载设备的结构优化设计研究已经开始从传统的定性、定量设计方法向CAD与CAE技术相结合的智能设计方法转变,其理论也在不断完善。结构拓扑优化较尺寸优化与形状优化更为复杂,在产品开发过程中通过拓扑优化设计法,使产品结构设计结果达到综合最优或较优[1-4]。某机载控制台主要由上台体、下台体和设备控制盒安装架等组成,下台体是整个控制台的主要承载部分。下台体结构优 29*教育部“春晖计划”合作科研项目(Z2014072);四川省教育厅重点项目(15ZA0126)万方数据

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

模态分析与谐响应分析区别联系

模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为一下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应

Inventor 零件模态与应力分析优化设计

分析 1:关于本教程 模态分析。 类别分析 所需时间20 分钟 使用的教程文件PivotBracket.ipt 您将创建两个仿真:零件的模态分析和同一个零件上的参数化结构静态分析。 “模态分析”教程会引导您了解为零件定义和执行结构频率分析或模态分析的整个过程。分析将生成自然频率(特征值)和对应的振型,我们可以在教程结束时查看和解释这些内容。 第二个仿真是对同一个模型的参数化分析。参数化分析将更改设计参数以更新几何图元,并评估设计案例的各种配置。我们将执行结构静态分析,目的在于最小化模型重量。 目标 ?创建仿真以进行模态分析 ?使用其他材料替代模型材料 ?指定约束 ?运行仿真 ?查看并解释结果 打开用户模型分析的模型 让我们先从模态分析仿真开始入门。 1.在快速访问工具栏上,单击“打开”命令。

2.如果尚未设定项目文件,请将其设定为Tutorial_Files.ipj。 3.选择名为PivotBracket.ipt的零件模型。 4.单击“打开”。 进入应力分析环境 应力分析环境是启用模型相关的专业化活动的若干 Inventor 环境中的一个。在此情况下,该环境整合了执行零件和部件应力分析的命令。 进入应力分析环境并启动仿真的步骤: 1.在功能区栏中单击“环境”选项卡。将显示可用环境列表。 2.单击“应力分析”环境命令。 3.单击“创建分析”。 4.将显示“创建新仿真”对话框。指定名称“模态分析”。 5.在“分析类型”选项卡中,选择“模态分析”。 6.将其余的设置保留当前的状态,然后单击“确定”。将启动新仿真,且浏 览器内将填充与应力分析相关的文件夹。 指定材料 对于要分析的任意零部件,请检查材料以确保已定义材料。某些 Inventor 材料没有“仿真准备就绪”特性并且在仿真中使用它们之前进行修改。如果使用定义不充分的材料,则会显示一条消息。修改材料或选择其他材料。 您可以在不同仿真中使用不同的材料,并在报告中比较结果。指定其他材料的步骤: 1.在功能区栏中的“材料”面板中,单击“指定材料”。 2.在“替代材料”列中单击以激活下拉列表。 3.选择“铝 - 6061”。 4.单击“确定”。 注意如果材料未完整定义,请使用样式和标准编辑器来修改材料。您可以从“指定材料”对话框的左下角访问该编辑器。 添加约束 接下来我们添加边界条件 - 内部圆柱面上的单个约束。

绿城地下车库覆土厚度 柱网尺寸 楼板布置体系结构优化设计探讨及管控措施

地下车库柱网尺寸、覆土厚度、楼板布置体系 结构优化设计探讨及管控措施 随着社会经济的发展以及人民生活水平的逐步提高,汽车保有量越来越大,停车难的问题越来越突出。现在新建的项目,不管是住宅小区还是商业写字楼,地下车库的面积越做越大,地下车库在整个项目投资中所占的比重也越来越高,而现在房地产行业的竞争日趋激烈,行业已从暴利时代过渡到微利时代,所以从设计源头有限控制成本就显得尤为重要。本文对经济柱网尺寸、覆土厚度以及楼盖结构布置体系三种影响地下室工程造价的因素进行全面梳理,并对其进行定性定量分析比较,得出一些结论和管控措施,可供设计人员及设计管理者参考。 一.经济柱网尺寸分析 1.一般钢筋混凝土结构的经济跨度在8米左右,每个车位宽2.4米,三个车位的尺寸最接近8米,车库的最经济柱净距为7.2(3X 2.4)米,但随着车辆大型化的趋势,有些当地交警部门要求车位白线内净宽为2.4米,则最经济柱净距变成了7.5(3X2.4+2X0.15)米,考虑柱边长一般不超过600,一般采用8.1米的柱距,舒适经济型柱网采用8.1mX8.1m。但为了考虑工程成本要求,在无当地特殊规定的情况下,可以采用更经济型柱网7.8mX8.1m,同时另设10%大型尺寸停车位,解决大型车停车问题;如车库局部零散位置不足以布置标准车位,可设小车位及子母车位,充分利用地下室面积。8.1mX8.1m经济柱网车位布置图见图(一)。 图(一)8.1mX8.1m柱网车位布置示意图

2.根据项目的实际情况也可以采用短跨小柱距的结构方案,尤其是杭州、宁波等对停车位尺寸要求高的城市,虽然立柱数量较8.1mX8.1m方案有所增加,但立柱对总成本影响甚微,如果设备管线从短跨柱网内通过,层高可以降低 200mm~300mm。在地质情况复杂、水位较高且基坑维护条件较差的项目中,可以节省相当的开挖量和基坑支护费用。但此柱网选用,须经过结合具体地库方案的经济性比较后采用。小柱网车位布置图见图(二)、图(三),各主要城市地下车库适应柱网尺寸表见表(一)。 图(二)6.6mX8.1m~5.0mX8.1m并排三车位柱网布置示意图 图(三)6.6mX5.7m~5.0mX5.7m并排两车位柱网布置示意图

基于ANSYS的船用螺旋桨模态分析与优化设计

基于ANSYS的船用螺旋桨模态分析与优化设计 利用UG软件对船用螺旋桨模型进行处理,并用ANSYS有限元仿真软件分析其模态振型,首先分析无支撑情况下螺旋桨单叶片的模态振型,提取振幅最大模态。设计支撑方案,确定支撑位置并进行约束模态分析,结果显示螺旋桨单叶片频率有所提高,增加了加工刚度,最后确定优化的支撑方案,显著提高了螺旋桨的刚度,减小各阶模态的振动位移,对实际加工具有重要意义。 标签:ANSYS有限元分析;螺旋桨模态分析;优化设计 Abstract:The model of marine propeller is processed by UG software,and its modal mode is analyzed by ANSYS finite element simulation software. Firstly,the modal mode of single blade of propeller without support is analyzed,and the maximum amplitude mode is extracted. The results show that the frequency of single blade of propeller is increased and the machining stiffness is increased. Finally,the optimized bracing scheme is determined,and the stiffness of propeller is improved significantly. It is of great significance to reduce the vibration displacement of each mode for machining. Keywords:ANSYS finite element analysis;propeller modal analysis;optimal design 螺旋槳是舰船的主动力装置,其设计与制造精度直接决定舰船运行性能。目前,螺旋桨的设计技术我国已达到领先水平,但是加工制造技术还存在较大差距。我国对于船用螺旋桨现阶段的加工一直采用手工打磨的方式,其工作环境差,对工人的身体有很大损伤,并且效率低下,精度也难以控制。为了解决这一问题,我国一些学者正在研究利用机器人进行螺旋桨铣削加工的工艺系统,其具有较多的优势。研究发现,铣削加工中的振动一直是影响加工质量的主要因素,所以,针对螺旋桨的振动模态分析是研究的重点内容。本文主要利用有限元分析软件ANSYS对一种型号的船用螺旋桨进行模态振型分析,通过施加约束条件分析使用支撑时的模态变化,寻找优化的支撑方法。 1 模型处理 利用三维建模软件UG对现有的螺旋桨设计模型进行简单处理,避免在后续有限元分析时遇到的一些问题。如图1所示为螺旋桨的设计模型,直径3300mm,在叶梢位置由于建模方法的原因,存留有没有闭合的曲线,对后续有限元的网格划分会带来影响,所以,利用一直径为3290mm的同心圆柱面截取设计模型,截去叶梢的尖角部分,对模型整体模态的影响可以忽略不计,处理如图2所示。另外,根据螺旋桨的结构特点,靠近桨毂部分结构较复杂,靠近叶梢部分结构简单,所以为了在后续的单元划分时保证较高精度的同时又花费较少时间,在模型处理时将螺旋桨分割为两部分实体,一部分是包含桨毂,另一部分包含叶片。最后将处理完成的模型导出x_t格式文件,以便ANSYS软件导入。

相关文档