文档库 最新最全的文档下载
当前位置:文档库 › 高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何专:空间距离的各种计算(含答案)
高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何

空间距离

1.两条异面直线间的距离

和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异

面直线间的线段的长度,叫做两条异面直线的距离.

2.点到平面的距离

从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离

如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离.

4.两平行平面间的距离

和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.

题型一:两条异面直线间的距离

【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;

【规解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.

(2)在Rt △BEF 中,BF =

a 23

,BE =a 21, 所以EF 2=BF 2-BE 2=a 2

12,即EF =a 22

.

由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为

a 2

2

. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .

∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .

∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.

∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232

2

=??? ??-???

? ??. ∴AB 、CD 的距离是

2

2

. 【解后归纳】 求两条异面直线之间的距离的基本方法:

(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.

(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离.

题型二:两条异面直线间的距离

【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD ,

∴O 是△BCD 的中心,∴BO =

3

2BE =332332=

?.

例1题图

例2题图

例3题图

又AB =1,且∠AOB =90°,∴AO =363312

22=???

?

??-=-BO AB .∴A 到平面BCD 的距离是36. 【例4】

在梯形ABCD 中,AD ∥BC ,∠ABC =

2

π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,

求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.

【规解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角.

在△ADF 中,∠AFD =90°,∠ADF =arcsin 55

,AD =3a ,∴AF =5

3a ,

在Rt △P AF 中tan ∠PF A =

3535=

=a a AF PA ,∴∠PF A =arc tan 3

5. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,

∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,

∴PB =a ,∴AH =a 2

2

.

【例5】 如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,

BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.

解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.

∴DF=C 1H=2. .622

2

=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,

由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG 面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.

在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离.

.11

33

417

12317

123,17121743cos 3cos 3,.

17,1,2

2

1

1

221=+

?

=

?=

∴=?

===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CG

BG

CC EB 知由从而可得由

解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).

∵AEC 1F 为平行四边形,

.

62,62||).

2,4,2().2,0,0(.2),2,0,2(),0,2(,,

11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴

(II )设为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然

B A

C

D

1

A

1

A ???=+?+?-=+?+??????=?=?02020140,0,011y x y x n n 得由??

?

??-==∴???=+-=+.41,1,022,014y x

x y 即

111),3,0,0(n CC CC 与设又=的夹角为a ,则1111cos ||||

CC n CC n α?==?u u u u r u u r u u u

u r u u r ∴C 到平面AEC 1F 的距离为.11

33

4333343cos ||1=?

==αCC d

【例6】 正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。 (1)求点到直线AC 的距离.(2)求直线到平面的距离.

解:(1)连结BD ,,由三垂线定理可得:AC D B ⊥1,

所以就是点到直线AC 的距离。 在BD B Rt 1?中,6810222211=-=-=

BC C B BB 34=BD .

2122121=+=∴B B BD D B .

(2)因为AC 与平面BD 交于AC的中点D,

设E BC C B =?11,则//DE ,所以//平面, 所以到平面BD 的距离等于A点到平面BD

的距离,等于C点到平面BD 的距离,也就等于三棱 锥1BDC C -的高, BDC C BDC C V V --=1

1

Θ,

13

1

311CC S hS BDC BDC ??=∴,131312=∴h ,即直线到平面BD 的距离是131312. 【解后归纳】 求空间距离注意三点: 1.常规遵循一作二证三计算的步骤; 2.多用转化的思想求线面和面面距离;

3.体积法是一种很好的求空间距离的方法.

【例4】如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;

(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;

(3)AE 等于何值时,二面角D 1—EC —D 的大小为4

π

.

解析:法1

(1)∵AE ⊥面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E

(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=,AD 1=,

故.2

121,232152211=??==-??=

??BC AE S S ACE C AD 而 11111131,1,.33223

D AEC AEC AD C V S DD S h h h -??∴=

?=?∴?=?∴= (3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE

∴∠DHD 1为二面角D 1—EC —D 的平面角.

设AE=x ,则BE=2-x

11,, 1.

4

,,,

Rt D DH DHD DH Rt ADE DE Rt DHE EH x π

?∠=

∴=?=∴?=Q Q 在中在中在中

D 1

C 1

B 1

A 1

E

D C

B

A

o x

z

y

.

4

,32.

32543.

54,3122π

的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=?+-=

+∴+-=?=?

法2:以D 为坐标原点,直线DA 、DC 、DD 1分别为x 、y 、z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E(1,x ,0),A(1,0,0), C(0,2,0).

(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,

设平面ACD 1的法向量为),,(c b a n =,

则?????=?=?,

0,01AD n AC n 也即???=+-=+-002c a b a ,得???==c a b a 2,

从而)2,1,2(=n ,所以点E 到平面AD 1C 的距离为.3

1

3212|

|1=-+=

=n n E D h (3)设平面D 1EC 的法向量),,(c b a n =, ∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE

由???=-+=-??????=?=?.0)2(0

2,

0,01x b a c b CE n C D n 令b =1, ∴c=2, a =2-x , ∴).2,1,2(x n -=依题意.2

25

)2(22

2

|

|||4

cos

211=

+-?=

?=

x DD n DD n π ∴321+=x (不合,舍去),322-=x . ∴AE=时,二面角D 1—EC —D 的大小为

4

π. ●对应训练 分阶提升 一、基础夯实

1.把边长为a 的正△ABC 沿高线AD 折成60°的二面角,则点A 到BC 的距离是 ( )

A.a

B.

a 2

6

C.a 33

D.a 415 2.△ABC 中,AB =9,AC =15,∠BAC =120°.△ABC 所在平面外一点P 到三个顶点A 、B 、C 的距离都是14,那么点P 到平面α的距离为 ( )

A.7

B.9

C.11

D.13

3.从平面α外一点P 向α引两条斜线P A ,PB .A ,B 为斜足,它们与α所成角的差是45°,它们在α的射影长分别是2cm 和12cm ,则P 到α的距离是 ( )

A.4cm

B.3cm 或4cm

C.6cm

D.4cm 或6cm

4.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为 ( )

A.a 2

1 B.a 2

2 C.

a 23 D.a 5.在四面体P —ABC 中,P A 、PB 、PC 两两垂直.M 是面ABC 一点,且点M 到三个面P AB 、PBC 、PCA 的距离分别为2、3、6,则点M 到顶点P 的距离是 ( )

A.7

B.8

C.9

D.10

6.如图,将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线折成60°的二面角,则AC 与BD 的距离是 ( )

A.a 4

3 B.a 43 C.a 23 D.a 46

7.如图,四棱锥P —ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD =1,设点C 到平面P AB 的距离为d 1,点B 到平面P AC 的距离为d 2,则有 ( )

A.1

B.d 1

C.d 1<1

D.d 2

8.如图所示,在平面α的同侧有三点A 、B 、C ,△ABC 的重心为G .如果A 、B 、C 、G 到平面α的距离分别为a 、b 、c 、d ,那么a+b+c 等于 ( )

A.2d

B.3d

C.4d

D.以上都不对 9.如图,菱形ABCD 边长为a ,∠A =60°,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点且

2====DG

CG

FB CF HD AH EB

AE ,沿EH 和FG 把菱形的两锐角折起,使A

、C 重合,这时点A 到平面EFGH 的距离是 ( )

A.

2

a B.a 22 C.

a 23 D.a 615 二、思维激活

10.二面角α-MN -β等于60°,平面α一点A 到平面β的距离AB 的长为4,则点B 到α的距离为 . 11.在60°的二面角α—l —β中,A ∈α,AC ⊥l 于C ,B ∈β,BD ⊥l 于D ,又AC =BD =a ,CD =a ,则A 、B 两点间距离为 .

12.设平面α外两点A 和B 到平面α的距离分别为4cm 和1cm ,AB 与平面α所成的角是60°,则线段AB 的长是 .

13.在直角坐标系中,已知A (3,2),B (-3,-2)沿y 轴把直角坐标系折成平面角为α的二面角A —Oy —B 后,∠AOB =90°,则cos α的值是 . 三、能力提高

14.在边长为a 的菱形ABCD 中,∠ABC =60°,PC ⊥平面ABCD ,E 是P A 的中点,求点E 到平 面PBC 的距离.

15.在直三棱柱ABC —A 1B 1C 1中,∠ACB 为直角,侧面AB 1与侧面AC 1所成的二面角为60°,M 为AA 1上的点.∠A 1MC 1=30°,∠BMC 1=90°,AB =a .

(1)求BM 与侧面AC 1所成角的正切值. (2)求顶点A 到面BMC 1的距离. 16.已知斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直.∠ABC =90°,BC =2,AC =2,且AA 1⊥A 1C ,AA 1=A 1C .

(1)求侧棱A 1A 与底面ABC 所成角的大小;

(2)求侧面A 1ABB 1与底面ABC 所成二面角的大小;

第8题图

第9题图 第15题图

(3)求顶点C 到侧面A 1ABB 1的距离.

17.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AB 与BC 的中点,EF 与BD 交于H . (1)求二面角B 1—EF —B 的大小.

(2)试在棱B 1B 上找一点M ,使D 1M ⊥面EFB 1,并证明你的结论. (3)求点D 1到面EFB 1的距离.

空间的距离习题解答

1.D 折后BC =2a ,∴点A 到BC

的距离为41542

2a a a =??

?

??-.

2.A BC =21120cos 159215922=???-+. ∴△ABC 外接圆半径R =

37120sin 221

=?

,

∴点P 到α的距离为.7)37(1422=-

3.D 设PO ⊥α垂足为O ,|PO |=x cm ,∠OAP =β,∠OBP =γ,那么β-γ=45°, tan β=

2

x

,tan γ=12x ,tan (β-γ)=tan 45°

展开左边并整理得:x 2-10x +24=0,解得x 1=6,x 2=4.

4.B P 、Q 的最短距离即为异面直线AB 与CD 间的距离,当P 为AB 的中点,Q 为CD 的中点时符合题意.

5.A PM =7632222=++.

6.C 取BD 的中点O 连AO 、OC ,作OE ⊥AC 于E ,则OE 为所求,∴AO =CO =AC =2

3a . 7.D 点C 到平面P AB 的距离d 1=

2

2,

第17题图

点B 到平面P AC 的距离d 2=

332

1

122

1=+

?

, ∵12

233<<,∴d 2

8.B |MM ′|=2c b +,又

312

2=+-+-

c b a c b

d .∴a +b +c =3d . 9.A 设BD 的中点为O ,

∴EO =6760cos 232232

2a a a a a =???-??

?

??+??? ??,点A 到平面EFGH 的距离为23679422a a a =-. 10.2 作AC ⊥MN 于C ,连BC ,则BC ⊥MN , ∴∠ACB =60°,又MN ⊥平面ABC ,

∴平面ABC ⊥平面α,作BD ⊥AC 于D ,则BD ⊥α, ∴BD 的长即为所求,得BD =2.

11. AB =a a a a a a 360cos 2)2(222=????-++. 12.2cm 或

3

3

10cm 当点A 、B 在α同侧时,AB =

3260sin 3

=?;

当点A 、B 在α异侧时,AB =3

3

1060sin 5=

? 13.9

4

如图,AB ″=26)32(22222=+=+OB OA ∵BC ⊥y 轴,B ′C ⊥y 轴,

∴∠B ′CB ″为二面角A —Oy —B 的平面角. ∠B ′CB ″=α,在△B ′CB ″中,B ′C =B ″C =3, B ′B ″=104262=-,由余弦定理易知cos α=

9

4. 14.如图,将点E 到平面PBC 的距离转化成线面距,再转化成点面距. 连AC 、BD ,设AC 、BD 交于O ,则EO ∥平面PBC , ∴OE 上任一点到平面PBC 的距离相等. ∵平面PBC ⊥平面ABCD ,

过O 作OG ⊥平面PBC ,则G ∈BC , 又∠ACB=60°,AC=BC=AB=a , ∴OC =

2

a ,OG =OC sin60°=43a .

点评:若直接过E 作平面PBC 的垂线,垂足难以确定.在解答求距离时,要注意距离之间的相互转化有的能起到意想不到的效果.

15.(1)∵三棱柱ABC —A 1B 1C 1为直三棱柱,∴∠BAC 为二面角B 1—AA 1—C 1的平面角, ∴∠BAC =60°.

又∵∠ACB 为直角,∴BC ⊥侧面AC 1.

连MC ,则MC 是MB 在侧面AC 1上的射影. ∴∠BMC 为BM 与侧面AC 1所成的角.

且∠CMC 1=90°,∠A 1MC 1=30°,所以∠AMC =60°. 设BC =m ,则AC =

m 33

,MC =3

2m ,

第13题图解

第14题图解

所以tan ∠BMC =

2

3. 即BM 与侧面AC 1所成的角的正切值为

2

3. (2)过A 作AN ⊥MC ,垂足为N ,则AN ∥面MBC 1.

∵面MBC ⊥面MBC 1,且过N 作NH ⊥MB ,垂足为H , 则NH 是N 到面MBC 1的距离,也就是A 到面MBC 1的距离. ∵AB =a ,AC =2

a

,且∠ACN =30°, ∴AN =

4

a 且∠AMN =60°,∴MN =a 123.

∴NH =MN sin ∠BMC =a 123×a 52

39

(本题还可用等积法).

16.(1)如图所示,作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC

∴∠A 1AD 为A 1A 与面ABC 所成的角 ∵AA 1⊥A 1C ,AA 1=A 1C ∴∠A 1AD =45°为所求.

(2)作DE ⊥AB 垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB , ∴∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知AB ⊥BC 得DE ∥BC ,又D 是AC 的中点,BC =2,AC =2 ∴DE =1,AD =A 1D =,tan ∠A 1ED =

DE

D

A 1=,故∠A 1ED =60°为所求. (3)连结A 1

B ,根据定义,点

C 到面A 1ABB 1的距离,即为三棱锥C —A 1AB 的高h . 由V C —A 1AB =V A 1-ABC 得31S △AA 1B h =3

1

S △ABC ·A 1D 即

3

1

3223122??=??h ,∴h =为所求.

17.(1)如图连结B 1D 1,AC ,B 1H ,

∵底面为正方形ABCD , ∴对角线AC ⊥BD .

又∵E 、F 分别为AB 、BC 的中点 ∴EF ∥AC .∴EF ⊥BD .

又∵棱B 1B ⊥底面ABCD ,EF 面ABCD ,∴EF ⊥B 1B . 又B 1B ∩BD =B ,BB 1面BB 1D 1D ,BD 面BB 1D 1D . ∴EF ⊥面BB 1D 1D .

而B 1H面BB 1D 1D ,BH 面BB 1D 1D ,∴EF ⊥B 1H ,EF ⊥BH . ∴∠B 1HB 为二面角B 1—EF —B 的平面角. 在Rt △B 1BH 中,B 1B =a ,BH =a 4

2

, ∴tan ∠B 1HB =

221=BH

B

B . ∴∠B 1HB =arctan2.

∴二面角B 1—EF —B 的大小为arctan2. (2)在棱B 1B 上取中点M ,连D 1M , 则D 1M ⊥面EFB 1.连结C 1M .

∵EF ⊥面BB 1D 1D ,D 1M 面BB 1D 1D . ∴D 1M ⊥EF .

又∵D 1C 1⊥面B 1BCC 1.

∴C 1M 为D 1M 在面B 1BCC 1的射影.

在正方形B 1BCC 1中,M 、F 分别为B 1B 和BC 的中点, 由平面几何知识B 1F ⊥C 1M .

于是,由三垂线定理可知B 1F⊥D 1M,

而B 1F 面EFB 1,EF 面EFB 1,EF ∩B 1F =F ,

第16题图解

第17题图解

∴D 1M ⊥面EFB 1.

(3)设D 1M 与面EFB 1交于N 点,则D 1N 为点D 到面EFB 1的距离, ∵B 1N面EFB 1,D 1M ⊥面EFB 1, ∴B 1N ⊥D 1M .

在Rt △MB 1D 1中,由射影定理D 1B 12=D 1N ·D 1M , 而D 1B 1=a ,D 1M=a M B D B 2

3

21211=

+, ∴D 1N =

.3

4

1211a M D B D = 即点D 1到面EFB 1的距离为a 3

4.

高中数学立体几何 空间距离的计算(学生版)

1.两条异面直线间的距离

和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

2.点到平面的距离

从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离

如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离.

4.两平行平面间的距离

和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.

题型一:两条异面直线间的距离

【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1) 求证:EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离;

【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离.

【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.

(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离.

题型二:两条异面直线间的距离

【例7】 如图,正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离;

例1题图

例2题图

B A

C D

【例8】

在梯形ABCD 中,AD ∥BC ,∠ABC =

2

π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,

求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.

【例9】 如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,

BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.

【例10】 正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。 (1)求点到直线AC 的距离.(2)求直线到平面的距离.

【解后归纳】 求空间距离注意三点:

1.常规遵循一作二证三计算的步骤;2.多用转化的思想求线面和面面距离;

D 1C 1

B 1

A 1

E

D

C B

A

3.体积法是一种很好的求空间距离的方法.

【例

11】 如图,在长方体AC 1中,

AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为

4

π. ●对应训练 分阶提升

一、基础夯实 1.把边长为a 的正△ABC 沿高线AD 折成60°的二面角,则点A 到BC 的距离是 ( )

A.a

B.

a 2

6

C.a 33

D.a 415 2.△ABC 中,AB =9,AC =15,∠BAC =120°.△ABC 所在平面外一点P 到三个顶点A 、B 、C 的距离都是14,那么点P 到平面α的距离为 ( )

A.7

B.9

C.11

D.13

3.从平面α外一点P 向α引两条斜线P A ,PB .A ,B 为斜足,它们与α所成角的差是45°,它们在α的射影长分别是2cm 和12cm ,则P 到α的距离是 ( )

A.4cm

B.3cm 或4cm

C.6cm

D.4cm 或6cm

4.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为 ( )

A.a 2

1 B.a 2

2 C.

a 23 D.a 5.在四面体P —ABC 中,P A 、PB 、PC 两两垂直.M 是面ABC 一点,且点M 到三个面P AB 、PBC 、PCA 的距离分别为2、3、6,则点M 到顶点P 的距离是 ( )

A.7

B.8

C.9

D.10

6.如图,将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线折成60°的二面角,则AC 与BD 的距离是 ( )

A.a 4

3 B.a 43 C.a 23 D.a 46

7.如图,四棱锥P —ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD =1,设点C 到平面P AB 的距离为d 1,点B 到平面P AC 的距离为d 2,则有 ( )

A.1

B.d 1

C.d 1<1

D.d 2

8.如图所示,在平面α的同侧有三点A 、B 、C ,△ABC 的重心为G .如果A 、B 、C 、G 到平面α的距离分别为a 、b 、c 、d ,那么a+b+c 等于 ( )

A.2d

B.3d

C.4d

D.以上都不对 9.如图,菱形ABCD 边长为a ,∠A =60°,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点且2====DG

CG

FB CF HD AH EB AE ,沿EH 和FG 把菱形的两锐角折起,使A 、C 重合,这时点A 到平面EFGH 的距离 第6题图

第7题图 第8题图

第9题图

是 ( )

A.

2

a B.a 22 C.

a 23 D.a 615 二、思维激活

10.二面角α-MN -β等于60°,平面α一点A 到平面β的距离AB 的长为4,则点B 到α的距离为 . 11.在60°的二面角α—l —β中,A ∈α,AC ⊥l 于C ,B ∈β,BD ⊥l 于D ,又AC =BD =a ,CD =a ,则A 、B 两点间距离为 .

12.设平面α外两点A 和B 到平面α的距离分别为4cm 和1cm ,AB 与平面α所成的角是60°,则线段AB 的长是 .

13.在直角坐标系中,已知A (3,2),B (-3,-2)沿y 轴把直角坐标系折成平面角为α的二面角A —Oy —B 后,∠AOB =90°,则cos α的值是 . 三、能力提高

14.在边长为a 的菱形ABCD 中,∠ABC =60°,PC ⊥平面ABCD ,E 是P A 的中点,求点E 到平 面PBC 的距离.

15.在直三棱柱ABC —A 1B 1C 1中,∠ACB 为直角,侧面AB 1与侧面AC 1所成的二面角为60°,M 为AA 1上的点.∠A 1MC 1=30°,∠BMC 1=90°,AB =a .

(1)求BM 与侧面AC 1所成角的正切值. (2)求顶点A 到面BMC 1的距离.

16.已知斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直.∠ABC =90°,BC =2,AC =2,且AA 1⊥A 1C ,AA 1=A 1C .

(1)求侧棱A 1A 与底面ABC 所成角的大小;

(2)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (3)求顶点C 到侧面A 1ABB 1的距离.

17.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AB 与BC 的中点,EF 与BD 交于H . (1)求二面角B 1—EF —B 的大小.

(2)试在棱B 1B 上找一点M ,使D 1M ⊥面EFB 1,并证明你的结论. (3)求点D 1到面EFB 1的距离.

第15题图 第17题图

高中数学空间几何专题练习(供参考)

一、选择题 1、下图(1)所示的圆锥的俯视图为 ( ) 2 3 + 为 ( ) C 、120; 。 3、边长为a 正四面体的表面积是 ( ) A 、34; B 、312a ; C 、24 a ; D 2。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为A 、12-; B 、12 ; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。 若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( ) A 2; B 2a ; C 2; D 2。 8、在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( ) A .30° B .45° C .90° D . 60° 9、下列叙述中错误的是 ( ) A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; 图(1) 1 A

D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都不对。 12、给出下列命题 ①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 二、填空题 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14.一个圆柱和一个圆锥的底面直径.. 和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 . 15、过点(1 16、已知,a b (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α?//,则a α//; (4) ,a b a α⊥⊥,则b α//; M

2013-2019高考文科数学分类汇编-第八章题型89 旋转体的表面积、体积与球面距离

题型89 旋转体的表面积、体积与球面距离 2013年 1.(2013湖北文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时, 用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深 一 尺八寸. 若盆中积水深九寸,则平地降雨量是 寸. (注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 2014年 1.(2014陕西文5)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( ). A.4π B.3π C.2π D.π 2.(2014福建文3)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ) A.2π B.π C.2 D.1 3.(2014湖北文10)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是 我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又 以 高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近 似 公式2 136 V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式 2 275 V L h ≈ 相当于将圆锥体积公式中的π近似取为( ). A . 227 B . 258 C .15750 D . 355 113 4.(2014江苏8)设甲、乙两个圆柱的底面积分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12 V V 的值是 . 2015年

1.(2015 全国1卷文6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ). A. 14斛 B. 22斛 C. 36斛 D. 66斛 1. 解析 由l r α=,得816332 l r α===.2 1116320354339V ?? =????= ??? . 320 1.62229 ÷≈.故选B. 2.(2015山东文9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ). A. 223 π B. 423 π C. 22π D. 42π 2.解析 由题意,可知等腰直角三角形的斜边长为22,斜边上的高为2,所形成的几何体为以2为底面半径,2为高的两个相同的圆锥组成的组合体,所以所求体积 () 2 1 42π 2=2π22= 3 3 V V =??? ?圆锥.故选B. 3.(2015江苏9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 . 3. 解析 原的总体积为()()22154283 V = ?π??+π??1963π =,设新的半径为r , 故变化后体积()()22 1'483 V r r =?π??+π??2 2819633r ππ==,计算得27r =, 从而7r = . 2016年

立体几何--空间的距离.

、选择题 1.正方形ABCD边长为2, E、F分别是AB和CD的中点,将正方形沿 面角(如图),M为矩形AEFD内一点,如果/ MBE= / MBC , MB和平面BCF 1 值为1,那么点M至?线EF的距离为 ( 2 D.- 2 2 .三棱柱ABC—A1B1C1 中,AA i=1 , AB =4, BC= 3 , / ABC=90 °,设平面 ABC的交线为I,则A1C1与I的距离为() 二、填空题 4.如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C的度数为30°, 那么EF与平面ABCD的距离为 三、解答题 (1)求证:平面A1BC1 //平面ACD1; 立体几何--空间的距离 EF折成直二 所成角的正切 B.1 A i BC i与平面 A J10 B. TH C.2.6 D.2.4 3.如左下图,空间四点A、B、C、D中,每两点所连线段的长都等于a,动点P在线段AB上,动点Q在线段CD上,则P与Q的最短距离为 5.在长方体如图:

(2)求(1)中两个平行平面间的距离; ⑶求点B i到平面A i BC i的距离. 6.已知正四棱柱ABCD —A i B i C i D i,点E在棱D i D上,截面EAC // D i B且面EAC与底面ABCD所成的角为45° ,AB=a,求: (i)截面EAC的面积; ⑵异面直线A i B i与AC之间的距离; ⑶三棱锥B i —EAC的体积. 7?如图,已知三棱柱A i B i C i —ABC的底面是边长为2的正三角形, AC均成45°角,且A i E丄B i B于E, A i F丄CC i于F. (i)求点A到平面B i BCC i的距离; ⑵当AA i多长时,点A i到平面ABC与平面B i BCC i的距离相等. &如图,在梯形ABCD 中,AD // BC,/ ABC = —,AB= 2 2 / ADC=arccos—75 ,PA丄面ABCD 且PA=a. 5 (i)求异面直线AD与PC间的距离; (2)在线段AD上是否存在一点F,使点A到平面PCF的距离为亨 【空间的距离参考答案】 一、i.解析:过点M作MM '丄EF,则MM '丄平面BCF ?// MBE= / MBC ??? BM '为/ EBC为角平分线, £■ 侧棱A i A与AB 、 i -AD=a, 3

最新人教A版高中数学必修2空间立体几何知识点归纳

第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使''' x O y ∠=450(或1350 ),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; ⑴圆柱侧面积;l r S ??=π2侧面⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:()S r R l π=+侧面 ⑷体积公式: h S V ?=柱体;h S V ?=31锥体; ()1 3 V h S S =下 台体上 ⑸球的表面积和体积:

球面距离的计算

球面距离的计算经典范例 1.位于同一纬度线上两点的球面距离 例1 已知,B两地都位于北纬,又分别位于东经和,设地球半径为,求,B的球面距离. 分析:要求两点,B的球面距离,过,B作大圆,根据弧长公式,关键要求圆心角的大小(见图1),而要求往往首先要求弦的长,即要求两点的球面距离,往往要先求这两点的直线距离. 解作出直观图(见图2),设为球心,为北纬圈的圆心,连结,,,,.由于地轴平面. ∴与为纬度,为二面角的平面角. ∴(经度差). △中,. △中,由余弦定理, . △中,由余弦定理: , ∴. ∴的球面距离约为. 2.位于同一经线上两点的球面距离 例2 求东经线上,纬度分别为北纬和的两地,B的球面距离.(设地球半径为).(见图3) 解经过两地的大圆就是已知经线. ,.

3.位于不同经线,不同纬线上两点的球面距离 例3 地位于北纬,东经,B地位于北纬,东经,求,B两地之间的球面距离.(见图4) 解设为球心,,分别为北纬和北纬圈的圆心,连结,,. △中,由纬度为知, ∴, . △中,, ∴, ∴. 注意到与是异面直线,它们的公垂线为,所成的角为经度差,利用异面直线上两点间的距离公式. (为经度差) . △中, . ∴. ∴的球面距离约为. 球面距离公式的推导及应用 球面上两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这段弧长叫做两点的球面距离,常见问题

是求地球上两点的球面距离。对于地球上过A 、B 两点大圆的劣弧长由球心角AOB 的大小确定,一般地是先求弦长AB ,然后在等腰△AOB 中求∠AOB 。下面我们运用坐标法来推导地球上两点球面距离的一个公式。 地球球面上的点的位置由经度、纬度确定,我们引入有向角度概念与经度、纬度记法:规定东经为正,西经为负;北纬为正,南纬为负(如西经30o为经度α=-30o,南纬40o为纬度β=-40o ),这样简单自然,记球面上一点A 的球面坐标为A (经度α,纬度β),两标定点,清晰直观。 设地球半径为R ,球面上两点A 、B 的球面坐标为A (α1,β1),B (α2,β2),α1、α2∈[-π,π],β1、β2∈[- 2 π , 2 π],如图, 设过地球O 的球面上A 处的经线与赤道交于C 点,过B 的经线与赤道交于D 点。设地球半径为R ;∠AOC=β1,∠BOD=β2,∠DOC=θ=α1-α2。 另外,以O 为原点,以OC 所在直线为X 轴,地轴所在直线ON 为Z 轴建立坐标系O-XYZ (如图)。则A (Rcos β1,0,Rsin β1),B(Rcos β2cos (α1-α2),Rcos β2sin (α1-α2),Rsin β2) cos ∠AOB =cos 〈OA ,OB 〉=cos β1cos β2cos (α1-α2)+sin β1sin β2 ∠AOB=arcos[cos β1cos β2cos (α1-α2)+sin β1sin β2] 其中反余弦的单位为弧度。 于是由弧长公式,得地球上两点球面距离公式: ? AB =R 2arcos[cos β 1 cos β2cos (α1-α2)+sin β1sin β2] (I ) 上述公式推导中只需写出A ,B 两点的球面坐标,运用向量的夹角公式、弧长公式就能得出结论,简单明了,易于理解,公式特征明显.从公式的推导中我们体会到坐标法在解决立几问题的不凡表现。 由公式(I )知,求地球上两点的球面距离,不需求弦AB ,只需两点的经纬度即可。 公式对求地球上任意两点球面距离都适用,特别地,A 、B 两点的经度或纬度相同时,有: 1、β1=β2=β,则球面距离公式为: B A =R 2arcos[cos 2 β cos (α1-α2)+sin 2 β] (II ) 2、α1-α2=α,则球面距离公式为: B A =R 2arcos (cos β 1 cos β2+sin β1sin β2)=R 2arcoscos (β1-β2) (III ) 例1、 设地球半径为R ,地球上A 、B 两点都在北纬45o的纬线上,A 、B 两点的球面距离是3 πR ,A 在东经20o,求B 点的位置。 分析:α1=20o,β1=β2=45o,由公式(II )得: 3 π R= R 2arcos[cos 2 45ocos (20o-α2 )+sin 2 45o] cos 3π=2 1 cos (20o-α2 )+21 ∴cos (20o-α2)=0, 20o-α2=±90o即:α2=110o或α2=-70o 所以B 点在北纬45o,东经110o或西经70o 例2、 (2002年第六届北京高中数学知识应用竞赛试题)北京时间2002年9月27日14点,国航CA981航班从首都国际机场准时起 飞,当地时间9月27日15点30分,该航班正点平稳降落在纽约肯尼迪机场;北京时间10月1日19点14分,CA982航班在经过13个小时的飞行后,准点降落在北京首都国际机场,至此国航北京--纽约直飞首航成功完成。这是中国承运人第一次经极地经营北京--纽约直飞航线。从北京至纽约原来的航线飞经上海(北纬31 ,东经122 )东京(北纬36 ,东经140 )和旧金山(北纬37 ,西经123 )等处,

立体几何空间距离问题

空间距离问题 (专注高三数学辅导:) 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q 是PA的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. 。 P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角 (3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. < 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必 须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (2 2 a ,0,0),C (0, 2 2 a ,0),D (0,0, 22a ),E (0,-4 2a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

上海(沪教版)数学高二下学期同步辅导讲义教师版:第十讲球的体积及球面距离

沪教版数学高二下春季班第十讲 课题 球的体积及球面距离 单元 第十五章 学科 数学 年级 十一 学习 目标 1.理解球的有关概念,掌握球的性质及有关公式; 2.理解球面距离的概念,会计算常见的球面距离; 3.解决常见的与球有关的计算问题. 重点 1.球面距离的计算方法; 2.球的表面积与体积的计算问题; 3.掌握常见的球内接与外切问题的解决方法 难点 掌握常见的球内接与外切问题的解决方法 1、球的定义: 半圆绕着它的直径所在直线旋转一周,所形成的空间几何体叫做球,记作球O 。半圆绕着它的直径旋转所得到的图形不叫球,叫球面,球面所围成的几何体叫做球.大家要注意球面和球是不同的两个概念.点O 到球面上任意点的距离都相等,把点O 称为球心,原半圆的半径和直径分别成为球的半径和球的直径。球面被过球心的平面所截得的圆,叫做球的大圆;被不经过球心的平面所截得的圆,叫做球的小圆. 教学安排 版块 时长 1 知识梳理 30 2 例题解析 60 3 巩固训练 20 4 师生总结 10 5 课后练习 30 球的体积及球面距离 知识梳理

2、球的性质: 球心和截面圆心的连线垂直于截面;设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=2 2 d R - 3、球的表面积、体积公式:表面积:24R S π=;球的体积公式:33 4 R V π=. 4、球的体积公式 高中数学教材对球的体积公式3 43 V r π= 球(r 为球的半径)作了要求,但只是简单地说“利用祖暅原理和圆柱、圆锥的体积公式”可得出此公式,未作具体推导. 鉴于部分学有余力的学生想了解其推导过程,现提供几种用高中数学知识就可推导的方法.

高考数学复习 第十一讲 立体几何之空间距离

第十一讲 立体几何之空间距离 一、空间距离包括: 点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。要理解各个距离的概念。 二、空间距离的求法 重点掌握:线线距离、点面距离、尤其点面距离 (1) 线线距离:找公垂线段 (2) 点面距离 ① 直接法(过点向面作作垂线段,即求公垂线段长度) ② 等体积法(三棱锥) ③ 向量法:设平面α的法向量为n ,P 为平面α外一点,Q 是平面α内任一点,则 点P 到平面α的距离为d 等于PQ 在法向量n 上的投影绝对值。d =三、例题讲解 1、下列命题中: ①ABCD PA 矩形⊥所在的平面,则P 、B 间的距离等于P 到BC 的距离; ②若,,,//αα??b a b a 则a 与b的距离等于a 与α的距离; ③直线a 、b是异面直线,,//,ααb a ?则a 、b 之间的距离等于b 与α的距离 ④直线a 、b是异面直线,,//,,βαβα且??b a 则a 、b 之间的距离等于βα、间的距离 其中正确的命题个数有( C ) A . 1个 B. 2个 C. 3个 D. 4个 2、如图所示,正方形的棱长为1,C、D 为两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是____________。

解析:取AB 、C D中点P、Q ,易证MPQ ?中,PQ 边长的高MH 为所求,423,22== PQ PM 3 2=∴MH 3、在底面是正方形的四棱锥A-B CD E中,BCDE AE 底面⊥且AE=CD =a , G、H是BE 、ED 的中点,则GH 到面ABD 的距离是____________。 解析:连结EC ,交BD 于O,且交GH 于O ',则有平面ABD AEO 面⊥。 过E作AO EK ⊥于K ,则所求距离等于a AO EO AE EK 6 32121=?= 4、如图,在棱长为a 的正方体1111D C B A ABCD -中,E 、F 分别为棱AB 和B C的中点,G为上底面1111D C B A 的中心,则点D 到平面EF B 1的距离___________。 解:方法1:建立如图直角坐标系,

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案 1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90ο 底面ABCD ,且 1 2 PA AD DC === ,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小 证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为 1 (0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2 A B C D P M (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=?==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面 PCD 上,故面PAD ⊥面PCD (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC . 510 | |||,cos ,2,5||,2||=??>=<=?==PB AC PB AC PB AC PB AC PB AC 所以故 (Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ= ..2 1 ,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC 要使14 ,00,.25 AN MC AN MC x z λ⊥=-==u u u r u u u u r g 只需即解得 ),5 2 ,1,51(),52,1,51(,. 0),5 2 ,1,51(,54=?-===?=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=?=?所以得由.,0,0为 所求二面角的平面角 30304||,||,. 555 2 cos(,).3||||2 arccos(). 3 AN BN AN BN AN BN AN BN AN BN ===-∴==-?-u u u r u u u r u u u r u u u r Q g u u u r u u u r u u u r u u u r g u u u r u u u r 故所求的二面角为

地球上两点之间的球面距离

地球上两点之间的球面距离的教学设计与思考 卫福山(上海市松江二中) 一、教学内容分析 球面距离是上海教育出版社数学(高三)第15章简单几何体第6节内容,《上海市中小学课程标准》对球的要求是:类比关于圆的研究,对球及有关截面的性质深入探讨;知道球的表面积和体积的计算公式,并会用于进行有关的度量计算;知道球面距离和经度、纬度等概念,进一步认识数学和实际的联系.在本节中,引导学生理解球面距离的概念(这不同于一般的直线距离),原因在于球面不能展开成平面.然后具体探究了如何求同纬度不同经度、同经度不同纬度、不同经度不同纬度的地球上两点之间的距离的求法,特别强调将其中的线面关系转化为多面体(主要是特殊的棱锥)来分析,并综合使用扇形、弧长、解三角形等数学知识.在探究球面距离的计算中培养了学生空间想象能力和探究性学习的能力. 二、教学目标设计 1、知道球面距离的定义,知道地球的经度与纬度的概念,会求地球上同经度或同纬度的两点间的球 面距离. 2、在解决问题的过程中,领会计算地球上两点间的球面距离的方法. 3、在实际问题中,探索新知识,成功解决问题,完成愉悦体验. 三、教学重难点 教学重点:掌握计算地球上两点间的球面距离的方法. 教学难点:如何求地球上同纬度的两点间的球面距离. 四、教学内容安排 (一)、知识准备 1、联系右图及中学地理中的有关知识认识地球——半径 为6371千米的球.(理想模型) 2、经度、纬度等相关知识 地轴:连结北南极的球的直径,称为地轴. 经线:经过北南极的半大圆,称为经线. 本初子午线:它是地球上的零度经线,分别向东和向西计 量经度,称为东经和西经,从0度到180度. 经度:经线所在半平面与零度经线所在半平面所成的二面 角的度数.参见右图. 赤道:过球心且垂直于地轴的大圆,称为赤道.赤道的圆心 就是球心. 纬线:平行于赤道的小圆,称为纬线.位于赤道以北的称为 北纬,位于赤道之南的称为南纬. 纬度:球面上某点所在球半径与赤道平面所成的角.从0度 到90度.参见上图. 3、球面距离 在球面上两点之间的最短距离就是经过这两点的大圆在这两点间的劣弧的长度——这个弧长叫两点的球面距离. 问题:为何最短距离是经过两点的大圆的劣弧? 解释如下:如图所示,A、B是球面上两点,圆O'是经过A、B的任一小圆(纬αθ

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异 面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO = 3 2BE =332332= ?. 例1题图 例2题图 例3题图

球面上两点间距离的求法

球面上两点间距离的求法 球面距离的定义:球上两点和球的球心三点可构成一个平面,称之为大圆,正视这个大圆(从正面看),这两个点之间的弧线长即为球面两点间距离。球面距离不是指险段的长度而是指的是弧长。 地球表面某点的位置是用纬度和经度来确定的,我们只要知道球面两点的经纬度,就能求出该两点的球面距离。下面简单的谈谈求法: 一. 同经度两点间的球面距离 例1. 在地球本初子午线上有两点A 、B 。它们的纬度差为90°,若地球半径为R ,求A 、B 两点间的球面距离。 解:如图1所示,设O 为地球球心,由题意可得, 故。 所以:A 、B 两点间的球面距离为 2 R 。 图1 二. 同纬度两点间的球面距离

例2. 在地球北纬度圈上有两点A、B,它们的经度差为度,若地球半径为R,求A、B两点间的球面距离。 解:设度的纬线圈的圆心为,半径为r,则。依题意。取AB的中点C,则。 在 图2 图3 三. 不同纬度、不同经度两点间的球面距离

例3. 设地球上两点A、B,其中A位于北纬30°,B位于南纬60°,且A、B两点的经度差为90°,求A、B两点的球面距离。 解:如图4所示,设,分别为地球球心、北纬30°纬线圈的圆心和南纬60°纬线圈的圆心。 图4 连结。 则。 由异面直线上两点间的距离公式得

下面给出球面距离的计算公式(仅供参考): 设一个球面的半径为,球面上有两点、. 其中,为点的经度数,、为点的纬度数,过、两点的大圆劣弧所对的圆心角为,则有 (弧度) A、B间的球面距离为:

证明:如图3,⊙与⊙分别为过A、B的纬度圈,过A、C的大圆,过、D的大圆分别为A、B的经度圈,而经度圈与纬度圈所在的平面互相垂直,作面,垂足 位于上,连结、. 则 在中,由余弦定理,得: 故 又 比较上述两式,化简整理得: 过两点的大圆劣弧所对的圆心角为 从而可证得关于与的两个式子.

相关文档
相关文档 最新文档