文档库 最新最全的文档下载
当前位置:文档库 › 第二节 洛必达法则

第二节 洛必达法则

第二节 洛必达法则
第二节 洛必达法则

第二节 洛必达法则

教学目的:理解洛必达法则,掌握用洛必达法则求0

0型和∞∞型以及∞-∞∞?,0型未定式的极限的方法; 了解00,1,0∞∞型极限的求法.

教学重点:洛必达法则.

教学难点:理解洛必达法则失效的情况, ∞-∞∞?,0型的极限的求法.

教学时数:2

一、0x x →时的00

型未定式 定理 设函数)(x f 与)(x g 满足:

(1),0)(lim 0=→x f x x 0)(lim 0

=→x g x x ; (2))(x f 与)(x g 在0x 某个邻域内(点0x 可除外)可导,且0)(≠'x g ; (3)0()lim ()

x x f x A g x →'='(A 为有限数,也可为+∞或-∞),则 A x g x f x g x f x x x x =''=→→)

()(lim )()(lim 00. 证明 由于我们要讨论的是函数在点0x 的极限,而极限与函数在点0x 的值无关,所以我们可补充)(x f 与)(x g 在0x 的定义,而对问题的讨论不会发生任何影响.令00()()0f x g x ==,则)(x f 与)(x g 在点0x 就连续了.在0x 附近任取一点x ,并应用柯西中值定理,得

00()()()()()()()()

f x f x f x f

g x g x g x g ξξ'-=='-(ξ在x 与0x 之间) 由于0x x →时,0ξx →,所以,对上式取极限便得要证的结果,证毕.

这种用导数商的极限来计算函数上的极限的方法称为洛必达法则.

例1: 应用洛必达法则求0sin lim x x x

→. 解: 显然()sin ,()f x x g x x ==对00x =点满足洛必达法则的条件(1)和(2),又

00(sin )cos lim

lim 1()1

x x x x x →→'==' 故条件(3)也满足,从而有 00sin (sin )lim lim 1()x x x x x x →→'=='

. 例2: 求322234lim 44

x x x x x →-+-+. 解: 这是0

0型.应用洛必达法则有 3222222343666lim lim lim 344242

x x x x x x x x x x x →→→-+--===-+- 二、x →∞时的00型未定式及0x x →或x →∞时的∞∞

型未定式 上述定理对于∞→x 时的00型未定式同样适用,对于0x x →或∞→x 时的∞

∞型未定式,也有相应的法则.

例3: 求ln lim

(0)n

x x n x →+∞>. 解 : 11

ln 1lim lim lim 0n n n x x x x x x nx nx -→+∞→+∞→+∞===. 三、∞-∞∞?,0,00,1,0∞∞型未定式

例4: 求111lim ln 1x x x →??- ?-?

?. 解: 这是∞-∞未定型,通过“通分”将其化为

00未定型. 11111ln lim lim ln 1(1)ln x x x x x x x x →→--??-= ?--?

? 11

1lim 1ln x x x x x

→-

=-+ 11lim ln 1x x x x x →-=+-111lim ln 112x x →==++. 例5: 求 πlim (arctan )2

x x x →+∞-. 解: 这是0∞?未定式,通过变形可将其化为00未定式.

πarctan π2

lim (arctan )lim 12

x x x x x x

→+∞→+∞--= 211lim 1x x x

→+∞-+=- 22lim 11x x x →+∞==+ 例6: 求0lim .x

x x +→ )0(0型 解: 原式=00201ln lim lim lim ln ln 00lim 1x x x x x x x x x x x x e e e e e ++→→+→+-→=====

例7:求111lim .x x x -→ )1(∞型

解: 原式=1111ln ln lim lim 11111lim x x x x

x x x x e e e e →→----→===

例8: 求1ln 0lim (cot ).x x x +→ )(0∞型

解: 由于1

1ln(cot )ln ln (cot )x x x x e ?=而

2000111cot sin lim ln(cot )lim lim 1ln cos sin x x x x x x x x

x x x +++→→→-?-?==?1-= 所以 原式=1.e -:

小结:使用洛必达法则时,应注意以下几点:

(1)每次使用法则前,必须检验是否属于

00或∞∞未定型,若不是未定型,就不能使用该法则;

(2)如果有可约因子,或有非零极限值的乘积因子,则可先约去或提出,以简化演算步骤;

(3)当)()(lim x g x f ''不存在时(不包括∞的情况),并不能断定)

()(lim x g x f 也不存在,此时应使用其他方法求极限.

例9: 证明cos lim x x x x

→+∞+存在,但不能用洛必达法则求解.

解:因为

cos cos

lim lim(1)101

x x

x x x

x x

→+∞→+∞

+

=+=+=,所以,所给极限存在.

又因为

(cos)1sin

lim lim lim(1sin)

()1

x x x

x x x

x

x

→+∞→+∞→+∞

'

+-

==-

'

不存在,所以,所给极限不能用洛

必达法则求出.

洛必达法则完全证明

洛必达法则完全证明 定理1 00lim ()lim ()0x x x x f x g x →→==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明见经典教材。 定理2 lim ()lim ()0x x f x g x →∞→∞==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:101lim ()lim ()0t x x t f x f t = →∞→==,1 01lim ()lim ()0t x x t g x g t =→∞→==,由定理1 11 200021111()'()()'()()'()lim =lim lim lim lim 1111()'()()'()()'()t x x t x t t t x f f f f x f x t t t t g x g x g g g t t t t ==→∞→→→→∞-===-。 定理300lim ()lim ()x x x x f x g x →→==∞,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:001 ()()lim =lim 1 ()() x x x x f x g x g x f x →→,由定理1 0000221'()()()'()()()lim =lim =lim lim(())1'()()()'()()() x x x x x x x x g x f x f x g x g x g x f x g x g x f x f x f x →→→→-=- 1) 设0()lim () x x f x g x →存在且不为0,则 0002()()'()lim lim()lim () ()'()x x x x x x f x f x g x g x g x f x →→→=,00()'()lim lim ()'()x x x x f x f x g x g x →→= 2) 设0 ()lim ()x x f x g x →存在且为0,设0k ≠,则 0()lim()0() x x f x k g x →+≠ 有00()()+()lim()=lim ()() x x x x f x f x kg x k g x g x →→+

洛必达公式

洛必达公式+泰勒公式+柯西中值定理+罗尔定理 洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+ Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项

第二节洛必达法则

第二节洛必达法则 人物介绍:洛必达(L'Hospital)(1661—1704)法国数学家 “第一本微积分课本出版于1696年,它是由洛必达写的.” ──伊夫斯 “求分子分母同趋于零的分式极限的‘洛必达法则’是约翰·伯努利1694年告诉洛必达的.” ──摘自梁宗巨编著的《世界数学史简编》 洛必达是法国数学家.1661年生于巴黎;1704年2月2日卒于巴黎. 洛必达出生于法国贵族家庭,他拥有圣梅特(Saimte Mesme)侯爵昂特尔芒(d′Entremont)伯爵的称号.青年时期一度任骑兵军官,因眼睛近视而自行告退,转向从事学术研究. 洛必达很早即显示出其数学才华,15岁时解决了帕斯卡所提出的一个摆线难题.他是莱布尼茨微积分的忠实信徒,并且是约翰·伯努利(Johann Bernoulli)的高徒,成功地解答过约翰·伯努利提出的“最速降线”问题.他是法国科学院院士. 洛必达最大的功绩是撰写了世界上第一本系统的微积分教程──《用于理解曲线的无穷小分析》,因此,美国史学家伊夫斯(Eves)说:“第一本微积分课本出版于1696年,它是由洛必达写的.”后来多次修订再版,为在欧洲大陆,特别是在法国,普及微积分起了重要作用. 这本书追随欧几里得和阿基米德古典范例,以定义和公理为出发点.在这本书中,先给出了如下定义和公理:“定义1,称那些连续地增加或减少的量为变量,……”“定义2,一个变量在其附近连续地增加或减少的无穷小部分称为差分(微分),……”然后给出了两个公理,第一个说,几个

仅差无穷小量的量可以相互代替;第二个是说,把一条曲线看作是无穷多段无穷小直线的集合,……在这两个公理之后,给出了微分运算的基本法则和例子.第二章应用这些法则去确定曲线在一个给定点处的斜率,并给出了许多例子,采用了较为一般的方法.第三章讨论极大、极小问题,其中包括一些从力学和地理学引来的例子,接着讨论了拐点与尖点问题,还引入了高阶微分.以后几章讨论了渐屈线和焦散曲线等问题. 洛必达这本书中的许多内容是取材于他的老师约翰·伯努利早期的著作. 其经过是这样的:约翰·伯努利在1691年─1692年间写了两篇关于微积分的短论,但未发表.不久以后,他答应为年轻的洛必达侯爵讲授微积分,定期领取薪金,作为报答.他把自己的数学发现传授给洛必达,并允许他随时利用.于是洛必达根据约翰·伯努利的传授和未发表的论著以及自己的 学习心得,撰写了《用于理解曲线的无穷小分析》.这部著作不但普及了微积分,而且帮助约翰·伯努利完成并传播了平面曲线的理论. 特别值得指出,在这部书的第九章中有求分子分母同趋于零的分式极限的法则,即所谓“洛必达法则”: 如果是可微函数,且在右端的极限存在或为无穷的情况下.但当时洛必达的论证没有使用函数的符号,是用文字叙述的,相当于断言,他的结论是:如果把给定曲线的纵坐标“表示为一个分式,且x取到极限时分子和分母都等于零”,那么“如果求出分子的微分,再除以分母的微分,最后在其中令自变量去极限,便得到值”.这个法则实际上是约翰·伯努利在1694年7月22日写信告诉他的.至于现在一般微积分教材上用来解决其他未定式求极限的法则,是后人对洛必达法则所作的推广(例如,后几个未定式的法则就是后来欧拉(Euler)给出的),但现在都笼统地叫做“洛必达法则”. 洛必达曾计划出版一本关于积分学的书,但在得悉莱布尼茨也打算撰写这样一本书时,就放弃了自己的计划.他还写过一本关于圆锥曲线的书——《圆锥曲线分析论》,此书在他逝世之后16年才出版. 洛必达豁达大度,气宇不凡.由于他与当时欧洲各国主要数学家都有交往,从而成为全欧传播微积分的著名人物.

(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

第二节 洛必达法则

第二节 洛必达法则 教学目的:理解洛必达法则,掌握用洛必达法则求0 0型和∞∞型以及∞-∞∞?,0型未定式的极限的方法; 了解00,1,0∞∞型极限的求法. 教学重点:洛必达法则. 教学难点:理解洛必达法则失效的情况, ∞-∞∞?,0型的极限的求法. 教学时数:2 一、0x x →时的00 型未定式 定理 设函数)(x f 与)(x g 满足: (1),0)(lim 0=→x f x x 0)(lim 0 =→x g x x ; (2))(x f 与)(x g 在0x 某个邻域内(点0x 可除外)可导,且0)(≠'x g ; (3)0()lim () x x f x A g x →'='(A 为有限数,也可为+∞或-∞),则 A x g x f x g x f x x x x =''=→→) ()(lim )()(lim 00. 证明 由于我们要讨论的是函数在点0x 的极限,而极限与函数在点0x 的值无关,所以我们可补充)(x f 与)(x g 在0x 的定义,而对问题的讨论不会发生任何影响.令00()()0f x g x ==,则)(x f 与)(x g 在点0x 就连续了.在0x 附近任取一点x ,并应用柯西中值定理,得 00()()()()()()()() f x f x f x f g x g x g x g ξξ'-=='-(ξ在x 与0x 之间) 由于0x x →时,0ξx →,所以,对上式取极限便得要证的结果,证毕. 这种用导数商的极限来计算函数上的极限的方法称为洛必达法则. 例1: 应用洛必达法则求0sin lim x x x →. 解: 显然()sin ,()f x x g x x ==对00x =点满足洛必达法则的条件(1)和(2),又

2021年洛必达法则 泰勒公式

*欧阳光明*创编
2021.03.07
第三章 微分中值定理与导数的应用
欧阳光明(2021.03.07)
第二讲 洛必达法则 泰勒公式
目的 1.使学生掌握用洛必达法则求各种类型未定式极限的方法; 2.理解泰勒中值定理的内涵;
3. 了解
等函数的麦克劳林公式;
4.学会泰勒中值定理的一些简单应用.
重点 1.运用洛必达法则求各种类型未定式极限的方法;
2.使学生理解泰勒中值定理的内涵.
难点 使学生深刻理解泰勒中值定理的精髓.
一、洛必达法则
在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已
经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存
在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系
知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之
比的极限和无穷大之比的极限称为未定式,并分别简记为 和 . 由于在讨论上述未定式的极限时,不能应用商的极限运算法
则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天
*欧阳光明*创编
2021.03.07

*欧阳光明*创编
2021.03.07
在这里我们应用导数的理论推出一种既简便又重要的未定式极限的
计算方法,并着重讨论当 时, 型未定式极限的计算,关于这
种情形有以下定理.
定理 1 设
(1) 当 时,函数 及 都趋于零;
(2)在点 的某去心邻域内, 及 都存在,且

(3) 则
存在(或为无穷大),

也就是说,当
存在时,
也存在,且等于
;当
为无穷大时,
也是无穷大.这种在一定条件下,通
过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必
达(L’Hospital)法则.
下面我们给出定理 1 的严格证明:
分析 由于上述定理的结论是把函数的问题转化为其导数的问
题,显然应考虑微分中值定理.再由分子和分母是两个不同的函
数,因此应考虑应用柯西中值定理.
证 因为求极限
与 及 的取值无关,所以可以假定
.于是由条件(1)和(2)知, 及 在点 的某一邻
域内是连续的.设 是这邻域内一点,则在以 及 为端点的区间
*欧阳光明*创编
2021.03.07

洛必达法则

利用导数求解函数问题是近年高考的一个热点,也是学生学习的一个难点,在高三数学复习备考中应引起关注。实施变式教学是探讨该类问题的一种有效方法。教学过程以数学问题为导引创设问题情境激发学生进行学习、探讨,领会不同背境下问题的本质;通过对函数典型问题的探讨求解,使学生形成基本的数学技能,在此基础上实施变式教学,有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律;对新背景的综合问题更应引导学生敢于面对,能够运用已经掌握的数学思想和方法进行分析问题、解决问题,获得“未曾有过”的新认识、新境界,进一步增强求解数学综合题的信心,体会学习数学的乐趣。 在新课程标准的指引下,数学教学方法也在不断改进、创新,而“变式教学”是被广泛运用且公认有效的教学手段。以往人们通常把变式教学划分为概念性变式和过程性变式两类;现在,人们已经把变式教学划分为概念和原理的变式教学、数学技能的变式教学、数学思想方法的变式教学三种类型。对中学教学来说,变式教学最重要的是可以让教师有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变” 的本质中探究“变”的规律,帮助学生使所学的知识点融会贯通,从而让学生在无穷的变化中领略数学的魅力,体会学习数学的乐趣。从高考试题的研究中发现,利用导数求解函数问题是一个热点,值得我们在教学中关注到这一动向,并积极研究、探讨,尤其是函数解决不等式问题的求解学生比较陌生。本文以问题为导引,从回归教材学习中领会概念本质,在求解函数问题的探讨过程中实施教学,促使学生适时地归纳、总结,提炼方法规律,真正感悟解题实质,不断完善数学认知结构。 洛必达法则就是在型和型时,有。

最新02第二节洛必达法则75708

02第二节洛必达法则 75708

第二节洛必达法则 在第一章中,我们曾计算过两个无穷小之比以及两个无穷大之比的未定式的极限. 在那里,计算未定式的极限往往需要经过适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算. 这种变形没有一般方法,需视具体问题而定,属于特定的方法. 本节将用导数作为工具,给出计算未定式极限的一般方法,即洛必达法则. 本节的几个定理所给出的求极限的方法统称为洛必达法则. 分布图示 ★洛必达法则 ?Skip Record If...?★例1-2 ★例3 ★例4 ?Skip Record If...?★例5 ★例6-7综合应用★例8 ★例9 ★例10 ?Skip Record If...?★例11 ?Skip Record If...?★例12 ★例13 ★例14 ?Skip Record If...?★例15 ★例16 ★例17 ?Skip Record If...?★例18 ★例19 ★例20 ?Skip Record If...?★例21 ★例22

★内容小结★课堂练习 ★习题3-2 ★返回 内容要点 一、未定式的基本类型:?Skip Record If...?型与?Skip Record If...?型; ?Skip Record If...? ?Skip Record If...? 二、未定式的其它类型:?Skip Record If...?型,?Skip Record If...?型, ?Skip Record If...?型 (1) 对于?Skip Record If...?型,可将乘积化为除的形式,即化为?Skip Record If...?或?Skip Record If...?型的未定式来计算. (2) 对于?Skip Record If...?型,可利用通分化为?Skip Record If...?型的未定式来计算. (3) 对于?Skip Record If...?型,可先化以?Skip Record If...?为底的指数函数的极限,再利用指数函数的连续性,化为直接求指数的极限,指数的极限为 ?Skip Record If...?的形式,再化为?Skip Record If...?或?Skip Record If...?型的未定式来计算. 例题选讲 ?Skip Record If...?型 例1 (E01) 求 ?Skip Record If...? 解原式?Skip Record If...??Skip Record If...??Skip Record If...? 例2 (E02) 求 ?Skip Record If...? 解原式?Skip Record If...??Skip Record If...??Skip Record If...? 注: 上式中, ?Skip Record If...?已不是未定式,不能再对它应用洛必达法则.

洛必达法则不能使用情况及处理

洛必达法则失效的种种情况及处理方法 我看到这样一道题?+∞→x x x x x 0d sin 1 lim ,说是不可以使用洛必达法则,我对照这本书上关于使用洛必达法则 的条件,觉得还不太清楚,好像应该是符合条件的,谢谢你抽空给我指点一下。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )() (lim )() (lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(l i m =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)() (lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1 lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题】求极限?+∞→x x x x x 0d sin 1 lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以 ??+∞→+∞→+=r n n x x x x r n x x x ππ00d sin 1lim d sin 1lim ??????++=? ?+∞→r n n n n x x x x r n ππππd sin d sin 1lim 0 ππππ22lim d sin d sin 1lim 00=++=??????++=∞→∞→??r n R n t t x x n r n n r n , 这里前面一项注意到了函数x sin 的周期为π,而后面一项作了令t n x +=π的换元处理。最后注意到积分值R 的有界性(20<≤R )。 如果把上述洛必达法则失效的情况称为第一种情况,则洛必达法则还有第二种失效的情况:第三个条件永远也无法验证。

02第二节洛必达法则精品文档8页

第二节 洛必达法则 在第一章中,我们曾计算过两个无穷小之比以及两个无穷大之比的未定式的极限. 在那里,计算未定式的极限往往需要经过适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算. 这种变形没有一般方法,需视具体问题而定,属于特定的方法. 本节将用导数作为工具,给出计算未定式极限的一般方法,即洛必达法则. 本节的几个定理所给出的求极限的方法统称为洛必达法则. 分布图示 ★洛必达法则 ??? ??00 ★ 例1-2 ★ 例3 ★ 例4 ?? ? ??∞∞ ★ 例5 ★ 例6-7 综合应用 ★ 例8 ★ 例9 ★ 例10 ).0(∞ ★ 例11 )(∞-∞ ★ 例 12 ★ 例13 ★ 例14 )0(0★ 例15 ★ 例16 )1(∞★ 例17 ★ 例18 ★ 例19 )(0∞★ 例 20 ★ 例21 ★ 内容小结 ★ 课堂练习 ★ 习题3-2 ★ 返回 内容要点 一、未定式的基本类型:0 0型与∞ ∞型; .)()(lim )()(lim x F x f x F x f a x a x ''=→→ .) () (lim )()(lim x F x f x F x f x x ''=∞→∞→

二、未定式的其它类型:∞?0型,∞-∞型,00,1,0∞∞型 (1) 对于∞?0型,可将乘积化为除的形式,即化为0 0或∞ ∞型的未定 式来计算. (2) 对于∞-∞型,可利用通分化为0 0型的未定式来计算. (3) 对于00, 1,0∞∞型,可先化以e 为底的指数函数的极限,再利用 指数函数的连续性,化为直接求指数的极限,指数的极限为∞?0的形式,再化为0 0或∞ ∞ 型的未定式来计算. 例题选讲 00型 例1 (E01) 求 ?≠→)0(sin lim 0k x kx x 解 原式)()(sin lim 0''=→x kx x 1 cos lim 0kx k x →=.k = 例2 (E02) 求 ?+--+-→12 3lim 2331x x x x x x 解 原式12333lim 221---=→x x x x 266lim 1-=→x x x .2 3 = 注: 上式中, 266lim 1-→x x x 已不是未定式,不能再对它应用洛必达法则. 例3 (E03) 求.sin 2lim 0x x x e e x x x ----→ 解 x x x e e x x x sin 2lim 0----→x e e x x x cos 12lim 0---=-→x e e x x x sin lim 0-→-=x e e x x x cos lim 0-→+=.2= 例4 (E04) 求 x x x 1 arctan 2 lim -+∞ →π .?? ? ??型00 解 x x x 1arctan 2 lim -+∞ →π 22111 lim x x x -+- =+∞ →22 1lim x x x +=+∞→1= 注: 若求 n n n n (1arctan 2 lim -+∞ →π 为自然数)则可利用上面求出的函数极限,得

洛必达法则

1 洛必达法则 一.洛必达法则 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()() lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()() lim x f x l g x →∞'=', 那么 () ()lim x f x g x →∞=()() lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也 成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0∞,00,∞-∞型。 ○3在着手求极限以前,首先要检查是否满足00,∞∞,0?∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.设函数2()1x f x e x ax =---。

最新02第二节洛必达法则

02第二节洛必达法则

第二节洛必达法则 在第一章中,我们曾计算过两个无穷小之比以及两个无穷大之比的未定式的极限. 在那里,计算未定式的极限往往需要经过适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算. 这种变形没有一般方法,需视具体问题而定,属于特定的方法. 本节将用导数作为工具,给出计算未定式极限的一般方法,即洛必达法则. 本节的几个定理所给出的求极限的方法统称为洛必达法则. 分布图示 ★洛必达法则 ?Skip Record If...?★例1-2 ★例3 ★例4 ?Skip Record If...?★例5 ★例6-7综合应用★例8 ★例9 ★例10 ?Skip Record If...?★例11 ?Skip Record If...?★例12 ★例13 ★例14 ?Skip Record If...?★例15 ★例16 ?Skip Record If...?★例17 ★例18 ★例19 ?Skip Record If...?★例20 ★例21 ★内容小结★课堂练习

★习题3-2 ★返回 内容要点 一、未定式的基本类型:?Skip Record If...?型与?Skip Record If...?型; ?Skip Record If...? ?Skip Record If...? 二、未定式的其它类型:?Skip Record If...?型,?Skip Record If...?型, ?Skip Record If...?型 (1) 对于?Skip Record If...?型,可将乘积化为除的形式,即化为?Skip Record If...?或?Skip Record If...?型的未定式来计算. (2) 对于?Skip Record If...?型,可利用通分化为?Skip Record If...?型的未定式来计算. (3) 对于?Skip Record If...?型,可先化以?Skip Record If...?为底的指数函数的极限,再利用指数函数的连续性,化为直接求指数的极限,指数的极限为 ?Skip Record If...?的形式,再化为?Skip Record If...?或?Skip Record If...?型的未定式来计算. 例题选讲 ?Skip Record If...?型 例1 (E01) 求 ?Skip Record If...? 解原式?Skip Record If...??Skip Record If...??Skip Record If...? 例2 (E02) 求 ?Skip Record If...? 解原式?Skip Record If...??Skip Record If...??Skip Record If...? 注: 上式中, ?Skip Record If...?已不是未定式,不能再对它应用洛必达法则. 例3 (E03) 求?Skip Record If...?

洛必达法则解决高考导数问题

洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() () lim x f x l g x →∞ '=', 那么 () ()lim x f x g x →∞=() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也 成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2 ()1x f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L’Hospital)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满

足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,则.又因为极限存在(或为无穷大),所以.故定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10 .(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地,对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、

考研数学:极限计算法则——洛必达法则

考研数学:极限计算法则——洛必达法则 洛必达法则是计算极限最常用的方法之一,也是历年考研数学的一个高频考点,不仅能算出具体函数的极限,对于抽象函数求极限也同样适用。在大学阶段,同学们最喜欢一洛到底,但是洛必达法则也是有底线的,并不是所有的极限都能用洛必达求出来,接下来就介绍一下洛必达法则,正确认识洛必达,才可以理解其定理及科学有效地使用,吃透定理后进而找到它们的解题思路,才不至于在做这一题型时感到无从下手。 一、关于洛必达法则 洛必达法则有两类,分别是x a →和x →∞,现归为一种情况x → 进行介绍,定理如下:设(),)f x g x (满足ⅰ)()0lim ()0x f x g x →= 或∞∞ⅱ)(),)f x g x (在 的某去心邻域内可导且()0 g x '≠ⅲ)()lim () x f x g x →'' 存在或为∞则有()()lim lim .()()x x f x f x g x g x →→'=' 关于该法则需要注意的有两点: ①在使用洛必达法则时一定要注意检验条件,三个条件缺一不可,否则很容易得到错误的结果;②使用洛必达法则之前一定先对极限式化简(等替或者四则运算的函数分解). 二、下面分别对每个条件进行分析:对于条件一,只需保证极限是00或∞∞ 的分式形式;对于条件二,需保证可导性,当已知极限式中的函数存在n 阶导数时,只能使用洛必达法则至出现1n -阶导数(如至n 阶,不能保证连续性),最后一步一般凑导数的定义;当已知极限式中的函数存在n 阶连续导数时,可以使用洛必达法则至出现n 阶导数。

例:已知 ()f x 二阶可导,求20))2)lim .h f x h f x h f x h →++--(((解:2 00000))2) lim ))lim 2)()())lim 21)()1)()lim lim 22(). h h h h h f x h f x h f x h f x h f x h h f x h f x f x f x h h f x h f x f x h f x h h f x →→→→→++--''+--=''+-+--=''+---=+-''=(((((((((分析:二阶可导,可洛至一阶,之后凑二阶导数定义; 若该题中,已知 ()f x 二阶连续可导,解题过程如下;解:2 000))2) lim ))lim 2))lim 2 (). h h h f x h f x h f x h f x h f x h h f x h f x h f x →→→++--''+--=''''++-=''=(((((((对于条件三,需保证求导之后的极限必须存在或为∞(后者情况较少),即当()lim ()x f x A g x →'=' 或∞时,方可使用洛必达。易错点如下:()lim ()x f x g x →'' 不存在,不能()lim () x f x g x →? 不存在;()lim x f x → 存在,不能()lim x f x →'?' 存在;正确说法为:()lim ()x f x g x → 存在()lim .()x f x g x →'?≠∞'

(完整版)洛必达法则详述与其在高考中的实际运用

一.L ’Hospital 法则(洛必达法则) 法则1 设函数 f x ()和 g x ()在点a 的某个去心邻域o U a ,d ()内有定义,且满足: (1) lim x ?a f x ()=0 及lim x ?a g x () =0; (2) f x ()和 g x ()在 o U a ,d ()内可导,且¢g x ()10; (3) lim x ?a ¢f x ()¢g x () =A (A 为常数,或为∞) 则有 () ()lim x a f x g x →=lim x ?a ¢f x ()¢g x () =A 。 法则2 设函数 f x ()和 g x ()在点a 的某个去心邻域o U a ,d ()内有定义,且满足: (1)()lim x a g x →=∞; (2) f x ()和 g x ()在o U a ,d ()内可导,且¢g x ()10; (3) lim x ?a ¢f x ()¢g x () =A (A 为常数,或为∞) 则有 () ()lim x a f x g x →=lim x ?a ¢f x ()¢g x () =A 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x ?+ a ,x ?-a 洛必达法则也成立。 2.洛必达法则可处理 00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 3.在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型 定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

相关文档