文档库 最新最全的文档下载
当前位置:文档库 › 海图

海图

海图
海图

2.航行障碍物

(1)礁石(rocks)

礁石是海中突出、孤立的岩石。它又可区分为明礁(rock uncovered)、干出礁(drying rock)、适淹礁(rock awash)和暗礁(reef,submerged rock)。明礁是指平均大潮高潮时露出的孤立岩石,与小岛同样表示。同一明礁,由于中、英版海田所采用的高程基准面不一定相同,其所注记的高程也不一定相同。干出礁是指位于平均大潮高潮面以下,深度基准面以上的孤立岩石。高潮时淹没,低潮时露出。数字注记系干出高度(深度基准面以上)。适淹礁是在深度基准面适淹的礁石。深度基准面以下的孤立岩石称为暗礁。水下珊瑚礁是指位于深度基准面以下的珊瑚礁。浪花(breakers,Br)用于表示多礁地区,海浪冲击波涛汹涌,船只不能靠近的地段。

(2)沉船(wrecks)

沉船分为部分露出沉船、桅杆露出的沉船、危险沉船、非危险沉船、经扫海的沉船、测得深度的沉船和深度未精测的沉船。沉船图式又可区分为船体形状依比例尺表示和不依比例尺表示的两种。危险沉船是指其上水深20m及20m以内(英版海图28m及28m以内)的沉船,或深度不明,但有碍水面航行的沉船。非危险沉船是指其上水滦大于20 m(英版海图大于28m)的沉船,或深度不明,但不影响水面航行的沉船。未精测沉船指未进行精确的测量,沉船最浅深度不明,但表示的深度是采用其它方法估计的安全深度。

(3)其它障碍物(other obstructions)

除礁石与沉船外,其它障碍物,如捕鱼设备、水下桩(柱)、渔礁等一般以符号表示;有时也用文字注记说明,如“附近多渔栅”。

常见的礁石、沉船和其它障碍物的海图图式和含义见表1-2-4。

扫海测量简称扫测,是在一定海区内进行面的扫测,以查明该区域内或该区域所规定的深度上是否存在航行障碍物的一种测量。用软式扫海具进行扫测的方法分定测和拖底扫测两种。定测扫测是使扫海具的底索在深度基准面以下保持一定深度的扫海测量,主要用于确定船舶安全航行的深度和确定航行障碍物的最浅深度。拖底扫测是扫海具底索着底,发现和探测航行障碍物。

凡危险物外加点线圈者,均为对水面航行有碍的危险物,提醒航海者予以特别注意。危险物位置未经精确测量的,须加注“概位”(position approximate,PA);对危险物位置有疑问时,则加注“疑位”(position doubtful,PD);对危险物的存在有疑问时也加注“疑存”(ED);未经测量,据报的航行障碍物,同样也加注“据报”(Rep)。

3.助航标志(navigational aids)

助航标志,简称航标。它包括灯塔、灯标、浮标、立标、雷达站、无线电导航设备及雾号等。

航标以特定的标志、灯光、音响或无线电信号等,供船舶确定船位和安全航向、避离危险以及供其它特殊需要。其图式和含义见前面表1-2—5。

水上航标是以其形状、颜色、顶标、灯质和编号等相互区别的。各国浮标制度至今仍不完全统一,多数航海国家都采用国际航标协会(IALA)推荐的海上浮标系统,具体情况应查阅有关航路指南、港章和海图标题栏的有关说明。“中国海区水上助航标志制度(GB4696)”是采用IALA海上浮标系统(A区域)的原则,结合我国具体情况制定的。

灯质(1ight character)是指灯光的性质,它是以灯光亮灭的规律(即节奏,rhythm)和灯光颜色来相互区别的。灯质的种类很多,基本灯质有:定光(fixed)、闪光(flashing)、明暗光(occulting)和互光(alternating)4种。其中闪光又可区分为:闪光、长闪光(long- flashing)、快闪(quick-flashing)、甚快闪(very quick-flashing)和超快闪(ultra quick-flashing)5种。颜色不变,明暗交替且时间相等的灯光为等明暗光(isophase)。以上各种灯光联合或组合起来,可以形成各种不同类型的灯质,如:联闪光(group—flashing)、混合联闪光(composite group-flashing)、间断快闪光(interrupted quick-flashing)和定闪光(fixed and flashing)等。常见的几种灯质及其说明见表1—2-6。

灯标的注记,除注有灯质(节奏和颜色)外,还注有周期、灯高、射程和雾号及光弧等的说明。它们的含义是:

周期(period):有节奏的灯光,自开始到以同样的节奏重复时所经过的时间间隔(s)。

灯高(elevation):中版海图是指平均大潮高潮面至灯光中心的高度(m)。英版海图是指平均大潮高潮面或平均高高潮面,无潮汐海区是指平均海面至灯光中心的高度,米制海田单位为米,拓制海图单位为英尺。

灯光射程(range):中版海图上所标射程是在晴天黑夜条件下,航海者的眼高在海面上5m处所能看见到航标灯光的最大距离(n mile)。英版海图上的射程为光力射程(luminous range)或额定光力射程(nominal range)。

常见的几种灯质海图图式表1-2-6

雾号(fog signals):即雾警设备,是附设在航标上雾天发出音响的设备。如;爆响雾号(explosive)、低音雾号(diaphone)、雾笛(siren)、雾角(horn)、雾钟(bell)、雾哨(whistle)、雾锣(gong)。

光孤(sector):用于表示扇形光灯的扇形区域,不同光色扇形应分别注明,所注方位为观测者由海上观测灯标的真方位,顺时针方向计算。

灯标如白天和夜间的灯光性质不同时,应将白天的灯光性质括注在夜间灯光性质的下方并在其后加注“昼(by day)”。有雾时灯光性质发生改变,或仅在雾天显示的雾灯,应括注“雾(in fog)”。无人看守的灯可在其灯光性质之后括注“无(u)”。注记“临(temp)”,表示临时的灯,“熄(extinguished)”表示灯光已熄灭的灯。在灯光性质后括注“航空(Aero)”的灯标表示为航空导航而设置的航空灯。

4.符号的位置与其它图式

(1)符号的位置(symbolized positions)

面状符号(symbols in Plan),如“O、带”,位置在符号中心;形象符号(symbols in profile),如“户、\厶”,位置在符号底线中心;有点符号(point symbols),如“O、A”,符号中的点即为中心位置。如位置未精确测量,则加注概位符号”概位(PA)”。

(2)其它重要图式

防前面介绍的各种图式外,航海者还应热悉表1—2-7.所示的重要海图图式:

第二篇航迹推算与陆标定位

第一章航迹推算

为了保证船舶安全、经济地航行,航海人员应尽一切可能做到随时知道自己的船位所在。

这样,才可能在海图上,根据船位所处的周围航行条件,及时采用适宜的航行方法和必需的航行措施,确保安全航行。

船舶在航行中确定船位的方法,一般可分为两类,即推算和定位。本章主要讨论航迹推算求取船位的方法及其精度。

航迹推算(track made good)是根据航向、航程和风流资料,不借助外界物标或航标推算出有一定精度的船舶航迹和船位的方法。航迹推算是航海上求取船位的最基本方法,也是陆标定位、天文定位和各种电子定位的基础。

航迹推算应在船舶驶出领航水域或港界,定迷航行后立即开始。推算起始点必须是准确的观测船位。航迹推算工作在整个航行过程中,应该是连续不断的,不得无故中断,直至驶

入领航水域或接近港界有物标可供导航时,方可终止。航迹推算的起点、终点应记入航海日志。

在狭水道或渔区航行时可中断推算,但是应该将中止点和复始点在海图上画出并记人航海日志。

航迹推算在沿岸水流影响显著的航区应该每小时进行一次;在其他航区,一般每2h~4h进行一次。

航迹推算包括航迹绘算(track plotting)和航迹计算(track calculating)两种方法。

第一节航迹绘算

航迹绘算法即海图作业法(chart work)。船舶驾驶人员应遵照中华人民共和国交通部规定的(海图作业试行规则)正确地进行航迹推算。航迹绘算方法简单、直观,用以解决两类问题,一是根据船舶航行时的真航向、航程和风流要素,在海图上绘画出推算航迹和推算船位(estimated position,EP);二是根据计划航线,预配风流压差,作图求出应驶的真航向和推算船位。

下面分别讨论在各种不同风流情况下的航迹绘算方法。

一、无风流情况下的航迹绘算

所谓无风流影响,是指风流很小,其对航向的影响小于±1°,可以忽略不计。此时,航迹绘算方法最为简单。在海图上拟定的计划航线,就是船舶将要航行的计划航迹;计划航迹的前进方向,叫计划航向(course advance,CA)。在尤风流情况下,船舶驾驶人员就是以计划航向作为真航向(TC)换算成罗航向(CC)或陀罗航向(GC)驾驶船舶航行在计划航线上;其推算航

四、有风流情况下的航迹绘算

在有风流情况下,真航向与风流影响下的航迹向之间的关系是:

CA=TC+γ

式中:γ为风流合压差,简称风流压差(leeway and drift angle,γ),是真航向与风流影响下的航迹向之间的夹角,它等于风压差α与流压差β的代数和:

γ=α+β

有风流情况下的航迹绘算是分别对风和流进行海图作业来实现的。实践中,驾驶员所关心的是风流对船舶航行的总影响。而且风流对船舶的影响,往往是同时存在的。根据已知条件不同,有如下两种不同的海图作业方法必须认真分清。

1.已知真航向TC,计程仪航程SL或计程仪航速VL和风流资料,求推算航迹向CGγ和推算航程S。

这种情况,应采取“先风后流”的海图作业方法,即先加风压差,求得风中航迹向后,再加水流影响,即在风中航迹线上作水流三角形,从而求得推算航迹向来。具体作图步骤如下(见图2-1-11):

①从推算起点画出真航向线;

②真航向加风压差(顺风加。角)得风中航迹向CC:。;

③在风中航迹线CG。上截取计程仪航程(Sl=(L2-L1)(1+△L)=VLt)得截点;

④由截点作水流矢量得推算船位:

⑤连接推算起点和推算船位,此连线为推算航迹线,其长为推算航程S;风中航迹向与推算航迹向之间夹角为流压差γ;并进行正确标注。

2.已知汁划航迹向CA,汁程仪航程s,

或计程仪航速VL和风流资料,求真航向TC

和椎算航程s。

这种情况,应采取“先流后风”的海图作

业方法,即先作水流三角形预配流压差,然后

再顶风预配风压差,从而求得应驶的真航向。

具体作图步骤如下(见图2-1-13):

①从推算起点画出计划航迹向CA;

②从推算起点画水流矢量;

③以水流矢量终点为圆心.以计程仪航

程SL为半径画弧交CA得推算船位点(此虚线为风中航迹线CG。);

④由推算起点画CG平行线得风中航迹线;

⑤以风中航迹线为准顶风顶配风压差。得到真航向;

⑥推算起点和推算终点在计划航线上的长度即为椎算航程s;并进行正确标注:

第二节风流压差和航迹向的测算方法

正确掌握风流压差对提高航迹推算精度至关重要。因此,应正确测算风流压差和航迹向,航海上常用的方法有如下几种:

一、连续观测定位法(见图2-1-14)

在一定时间内,测得3个~5个观测船位,用平差方法(各船位到该直线的距离平方和为量小值)以直线“连接”各观测船位点,则该直线即为航迹线,量取该线的前进方向,即为航迹向,风流压差也同时求得。

二、叠标导航法

若操纵船舶沿着某叠标线航行,此时叠标方位与船首向之差即为风流压差γ。

三、雷达观测法(见图2-1-16)

雷达采用船首向上显示方式,观测某一固定物标的相对运动方向,在一段时间内其影像分别为a1,a2,a3,…,使雷达方位标尺平行于该物标影像的相对运动轨迹,则此时方位标尺在固定刻度盘上所示读数即为γ。

四、物标最小距离方位与正横方位差法(见图2-1-17)

物标量小距离方位B Dmin=CA+90°

=TC±90°

而物标正横方位B

中国古代海图的发展

中国古代海图的发展 篇一:中国古代各时期航海发展现状概述 中国古代各时期航海发展现状概述 学号:20XX10710205班级:经济116姓名:张国庆 古代中国虽是灿烂黄色的农业文明,却也有自己得天独厚的航海地理条件和自然条件。中国现拥有内海渤海和琼州海峡,大陆的东面和南面有位于太平洋东部的黄海、东海和南海;中国现在海岸线长18000余公里,领海中有7000多个岛屿,岛屿线长14000余公里;现有河流中流域面积大于100平方公里的河流有5800余条,总长度420000公里,其中注入海洋的河流的流域面积占全部江河流域总面积的64%,此外,大小湖泊也有2000多个;还有相当重要的是沿海的风有着典型的季风气候特征。在古代中国,我国辛勤的劳动人民就开始运用自己的智慧利用这些优越的条件进行了航海的探索。 中国古代航海大致可分为六个时期:初创期,公元前221年前,即先秦时期;发展期,公元前221年-220年,即秦汉时期;徘徊起伏期,220年-589年,即三国两晋南北朝时期;繁荣期,589年-960年,即隋唐五代时期;全盛期,960年-1368年,即宋元时期;由顶锋转向停滞期1368年-1840年,即明清时期。下面就介绍一下中国古代航海各个时期的发展概况。 一、初创期

远古时期,原始社会的航海活动最早开始在新时期时代,至少在7000年前,中国已能制造原始的水上航行工具,如竹筏、木筏和独木舟等;而木帆船的出现则带来了中国造船与航海文明史上的革命,殷墟遗址出土的物件更是证明商代已开展了海外航海贸易;在西周时期,我国与越南和日本之间的海上交通已成雏形;春秋战国时期,一个沿于江海、达于淮泗的讲话交叉的综合航行网络已初步形成,海上强国的出现更是致使海上战争频发。 殷商与西周时期,人们除了会制造船舶之外,已能制成帆而利用风力航行。甲骨文用“凡”通假“帆”字,说明殷人行船已经使用帆,不过,这时的帆一般主要用在陆地江河航行中。而随着春秋战国时期各国的海上活动兴起,人们航海的地理知识逐渐增加,将中国东部外测的不同水划成“北海”(今渤海)、“东海”(今黄海)、“南海”(今东海)。人们已了解到“百川归海”并一开始在沿海巡航。在这一时期,人们在认识风的同时,也对一些云雨气象有所了解,如《尚书·洪范》“月之从星,则从风雨”等都是人们在航行中注意天气变化而总结出的经验规律。人们对海洋水文特别是潮汐有一定的了解。如《尚书·禹贡》“朝夕迎之,则遂行而上”等,说明当时人们已经知道趁涨潮出海,利用海洋定向潮流,顺流而下。而此间更值得一提的是,春秋战国时期,海上导航技术已与天文学联系起来。战国时期人们已经对二十八星宿和一些恒星进行了定量观测,并取得了可喜成果,并把海上航行与天文学相结合,利用北极星为航行定向。战国时期,磁石“司南”已发明。但其用途主要用于陆上定位。英尺,春秋战国时期主要

电子海图导航系测试记录表格

______轮ECS系统测试记录 【说明:操作时请参照《用户手册》;请在“结果”栏填写“正常”或“未测”二字,若发现异常情况,请简要说明。】

雷达叠加电子海图与雷达 叠加 确保AIS 和罗经运行正常,输入到计算机的数据端口打开成功。 按下图标“”,即进入雷达叠加状态,此时,电子海图的操 作全部失效。若要退出雷达叠加状态,再按下“”即可。海 图叠加时,操作雷达量程、雷达显示模式(正北或船艏向上)、 偏心显示等按钮,观察雷达图象和海图匹配情况。 单纯雷达界面按下图标“”,即进入单纯雷达界面。退出按鼠标右键即可。 海图改正手工改正操作“海图改正→手工改正”菜单,进入“海图改正”状态; 手工在当前海图上修改/删除/添加任何内容(包括符号、线、面、 文字、水深点等); 退出“海图改正”状态,打开相应的海图,查看该海图改正结 果。 自动更新(部分 系统有该功能) 操作“海图改正→自动更新”菜单,进入“海图自动更新”状 态(具体内容参见海图改正测试说明相应部分)。 电子海图数据文 件导入 操作“海图改正→导入S57文件”菜单,通过相应的对话框指 定S-57文件所处的位置,选择海图文件并导入; 在导航系统中可显示新导入的海图。 AIS设置根据AIS设备的参数进行设置,将在导航功能的AIS/GPS信息获 取中获得本目标信息和其他目标信息。 导航功能AIS/GPS信息获 取 打开“开启监控”开关;查看本船动态信息栏的显示内容及其 随本船运动的变化情况;查看海图上本船及目标船的标绘及运 动情况;依次选中各目标船,查看其动/静态信息、避碰信息及 其变化情况。 其它传感器数据 获取 打开“开启监控”开关;查看从本船其它设备获得的数据;打 开“传感器数据显示”开关,查看各传感器的详细数据。 船舶动态信息存 储与显示 查看本船的动态信息,并通过“显示航迹”、“航海日志查看” 等操作查看已记录的本船动态信息。 船舶动态标绘打开“开启监控”开关;查看本船和目标船图形标绘及其移动/变化情况; 操作“设置”菜单,选择‘刷新频率与其他设置’,可设置矢量 长度,查看运动矢量长度的变化等。 本船居中显示处于船舶动态监视状态时,点击“本船居中”按钮;查看本船 位置及海图显示范围的变化;设置成“本船自动居中”模式, 查看当本船即将移出当前海图窗口时,本船位置及海图显示范 围的变化。 目标船跟踪及 CPA计算 选中任意一个目标船,查看目标动态信息及避碰信息; 设置CPA报警距离,使最近的目标产生报警信息,同时选中另 一个目标船,查看目标动态信息及避碰信息; 点击“显示CPA距离圈”按钮,查看与选定目标船的会遇势态。自动标绘设定船位标绘的时间间隔(必要时调整系统时钟),查看每隔设定的时间间隔(或每到整点)是否自动在海图上标绘船位及时 间。

测绘百科▏电子海图系统和海图数学基础

致读者的一封信: 亲爱的读者,当您看到这个内容的时候,表示您已进入了知识的世界,非常感谢您付出宝贵的时间对我们的文章进行阅读。我们从小就明白:知识就是力量;知识成就未来,知识可以开拓您的思维,知识可以让您打开眼界;愿所有人都可以在知识的海洋里畅游,在知识的世界里翻滚;知识文库:知识的力量Tel:将为您提供最专业最全面的学习资料,助您快速成长。您的支持就是我们最大的动力;感谢大家动动鼠标点击关注! PS:以上内容下载后,直接删除即可! 所有内容下载后可可以自行去除页眉页脚,处理方法如下: 如您使用的是word: 页眉清除方法: 页脚清除方法: 如您使用的是wps: 页眉清除方法: 页脚清除方法: 最后再次感谢大家;欢迎大家下载全文使用。

测绘百科▏电子海图系统和海图数学基础 dianzi haitu xitong 电子海图系统(electronic chart system)由数据、软件和电子设备构成的显示海图信息的系统。舰船导航和指挥自动化系统的组成部分。用于存储、检索、显示和更新海图信息,叠加实时船位或其他运动目标,辅助航行和海图作业。又指电子计算机可识别、处理,且附于一定载体上的数字形式的海图数据。 主要由四部分组成,计算机处理器、软件和网络分系统,用于信息处理和传输;图形显示分系统,用于显示海图和附加信息;海图数据库,用于管理、产生和维护海图数据;用户接口,用于实施操作和连接导航设备、绘图仪和打印机等。 系统的基本功能有:①海图显示。根据本船位置自动选择和显示现有纸质海图的内容,以及根据需要增加的军事数据层,实现图形放大与缩小、海图投影转换、图形方向变化等灵活显示,符号颜色及其亮度调整等。②计算作业。人机交互实施计划航线标绘、实际船位与航线显示、各种航行参数管理、航路监测、方位距离标示和动态目标监测等。③信息输入输出。可设置数据叠加层,如雷达图像、声呐图像、多波束测深的格网数据、随潮汐变化的深度、运动的海流及其他数据,回放或打印历史航行记录,如时间、位置与速度,海图使用情况。④报警。在设定的状态下,如偏离计划航线、进入禁区、超越安

航海导航和定位

一航行 适任1.航行计划、导航和定位 1.1查阅航海资料 我国的近远洋船舶除了中版航海图书资料外,还应配备英版航海图书资料。对于中版资料较直观方便理解查阅,下面主要说明几种与航行直接关联的英版资料在航路计划中的应用。 1.1.1《航路指南》是将海图上无法表达或者不能完全表达的有关航海资料汇编成书,作为海图资料的补充。《航路指南》资料详细,文字简洁,只列出与航线拟订,航行安全与进出港直接有关的内容,可作航线拟订,沿岸及狭水道航行时的参考。英版《航路指南》按海域出版,书卷号为NP1-NP72。《航路指南》第一章对本卷所述地区进行了总体介绍,分为三大部分,他们是:“一般航海说明与规则”,“国家与港口”及“自然条件”。第二章以后各章节按顺序叙述了各海区的航海资料。每章的编排格式基本相同,各章开头部分是本章地区的概况介绍,如本章的地区范围,地貌,近海的特殊地段,自然条件,助航设施此后各章各分地区的详细资料。各分地区的资料又分为:沿岸水域介绍,重要航海标志介绍,航路及航法介绍,进出口水域与港口介绍等。(需注意的是在阅读本书资料时,必须查阅本书的最新补篇。)

《航路指南》查阅方法:在什么情况下要查阅它呢?笔者认为,在设计近海航线,狭水道航线,重要水域航线及进出口航行时,海图上对航线附近的危险物,渔区,军事演习区等不是很明了时,对所在国家或地区的工作制度,风俗习惯,对所在港口的各种信号,规章不了解时都应该查阅本书。 查阅《航路指南》一般有下列方法:⑴利用海图索引图,⑵利用索引,⑶利用目录。 1.1.4《无线电信号表》 主要内容:英版《无线电信号表》目前共七卷,ALRS除第四卷每三年再版一次外,其余各卷均每年出版。第一卷主要介绍:海岸无线电台,无线电医疗咨询,检疫报告,国际海事卫星服务等。第二卷主要介绍:无线电航标,电子定位系统,无线电时号和法定时号。该书书号为NP282。第三卷主要内容:无线电气象服务和航海警告以及与此有关的气象码语,台站分布图等。该卷按地区分两册,书号分别为NP283(1)和NP283(2)。第四卷主要内容:气象观测台站一览表及其分布图。该书书号为NP284。第五卷主要内容:全球海上遇险和安全系统。第六卷主要内容:港口无线电台,协助船舶请引航员的资料以及有关图表。该卷按地区出两册,书号分别为NP286(1)和NP286(2)。第七卷:船舶交通服务及船位报告系统。该卷按地区出版两册书号为NP287(1)和NP287(2)。《英版无线电信号表》的卷数和分册数时有变动。上述按1998年初的资料介绍。

中国海图

中国海图 篇一:海事版(蓝图)海图编号中国海区最新 海事版(蓝图)海图编号(20XX-06-27) 注:黑、蓝体字的图均有;红体字的图没货或已取消。 篇二:20XX-2021年中国电子海图市场运行格局及投资战略研究报告20XX-2021年中国电子海图市场运行格局及 投资战略研究报告 第一部分电子海图行业发展现状剖析 第一章电子海图行业发展概述 第一节电子海图概述 一、电子海图的定义 二、电子海图的发展概况 第二节电子海图技术 一、电子海图技术前景分析 二、电子海图技术发展趋势 三、电子海图产业技术应用情况解析 第二章20XX-20XX年全球电子海图行业发展形势分析 第一节20XX-20XX年全球电子海图行业发展分析 一、20XX-20XX年全球电子海图市场供给分析 二、20XX-20XX年全球电子海图市场需求分析

三、20XX-20XX年全球主要电子海图企业分析 第二节20XX-20XX年全球主要国家电子海图市场分析 一、20XX-20XX年美国电子海图市场分析 二、20XX-20XX年德国电子海图市场分析 三、20XX-20XX年英国电子海图市场分析 四、20XX-20XX年印度电子海图市场分析 五、20XX-20XX年日本电子海图市场分析 第三章20XX-20XX年中国电子海图行业发展态势剖析第一节20XX-20XX年中国电子海图行业发展现状 一、中国电子海图产业发展现状分析 二、中国电子海图核心技术发展状况 三、中国电子海图行业运行状况分析 四、中国电子海图市场产销规模分析 第二节20XX-20XX年中国电子海图市场分析 一、电子海图回顾 二、其它行业对其影响分析 三、中国电子海图行业发展热点 四、中国电子海图行业发展动态解析 第三节20XX-20XX年中国电子海图市场供需状况分析 一、20XX-20XX年中国电子海图市场供给分析 二、20XX-20XX年中国电子海图市场需求分析 三、20XX-20XX年中国电子海图产品价格分析

海图基准面、深度基准、标高等常用参考标准

1.平均海平面(mean sea level) 计算平均海面最简单的方法是算术平均方法。可分为日平均、月平均、年平均和多年平均海平面等。一般以多年的年平均海面的平均值作为长期的平均海面。 2.高程基准 目前,我国采用的是“1985国家高程基准”。它采用了1952-1979年的资料,对青岛验潮站的平均海面重新计算,以19年的资料为一组,滑动步长为一年,得到10组以19年作为一个周期的平均海面,然后再取其平均值作为高程基准。吴淞零点是以比实测最低水位略低的高程作为水尺零点。系根据吴淞站(现东海船厂内)1871年至1900年实测资料,于1901年确定一个略低于最低潮位作为吴淞零点,并于1920年引测到松江佘山,建立永久性测量标志,吴淞零点比全国统一基准面黄海平均海面(青岛)低1.63米(又说低1.717米)1985年国家高程基准高程=1956年黄海高程-0.029m。 3.深度基准 就大地测量而言,采用平均海面作为水深测量的基准面,可以使水深与陆地高程得以统一。但在海图编制中,常采用一个低于平均海面的参考面作为深度基准面。 4.理论深度基准面(theoretical sea level datum) 1956年起,海军司令部海道测量部在全国海洋测绘中,统一采用理论深度基准面作为深度基准面,同时也作为潮水位高度和潮汐预报水位的起算面。 根据1990年12月1日开始实施的国家标准《海道测量规范》(GB12327-90)规定,原来作为海洋测绘深度基准面的理论深度基准面改名为理论最低潮面。同时规定,在计算理论最低潮面时,增加2个长周期分潮进行长周期改正,因此计算理论最低潮面的分潮从11个增加到13个。 5.海图基准面(chart datum) 即海图所载水深的起算面,又叫深度基准面。 定义1:海图及各种水深资料所载深度的起算面。 定义2:海图及港口航道图中水深的起算水平面。 水深测量通常在随时升降的水面上进行,因此不同时刻测量同一点的水深是不相同的,这个差数随各地的潮差大小而不同,在一些海域十分明显。为了修正测得水深中的潮高,必须确定一个起算面,把

电子海图导航系统

船舶电子海图综合 导航系统 大连海大航运科技有限公司

公司简介 大连海大航运科技有限公司(简称“海大航科”)是大连海事大学与深圳沃金实业有限公司共同投资2000万元创办的高新技术企业,拥有一批教授、博士、硕士等高素质人才,主要从事交通航运领域的信息技术产品开发和信息技术服务。 海大航科以具有自主知识产权的专利技术-电子海图应用平台为基础,致力于为交通航运领域的企事业单位提供优质的信息技术产品和完善的服务。 海大航科位于大连市高新园区七贤岭学子街2号,是大连市高新技术园区创业中心的重点孵化企业。 海大航科自主开发的系统产品有:船舶电子海图/江图综合导航系统(符合IHO S-57、S-52标准)、港口/船舶引航系统、船舶动态监控系统、机务管理信息系统(含PMS)、船舶运输企业管理信息系统、航道测绘管理信息系统、搜救与溢油应急系统、船舶通讯软件等。

系统简介 “EAR 意尔?导航系统”是一套船用导航系统,它以国际标准(IHO-S57、S-52)的电子海图显示与信息系统为核心,集成了GPS、AIS、雷达/ARPA、电罗经、计程仪、测深仪、自动舵、Inmarsat-C、Inmarsat-B、 CDMA/GSM/GPRS等多种导航通讯设备,能够综合处理海上地理信息、本船航行状态信息、多种目标船动态信息、雷达图像信息、航行环境信息、具有完善的船舶导航、进出港引航、避碰辅助和航行管理功能,有助于保障船舶航行安全和提高营运效率。

遵循标准 本系统符合下列标准: IMO Resolution A.817(19)(电子海图显示与信息系统性能标准)IHO S-52(ECDIS海图内容及显示性能规范,第3版) IHO S-57(数字化水道测量数据传输标准,第3版) ITU-RM.1165(用于ECDIS更新的数字数据传输) IMO Resolution A.197(22)(船载AIS操作运行指南) IEC 61162(海上导航及通信设备与系统-数字接口) Q/DMT.001-2003(电子海图导航系统企业标准)

海洋测绘信息元数据标准研究-海图在线

海洋测绘信息元数据标准研究 李宏利 1 ,汪海2 (1.海军海洋测绘研究所,天津300061;2.海军司令部航海保证部,天津300060) 摘要:介绍了国际标准化组织关于地理信息元数据的定义和国际国内标准化的现状,以及国际海道测量组织关于电子海图元物标的定义;分析了我国关于数字海图的元数据现状。最后围绕海洋测绘信息元数据涵盖范围、分级分类、描述方法等方面探讨了建立海洋测绘信息元数据标准体系的必要性和可行的方法。 关键词:海洋测绘;元数据;标准化 引言 元数据(Metadata)经典定义是“关于数据的数据”,是信息时代信息发布者向信息的受众提供的对发布的数据进行说明的数据。海洋测绘信息又称基础海洋地理空间信息,是地理信息的一种。我国海洋测绘机构已开始以“数字海图”的形式向国内军队系统和民用用户提供,发挥了积极的军事效益和社会效益。然而由于对元数据认识的模糊和个别地方资料的匮乏,已发行数据中元数据的描述很少,不可避免地影响了数据的生产、共享和标准化应用。目前我国海洋测绘元数据还没有形成国家标准或行业标准,缺乏对海洋测绘元数据规范化的依据,因此深入探讨海洋测绘元数据涵盖的范围、分类的标准、描述的方法,对尽快形成海洋测绘元数据标准是十分有益的。 1. 地理信息元数据的定义与标准现状 1.1 元数据定义 根据国际标准化组织(ISO)定义,元数据“是关于数据的数据,即关于数据的内容、质量、状况和其他特性的信息。也可译为描述数据或诠释数据”。地理信息元数据则是关于数字地理数据标识、覆盖范围、质量、空间和时间模式、空间参照系和分发等方面特征的描述信息。元数据的目的是方便用户使用主体数据、实现数据规范共享,它已从简单地描述或索引发展为用于管理数据、发现数据、使用数据的一种重要工具和手段。其作用包括: (1) 数据生产者可以利用元数据对他们生产的地理数据进行详细地说明; (2) 数据使用者可以利用元数据了解所需地理数据的基本特征,从而决定是否使用该数据,以及怎样有效地使用; (3) 在网上发布元数据,可以使用户对数据发现、检索数据和重复使用变得容易,使用户能更好地确定地理数据位置,访问、评价、购买地理数据。 1.2 国际与国内标准现状 近十年来国际上对地理信息标准化格外重视,ISO专门成立了第211技术委员会(TC/211)研究标准化问题。他们认为元数据是国家空间数据基础设施建设的重中之中,历经十年的艰苦努力,ISO于2003年5月8日正式发布了国际标准《ISO 19115:2003 地理信息元数据(Geographic Information – Metadata)》。 我国地理信息界从2000年开始立项研制国家标准《地理信息元数据》,历经三年多的艰苦努力,现已推出标准草案。该标准没有等同采用国际标准,而是根据我国具体情况,有针对性地按基本等同,部分修改的原则制定的。标准分八章,分别就主题内容与适用范围、参考标准、术语、元数据层次结构和性质、元数据分级和特征、元数据内容、元数据扩展原则与方法、元数据标准维护等内容做了规定。其中核心内容是第三章至第五章。 该标准对地理信息元数据划分的层次是三层结构,自底向上分别是:①元数据元素,元数据最基本的信息单元;②元数据实体,同类元数据元素的集合;③元数据子集,相互关联的元数据实体和元素的集合。

国内航行船舶船载电子海图系统和

国内航行船舶船载电子海图系统和 自动识别系统设备管理规定 (征求意见稿) 第一章总则 第一条为了提高我国国内航行船舶应用先进导航技术的水平,规范船载电子海图系统和自动识别系统(以下简称“AIS”)设备的配备和使用,发挥船载电子海图系统和AIS设备的航行安全保障作用,制定本规定。 第二条本规定所称“船载电子海图系统”是可以显示电子海图、具备航线计划、船位监控、航线监控和报警等导航功能的设备,并可以与AIS连接,在电子海图上显示周边船舶位置。 第三条本规定适用于中国籍沿海、内河航行机动船舶。 以下船舶不适用于本规定: (一)渔船; (二)公务舰艇; (三)体育运动船艇; (四)军用船舶。 第四条中华人民共和国海事局(以下简称“中国海事局”)负责船载电子海图系统和AIS的统一管理及船载电子海图系统和AIS设备

的型式认可和产品检验。 第五条各地海事管理机构负责船舶配备船载电子海图系统和AIS设备情况实施监督检查。各船检机构负责设备安装情况的检验。 第二章设备标准及型式认可 第六条中国籍国内航行船舶配备的船载电子海图系统设备应符合中国海事局《国内航行船舶船载电子海图系统(ECS)功能、性能和测试要求(暂行)》中的A级设备要求。 中国籍船舶配备的A级AIS应符合国际电工委员会(IEC)61993-2标准《海上导航和无线电通信设备和系统-自动识别系统(AIS)第二部分:通用自动识别系统(AIS)A级船载设备-操作和性能需求、测试方法和要求的测试结果》,中国籍国内航行船舶配备的B级AIS应符合中国海事局《国内航行船舶船载B级自动识别系统(AIS)设备(SOTDMA)技术要求(暂行)》或国际电工委员会(IEC)62287-1标准《海上航行和通信设备与系统B级船载自动识别系统(AIS)第一部分:载波侦听时分多址技术(CSTCDMA)》。 第七条国内航行船舶配备的船载电子海图系统、AIS设备需经型式认可和产品检验。 第八条经授权的船舶检验机构应按照中国海事局《国内航行船舶船载电子海图系统(ECS)功能、性能和测试要求(暂行)》、《国

海图

2.航行障碍物 (1)礁石(rocks) 礁石是海中突出、孤立的岩石。它又可区分为明礁(rock uncovered)、干出礁(drying rock)、适淹礁(rock awash)和暗礁(reef,submerged rock)。明礁是指平均大潮高潮时露出的孤立岩石,与小岛同样表示。同一明礁,由于中、英版海田所采用的高程基准面不一定相同,其所注记的高程也不一定相同。干出礁是指位于平均大潮高潮面以下,深度基准面以上的孤立岩石。高潮时淹没,低潮时露出。数字注记系干出高度(深度基准面以上)。适淹礁是在深度基准面适淹的礁石。深度基准面以下的孤立岩石称为暗礁。水下珊瑚礁是指位于深度基准面以下的珊瑚礁。浪花(breakers,Br)用于表示多礁地区,海浪冲击波涛汹涌,船只不能靠近的地段。 (2)沉船(wrecks) 沉船分为部分露出沉船、桅杆露出的沉船、危险沉船、非危险沉船、经扫海的沉船、测得深度的沉船和深度未精测的沉船。沉船图式又可区分为船体形状依比例尺表示和不依比例尺表示的两种。危险沉船是指其上水深20m及20m以内(英版海图28m及28m以内)的沉船,或深度不明,但有碍水面航行的沉船。非危险沉船是指其上水滦大于20 m(英版海图大于28m)的沉船,或深度不明,但不影响水面航行的沉船。未精测沉船指未进行精确的测量,沉船最浅深度不明,但表示的深度是采用其它方法估计的安全深度。

(3)其它障碍物(other obstructions) 除礁石与沉船外,其它障碍物,如捕鱼设备、水下桩(柱)、渔礁等一般以符号表示;有时也用文字注记说明,如“附近多渔栅”。 常见的礁石、沉船和其它障碍物的海图图式和含义见表1-2-4。 扫海测量简称扫测,是在一定海区内进行面的扫测,以查明该区域内或该区域所规定的深度上是否存在航行障碍物的一种测量。用软式扫海具进行扫测的方法分定测和拖底扫测两种。定测扫测是使扫海具的底索在深度基准面以下保持一定深度的扫海测量,主要用于确定船舶安全航行的深度和确定航行障碍物的最浅深度。拖底扫测是扫海具底索着底,发现和探测航行障碍物。

IHO国际海图条例

IHO国际海图条例 说明 本条例家根据1984年国际海道测量局出版的REGULA TIONS OF THE IHO FOR INTERNA TIONAL(INT)CHARTS译出。该条例规定了国际海图的编制目的、编制原则、作业规定和资料交换等,现翻译出版,供有关机关、部队和院校参考。 参加本条例翻译、校订和译文审查工作的有朱梅庆、马定盛、李梅春、吴方星等同志。由于译校水平有限,可能有错误和不当之处,请读者批评指正。 中国人民解放军海军司令部航海保证部 1987年3月6日正文 1926年第二届国际海道测量大会上,当时的国际海道测量局指导委员会主席J M.法富(J.M.PHAFF)中将在开幕词中说: “1884年美国海道测量队主任制图员E.R.诺拉(E.R.KNORR)先生在华盛顿出版了一本小册子。在这本几乎被人忘却了的小册子上,他提议并以大量数字阐明,如果出版相同海岸和港湾海图的所有国家在共同协议的基础上,出版发行基本海图是具有巨大经济效益的。这位有远见的人,从多方面说明设立一个常设的国际机构是很必要的并建议请两个国家商定作召集人,然后召集国际会议。 这一建议,得到敏锐的勒那德先生(是一位国际海道测量局的缔造者,正好在1919年5月选举主任之前去逝)的支持,为了克服障碍,他写了有关国际海图的文章,公布在1918年法国的《海道测量年报》上。他们的设想得到了英国海道测量局局长的支持,随后有国际会议讨论了这个问题,诺拉先生梦寐以求的理想——第一次国际海道测量大会举行了。 这两位倡导人,两位专家,对这复杂的课题,预想到有很大的困难,但决心去克服它。” 国际海图条例是在北海国际海图委员会的报告、协议和研究的基础上起草的,经海图规范委员会以及以后的标准化委员会修改同意,于1984年最后定稿。这样,在诺拉先生的小册子出版100年后,他的想法成了现实。 国际海道测量组织的海图规范,是由北海国际海图委员会和以后的海国规范委员会、海图标准化委员会编写的。国际海图条例应与其结合起来看。

航海学海图

第三节 墨卡托投影海图 一、航用海图必须具备的条件 ①图上的恒向线应是直线;船舶以固定的航向即沿着恒向线航行最为方便,所以一般 情况下都是走恒向线航线。在海图上绘画恒向线航线时用,直线最简便。因此,要求航用海图上的恒向线是直线。 ②要求航用海图的投影性质是等角的,即要求等角正形投影; 二、墨卡托海图的图网特点 ①子午线被画成相互平行的直线; ②赤道和纬度圈也被画成相互平行的直线; ③子午线与纬度线相互垂直; ④纬度渐长现象——图上纬度1?的长度随纬度升高而渐长。在同一张海图上,纬度不同其局部比例尺也不同,纬度越高比例尺越大; 地球椭圆体微量面梯形ABCD 投影到海图变为矩形abcd 三、纬度渐长率(Meridianal Parts),MP 在墨卡托海图上,某一纬度线至赤道的距离,是用图上1′经度的图长(1赤道里,1个海图单位e)来度量的比值 1、MP 的意义:将某一纬度( )代入公式计算得MP 值,就能求得在墨卡托海图上该纬度( ) 线到赤道的(子午线)图长,此图长等于图上1′经度图长的MP 倍。 2、MP 的特点:相等纬度差的MP 差值(DMP=MP2-MP1)随着纬度的升高而渐渐变大,即墨卡托海图上相等纬差间的子午线图长随着纬度的升高而渐长 纬度渐长率的来由 3、纬度渐长率MP 的应用: (1)以某纬 度代入MP 公式计算的值,可求得在墨卡托海图上该纬度( )线到赤道的图长。 因此,如果要绘制达到等角正形要求的墨卡托海图图网,只要先确定1′经度的图长(海图单位),然后画纬线,使其到赤道的图长等于该纬度的纬度渐长率MP 海图单位 (2)由于存在纬度渐长现象,所以在墨卡托海图上度量距离时,一定要使用对应纬度处的纬度1′为1海里进行度量 4、海图单位e 和相邻纬度间的DMP 的计算 在墨卡托海图上,图上1′经度的图长(1赤道里的图长)称为该图的海图单位,用e 表示。 例:我国海图100-104福州至珠江口的图幅为97.78 cm ×68.28cm 。该图的经度是从112°47′E 到122°55′E ,纬度是从20°00′N 到26°32′N ,验证该图是否符合纬度渐长率的关系。 例:同一张图上,已知25N 的局部比例尺为C ,35N 的局部比例尺为C1,15N 的局部比例尺为C2,则它们之间的关系?

电子海图详细手册完整版

电子海图详细手册 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

英国船商有限公司 电子海图显示与信息系统 (Navi-Sailor 2400 ECS/ECDIS) 操作手册 二OOO年七月 S E T S T H E S T A N D A R D 1.1介绍及注意事项 1.1.1版权 TRANSAS MARINE 是英国船商有限公司的注册商标。 NAVI-SAILOR是船商公司电子海图产品的注册商标。 软件版权在公司产品许可证中有规定,本手册属于船商公司产品,没有船商公司书面许可,不得复制及转载。 1.1.2 电子海图使用注意事项 Navi-Sailor 2400 ECDIS(以下简称NS)应当与国家航道测量局公布的S57格式的海图配合使用,并且根据航道测量局的要求及时更新。 如果NS使用其它格式的海图,则应注意以下几点: 船商生产的格式海图不是为了替代官方的海图。船商海图无需包括最新的更新,只有与官方纸海图配合才能使用。 屏幕上显示的船位只是坐标的图形指示,实际船位要依靠与定位传感器如GPS连接。 在使用NS进行航线设计前,首先应使用适当比例尺的纸海图,并依据最新航海通告进行更新。 在将纸海图的其它数据转换到NS时,应首先注意纸海图数据和船商海图使用的WGS-84数据的可能差别。 1.2如何使用用户手册 1.2.1用户手册简介及目的 本手册的编排能使用户方便地找到所需信息,包含以下几部分: 1.简介 2.NaviSailor系列软件的基本功能及使用界面介绍 3.NaviSailor各功能详细介绍 4.附录 5.NaviSailor软件"技术参考"手册简要介绍了NS系统的各个功能,并提供了 各菜单功能的索引 1.2.2本手册对操作描述方式的解释

电子海图与数字海图的异同

海军大连舰艇学院 本科生毕业论文(外文翻译)译文名称:电子海图与数字海图的异同 专业:地图学与地理信息工程 班次:2006级制图本科 学员:王少帅 指导教员:彭认灿教授 评阅人: 完成时间:2010年6月30日

电子海图与数字海图的异同 理查德.卡彭特,英国海道测量局 卡里斯 2008,巴斯 发展的本质 电子航海图(ENC)与数字海图(DNC)都是由政府部门生产的数字导航产品;电子航海图由世界各国的海道测量机构生产,电子海图由美国国家空间信息署制作,该机构同时也为加拿大制作相关海图。 数字海图标准随着科学技术的进步而不断发展和完善。1983年,在美国召开的以“电子海图”为主题的海道测量研讨会上,当讨论到全球海图数字化处理的数据量时,理查德.思克瑞(国家海洋与大气管理局)指出:“即使使用最大型的计算机设备,处理海量的数据依旧十分困难。”而在今天,即使是普通手机都拥有处理大量信息的功能。 文中对此问题的简单论述只为强调一点,即早期对于ENC和DNC发展及相关产品的预测是很有意义的。特别是IT界曾经历过对其技术发展的悲观估计和对其应用的过高评价。 概念和起源 20世纪70年代中期,各国海道测量机构相继开展了海图数字化研究工作,在之后的数十年里,IHO研究制定了相应的数据交换标准;相关概念也迅速扩展到数据提供和用户系统的方方面面。这项工作导致了S-57的出版,至今,该项规范已发展至第三版的S-100 和正在修订中的S-101。 如下观点具有一定的启迪性:在上述的1983年研讨会中,尼尔安德森(CHS)指出,IHO所做工作承自1919年在伦敦召开的旨在制订纸质海图编绘规范的国际海道测量大会,该项工作在64年之后的1983年依旧具有重要意义。同样,在其之后的二十多年内该项工作尚无法结束。在这段时间内(世纪末的二十多年),世界各国的海道测量机构根据最新要求,达到

海洋船舶北斗定位导航系统解决方案

海洋船舶北斗定位导航系统 解决方案 华云科技有限公司 2013年10月

目录 一、综述 (3) 二、系统解决方案 (4) (一)设计目标与原则 (4) 1.设计目标 (4) 2.设计原则 (5) (二)总体方案设计 (5) 1. 卫星导航运营中心 (6) 2. 岸端监控中心 (7) 3. 船载北斗定位导航终端 (7) (三)岸端监控中心功能设计 (8) 1.岸船信息互通 (8) 2.位置监控 (8) 3.应急调度 (8) 4.船舶报警 (9) 5.增值信息服务 (10) 6.系统管理 (10) 7.系统接口 (11) (四)船载北斗定位导航终端 (12) 1.主要特点 (13) 2.终端功能 (13) 3.主要性能指标 (17) (五)硬件环境要求 (18) 1. 主机存储 (18) 2. 网络 (19) 3. 系统支撑软件 (19) 三、系统造价 (21) (一)概算一(终端含屏及本地导航) (22) (二)概算二(终端不含屏) (23)

一、综述 最古老的航海导航的方法是罗盘和星历导航,人类通过观察星座的位置变化来确定自己的方位;最早的导航仪是中国人发明的指南针,后来发展成一直为人类广泛应用的磁罗经。在随后的两个世纪里,人类通过综合利用星历知识、指南针和航海表来进行导航和定位。卫星技术应用于海上导航可以追溯到20世纪60年代的第一代卫星导航系统Transit,但是它有不连续导航、定位的时间间隔不稳定等缺点。GPS系统的出现克服了Transit系统的局限性,而且提高了定位精度、可进行连续的导航、有很强的抗干扰能力,取代了陆基无线电导航系统,在航海导航中发挥了划时代的作用。 2000年我国建成北斗卫星导航试验系统,中国成为第三个拥有自主卫星导航系统的国家。截至2012年底,北斗卫星导航系统已经成功发射16颗卫星,并组网运行,形成区域服务能力。目前在北京、郑州、西安、乌鲁木齐等地区,中国卫星导航定位精度可达7米,在东盟国家等低纬度地区,定位精度可达到5米左右。随着新一代北斗导航卫星的发射,以及在技术以及管理上的诸多创新,北斗卫星导航精度有望继续提高。在国家大力扶持与推动下,国内北斗卫星导航系统建设和应用如火如荼。在交通运输、海洋渔业、水文监测、气象预报、电力调度、救灾减灾和国家安全等领域得到广泛应用。 党的十八大提出建设“海洋强国”的战略部署,国家科技部“导航与位置服务科技十二五专项规划”中,提出了"十二五"末导航与位

中国电子海图目录汇总

中国电子海图目录汇总 地区图号图名比例尺(1:) 出版日期更新日期 中国海区(一) 5001 渤海 500000 2005-6-3 2006-4-13 中国海区(一) 5002 黄海北部 500000 2005-5-25 2006-4-13 中国海区(一) 5003 黄海南部 500000 2005-5-26 2006-4-13 中国海区(一) 5004 舟山群岛 500000 2005-6-1 2006-4-13 中国海区(一) 5005 浙江南部至赤尾屿 500000 2005-5-9 2006-4-13 中国海区(一) 5006 台湾海峡 500000 2005-6-6 2006-4-13 中国海区(一) 5007 巴士海峡 500000 2005-6-6 2006-4-13 中国海区(一) 5008 东沙群岛 500000 2005-5-31 2006-4-13 中国海区(一) 5009 珠江口附近 500000 2005-5-27 2006-4-13 中国海区(一) 5010 海南岛东部海区 500000 2005-6-6 2006-4-13 中国海区(一) 5011 海南岛西部海区 500000 2005-5-20 2006-4-13 中国海区(二) 1301 鸭绿江口至老铁山水道 300000 2006-11-8 2006-12-28 中国海区(二) 1302 渤海海峡(未出版) 300000 中国海区(二) 1303 渤海北部(未出版) 300000 中国海区(二) 1304 渤海西部(未出版) 300000 中国海区(二) 1305 成山角至青岛港 300000 2006-12-18 2006-12-18 中国海区(二) 1306 青岛港至射阳港(未出版) 300000 中国海区(二) 2307 射阳港至吕四港(未出版) 300000 中国海区(二) 2308 吕四港至象山港(未出版) 300000 中国海区(二) 2309 象山港至温州港(未出版) 300000 中国海区(二) 2310 温州港至福州港(未出版) 300000 中国海区(二) 2311 福州港至厦门港(未出版) 300000 中国海区(二) 2312 厦门港至东山港(未出版) 300000 中国海区(二) 3313 汕头港至汕尾港(未出版) 300000 中国海区(二) 3314 大鹏湾至南鹏岛(未出版) 300000 中国海区(二) 3315 海陵山岛至抱虎角(未出版) 300000 中国海区(二) 3316 洋浦港至防城港 300000 2006-5-18 2007-1-24 中国海区(二) 3317 海南岛南部附近 300000 2007-1-8 2007-1-8 北方海区 1001 丹东港及附近 100000 2003-12-1 2006-4-29 北方海区 1002 大鹿岛至海洋岛 100000 2003-12-1 2006-4-29 北方海区 1003 石城列岛至广鹿港 100000 2003-12-1 2006-4-29 北方海区 1004 广鹿港至大连港 100000 2003-12-1 2006-4-29 北方海区 1005 大连港至西湖咀 100000 2003-12-1 2006-4-29 北方海区 1006 金州湾至大孤山 100000 2003-12-1 2006-4-29 北方海区 1007 大孤山至鲅鱼圈 100000 2003-12-1 2006-4-29 北方海区 1008 营口港附近 100000 2003-12-1 2006-4-29 北方海区 1009 锦州湾至团山角 100000 2003-12-1 2006-4-29 北方海区 1010 团山角至秦皇岛港 100000 2003-12-1 2006-4-29 北方海区 1011 秦皇岛港附近 100000 2003-12-1 2006-4-29 北方海区 1012 滦河口至大清河口 100000 2003-12-1 2006-4-29 北方海区 1013 天津港及附近 100000 2004-1-1 2006-4-29

海图作业管理规定

海图作业管理规定 1. 概述 海图管理与作业是船舶航行的一项基础工作,船舶应参考交通部制订的《海图作业试行规则》加以规范。 2. 海图改正要点 2.1《航海通告》的改正:二副收到《航海通告》后,根据本船的船存海图清单,将需要改正的通告好登记在海图小改正记录簿上。改正完毕后,在海图左下角小改正处将改正年份和通告号数注明备查。与本航次有关的《航海通告》,必须在开航前改正完毕; 2.2《航海警告》的改正:航行中值班人员收到航海警告后,对直接有碍航行安全的应即用铅笔在值班中使用的相关海图上进行改正,同时报告船长,并列入航行交班内容。二副负责改正到有关海图上,同时在海图左下角小改正处附近注明备查。船长、驾驶员通常应阅读签署《航海警告》; 2.3海图改正注意事项: A. 不论海图的比例尺大小,常用与否,一律都应按《航海通告》上指定的图号改正; B. 改正海图时填入的内容,注意不要掩盖图上其它的符号和水深; C. 《航海通告》需用不褪色的红墨水笔进行改正,字迹应端正清晰,内容正确完整,并按规定的图式符号和缩写进行改正; D. 《航海通告》须同时改正几张海图时,应先改正急用的海图,然后按顺序改正; E. 《航海通告》改正以后,用红黑水笔在“航海通告”上将改正内容勾去,然后按顺序归档长期妥善保存,不要遗失,备日后查阅;

F. 《航海通告》中规定剪贴改正部分,应及时按规定剪贴到指定的海图上,以保证其正确性。 H、新领海图在启用前,必须将《航海通告》、《航海警告》改正到最新后才能使用。 I、电子海图不能代替纸质海图,配备电子海图的船舶仍需按照本规定进行及时改正。 3. 海图的作业要点: 3.1开航前,根据航线,二副应将本航次所需的海图按使用顺序放妥在最上层的图桌抽屉内备用。 3.2航行中,驾驶人员应经常定位,海图作业要能反映出航行的整个过程,特别是转向时,要进行定位和海图作业。 3.3海图作业前,要确认航行无危险;不可长时间在海图室进行作业。 3.4海图在海图桌上放置要正确,以防经纬度误用。移动平行尺要平稳,防止出现角度偏差。 3.5正确使用海图作业符号,书写工整,不应在海图上打草稿,保持作业整洁。 3.6作业时必须使用2B软性铅笔进行书写,不得使用其他型号铅笔。 3.7航次结束后才能擦去作业内容,如发生海事,要保存所作业的海图,直到海事处理结束,才能擦去作业内容。

电子海图系统介绍

AWENA-1船载型电子海图系统(ECS) AWENA-1船载型电子海图系统(ECS)(前生AWENA-1船舶智能导航仪)是电子航行参考图显示系统(IHO S-57)和船舶智能避碰系统综合应用开发具有完全知识产权的新型船舶助导航产品,符合中国海事局《国内航行船舶船载电子海图系统(ECS)功能、性能和测试要求(暂行)》中的A级设备要求。能有效改善船舶航行的安全性,自动判别周围船舶的多种航行信息,结合电子航行参考图显示系统,实现了航行信息综合显示和智能辅助导航。 产品特点: 1. 本机采用模块化设计,以电子海图系统(ECS)为基本显示平台,与各导航传感器的合适组合构成了一套完整的,精确的,综合定位系统,并提供先进的,便捷的最佳化定位功能,有利于安全航行,触摸式的系统操作,更人性化。 2. 具有完全的自主知识产权全中文电子航行参考图显示平台,以S-52标准进行显示国际标准(IHO S-57)的电子海图,具有航线设计功能,并可在图上设置本船安全等深浅和安全水深,并突出显示。 3. 系统可接收处理AIS、GPS、罗经、测深仪、计程仪等设备的输入信息,给出与本船航行有关的周围动态交通状况显示,在航路监视同时,综合分析发生各类碰撞、搁浅、误入禁止区等危险的可能,

提前警告,并试验解决途径,提供驾驶员安全规避的操作方案。 4.报警功能:监视各种航行危险并智能计算周围船舶的航行信息,为船舶提示最危险的航行船舶:到达(接近)转向点指标,超出航迹偏移极限,越过安全等深浅,搁浅危险,接近孤立危险物,接近禁止区域,定位传感器故障等,都会报警。CPA/TCPA计算及报警(声光报警)。 5. 航迹记录:系统记录最近本船12小时内每分钟的实际航迹,可保 存最近3个月的本船实际航迹的独立航行记录。 6、提供国家海事局官方出版的电子海图预安装服务,同时也提供国 家海事局官方提供的电子海图升级安装服务(服务收费)。国家海事局官方出版的电子海图包含国内沿海和长江电子海图数据.海图信息包含的海图版本号,生产日期和套数号码,每套海图数据只能安装该条船只,船检也将对应船只进行相关信息的检查. 7提供用户、上海海事局航海图书印制中心和上海埃威航空电子有限公司三方共同签订提供电子海图数据的相关协议.上海埃威航空电子有限公司将签订的相关信息提供给国家海事局海图出版中心备案. 8. 在签订电子海图预安装服务(服务费1000元)和三方协议后,海 埃威航空电子有限公司将预先安装国家海事局官方出版的电子海图包含国内沿海和长江电子海图数据.用户可以在中国海事电子海图发行网站注册登记网址为(http://218.1.122.10/chart),并可获得用户名\密码,免费下载相关的海图更新数据.同时也可以选

相关文档