文档库 最新最全的文档下载
当前位置:文档库 › 地震勘探实验报告

地震勘探实验报告

地震勘探实验报告
地震勘探实验报告

地震勘探实验报告

院系:_____________

专业:_____________

班级:_____________

姓名:_____________

2014年5月5日

地震勘探野外实验报告

一、基本任务

1.1 实验目的和要求

实验按指导书要求完成,以便通过此次实验,达到巩固和加深对校内课堂理论教学内容的理解和认识,提高分析和解决实际生产问题的能力;培养学生严肃认真的学习态度,理论联系实际,实事求是的科研作风;团结协作的精神。具体要求如下:

1、初步实践野外地震勘探各种技术工作;

2、基本掌握野外数据采集方法技术和地震仪器装备的使用和操作;

3、学习地震记录的分析与评价;

4、学习地震资料几种常规处理方法;

5、学习反射波地震勘探资料的构造解释。

1.2 实验内容

实验主要内容为:地震勘探野外数据采集方法作业,简单的数据处理和室内资料的解释成图,具体包括如下内容:

1、野外数据采集

①工区地质、地球物理概况及地震地质条件的了解;

②测线布置依据和观测系统设计;

③排列的布设;

④仪器的学习及操作;

⑤仪器参数和观测系统参数的试验及正确设置;

⑥野外数据采集施工技术;

2、室内数据处理;

3、室内资料解释和成图

二、数据采集仪器

1、一台McSEIS-SX 48 XP地震仪(配件:一条电源线,一条大缆接受器,一个鼠标)(图一)

2、两根5m大缆

3、24个100Hz检波器

4、一块12V蓄电池

5、一条同步触发道

6、激发装置:一把18磅铁锤,一个铁块

7、测绳一根

9、罗盘一个

10、野外记录本

图一地震仪

图二部分实验仪器

三、野外地震勘探数据采集

3.1 测线的布置

测线布置的原则:主测线的方向,应尽可能地垂直地层或构造走向,并与设有地质钻井以及其他物探测线的方向重合,以利于各种勘探资料的对比分析和相互补充验证,主测线之间还应布置联络测线,以控制勘探精度。(图三)

图三测线布设

3.2 观测系统设计

反射波勘探一般采用多次覆盖系统。表示出共炮点线(含道号),共接收点线,共偏移距线,共CDP点线,并标出炮号、桩号、道号、道间距、覆盖次数和比例尺。(图四)

3.3 激发

实验采用锤击震源,采用18磅的铁锤以及15~25cm见方、重10~20kg的铁板作为锤击激发震源。激发点应平整、坚实、表层浮土应予清除,垫板要摆放平实。

3.4 接收

(1) 检波器的选择:根据勘探目的和勘探深度选择浅层反射波勘探100Hz的检波器。

(2) 检波器埋置:检波器要平稳、垂直(倾斜度应小于10o)、埋实在接收点位置上。检波器与电缆连接应正确,防止漏水造成的漏电和地面渍水造成的短路,也要防止极性接反和接触不良。(图五)

图四 单边放炮六次覆盖观测系统

图五 检波器埋设

3.5参数设置

参数设置包括观测系统参数和仪器参数的设置

1、观测系统参数主要包括:最小偏移距、道距、排列长度和覆盖次数。道距主要由横向分辨率决定,最小偏移距要根据现场噪音通过试验确定,排列长度主要取决于勘探深度,也和仪器道数及道距有关,炮点距取决于资料的信噪比,无疑与覆盖次数直接相关。

2、仪器参数主要有三个:采样率、记录长度或每道采样点数、滤(陷)波频率。此外还包括延迟、叠加方式、存储方式以及显示记录剖面所用的一些参数。(图六)

图六野外记录表

3.6数据采集

进行噪声检测及检波器埋设情况检测,对检测结果进行分析和处理。埋设好触发道并检查无误后,等待仪器操作员口令。仪器操作员按F3键并显示等待采集,锤击员得到仪器操作员口令,锤击激发点的铁板,激发地震波。仪器操作员查看屏幕的数据是否满意,若不满意,则重新采集,若满意则进行叠加数据,知道达到满意的叠加次数。仪器操作员按F4键储存数据,同时记录员记录实验记录、测点位置等情况。

四、资料处理和vista反射波处理

4.1地震数据处理(图八)主要包括预处理和常规处理,预处理是把野外采集数据转换成适合计算机处理的格式,常规处理是对地震数据做基本处理运算,把单炮记录处理成叠加剖面,对于复杂的地震数据,往往采取一些特殊的处理手段。

1、预处理

预处理是把野外数据格式转换成适合计算机处理的格式并对数据做相应编辑和校正,它包括数据解编,格式转换,道编辑、振幅补偿(几何扩散校正)、建立野外观测系统和静校正。

2、常规处理

常规处理是对预处理后的地震数据做必要的基本处理运算,把单炮地震数据处理为地震叠加剖面。它包括道振幅均衡(自动增益)、滤波、反褶积、抽取共中心点道集、速度分析、剩余静校正、切除、动校正和叠加、偏移等。

图八资料处理流程

4.2 vista反射波处理二层水平介质模型

模型基本参数:单边放炮,每炮24道接收,共12炮,道间距25m,炮间距50m(2个道间距),偏移距250m(10个道间距)。采样率2000微秒,每道采样点1000个。反射界面深度800m,上层介质速度2500m/s,下层介质速度3000m/s。

4.2.1数据的输入

首先选择File/New Project新建一个Project,如(图九)。

图九建立工程加入数据

新建一个二维数据集,然后数据加入到数据集中,该模型是由射线追踪模拟出的理想二层水平介质模型,不需要做什么预处理,可以直接进行下面的实质性处理。在做实质性处理之前,必须给数据建立观测系统。并将观测系统相关信息写入道头。

4.2.2建立观测系统

出现的观测系统界面,默认出现的是设置炮检关系及炮点坐标界面,在第一行中填入相应得增量,主要参数增量为炮点增量2个站点(桩号),首尾检波器桩号也相应增2,炮点坐标增量为2个桩的长度50m。设第一个炮点位于第1个站点,坐标为0m,因此第一炮的第一个检波器位于第11个站点,最后一个检波器站点位于第34个站点。

设置完炮检关系及炮点坐标后,设置检波器坐标,检波器站点增量为1,坐标增量为25m,初始设置为:第1个检波器,即第1炮的第1个位于11号桩,坐标为250m,然后填充剩下的检波器个数(即填充到最后一炮的最后一个检波器,位于56号桩)即可。

计算CMP及检波器叠加次数和炮检距离,并查看CMP及检波器叠加次数,并可以此判断建立的观测系统是否正确,如(图十)。

保存将相关的信息写入道头,加入观测系统后(主要是将相关的信息写入道头),便可以对数据的输入按所要的处理模块选择不同的排列方式。

图十观测系统

4.2.3 速度分析

可以选取若干个CMP道集进行速度分析(可以选择速度谱法和常速度叠加法(CVS)),以便获得最佳的叠加速度,为随后的动校正提供速度。

速度分析首先要得到速度谱,常速度叠加图和一个最佳炮检距道集,其工作流如(图十一)设置完毕,执行上面的工作流,执行完后得到三个输出的数据集,分别是速度谱,一个最佳炮检距道

集和常速度叠加图。

图十一速度分析工作流

选择Interactive/Velocity Tools/Interactive Velocity Analysis进行速度分析,在弹出的对话框中选择速

度谱,一个最佳炮检距道集和常速度叠加数据集,如(图十二)。进行速度分析,拾取最佳叠加速度

拾取到速度后,保存为速度文件,为动校正准备。

图十二速度拾取

4.24动校正和水平叠加

动校正是将CMP道集中不同炮检距的各道校正为共中心点的自激自收道,水平叠加将动校正后同一个CMP道集的各道叠加为一道,其工作流命令如(图十三)左。数据输入选择数据集后设置完毕执行工作流,即可得到动校正后的结果。见(图十三)右:

图十三动校正与时距曲线

五、地震剖面解释

根据断层的时间剖面特征:

①反射标准波发生错断;波组、波系错断。

②同相轴数目突然增或减,波组间隔突变。上升盘底层变薄,下降盘地层加厚(大断层)。

③同相轴形状和产状突变,下盘同相轴凌乱或出现空白带(断层的屏蔽和畸变作用)。

④同相轴分叉、合并、扭曲,强相位转换(小断层)。

⑤断面、绕射波、异常波这些断层识别标志。

图十四地震剖面

从(图十四)中可以看出该区域中部地层出现了地层挤压的构造,其中1100-2100时间区域中有五个断层,都是正断层,形成阶梯状断层。第五个断层落差较大较明显。(图十五)

图十五地震剖面解释图

六、结束语

实验按指导书要求完成了地震勘探野外数据采集方法作业,简单的数据处理和室内资料的解释成图,通过此次实验,巩固了和加深对课堂理论教学内容的理解和认识,提高分析和解决实际生产问题的能力;培养了严肃认真的学习态度,理论联系实际,实事求是的科研作风;团结协作的精神。

实验用McSEIS-SX 48 XP地震仪进行数据采集作业,采用三次垂直叠加和水平六次叠加观测系统来降低随机干扰波和规则干扰波对实验结果的影响。

用Vista对二层水平介质简单模型进行处理,得到了他们的水平叠加剖面,同时在使用过程中加深了对各个处理过程的理解,对地震数据处理的流程有了整体上的把握,对于每个处理过程的目的也有了更进一步的认识。

但更重要的是,在处理过程中,特别是在处理复杂模型的过程中,认识到目前自己专业知识的欠缺,对于Vista的很多功能都不会使用,只能使用一些基本的处理功能,这对于处理复杂构造和干扰较多的地震数据是远远不够的。在以后的学习中应不断提高自己的专业技能,才能充分发挥Vista 的功能,才能在以后的学习和工作中解决实际的问题。

在地震剖面的解释上,观察地层同相轴的出现时间落差判断出断层。

《地震》教案(1)

19《地震》教案 教学目标: 1能用自己的话说出地震的成因及引起的危害。 2能根据实验方法进行地层皱褶和折断的模拟实验,并能根据实验现象推想地震的成因。 3能收集和整理地震灾害的资料。 4能与小组同学分工合作进行学习,并把自己的收获与同学交流 教学重点:通过模拟实验认识地震的成因。 教学难点:对地震的成因进行推理、想象。 教具准备: 学生准备: 1.有关地震的文字、图片资料。 2.毛巾(每组三条)、长30厘米直径0.5厘米、1厘米的干木棍、薄木片。 教师准备: 1.地震的视频资料(现象)、课件资料(地震成因) 教学过程: 一、情境导入,提出问题 谈话导入:同学们你们知道地震吗?老师搜集了一个地震发生时的资料片,我们一起来开一看。同学们在观看时注意地震发生时有什么现象。 播放录像片 提问:谈一谈伴随着地震发生时看到了什么现象? 学生总结(声音、地面出现裂缝、大地震动)

师:那是什么力量使这么高大的建筑物晃动倒塌(李老师,建筑物晃动倒塌就能说明大地在震动,我能这么表述吗?)甚至使大地出现裂缝呢?(来自地球内部的力量。) 师:地球的内部是什么样子的?看课件(地壳、地幔、地核三个圈层,地壳是有一层一层的岩石组成的,地球内部是不断运动着的。) 二、用模拟实验模拟地震成因 猜测:地震是怎样形成的? 学生猜测 师:大家说得都有一定的道理,我们的猜测是否正确呢?(做实验) 师:对,实验是解决问题的好办法!地震这种自然现象我们看不到,我们只能用模拟实验的方法来模拟地震的成因。 出示实验要求:1把几条颜色不同的毛巾叠放在桌上,当做水平的岩石层。两手按在“岩层”上,把它慢慢向中间挤压,观察会发生什么变化? 学生汇报 师引导:如果毛巾是地壳的岩层,同学们想象会发生什么现象? 同学们在前面猜测到岩层断裂会形成地震,那岩层为什么会断裂呢?下面我们接着做实验 2用手握住木棍(直径0.5厘米干木棍、直径1厘米的干木棍、薄木片。)两端,用力将它压弯,继续用力压,直至压断。注意当木棍被压断时,你听到什么声音?手有什么感觉? 学生实验,教师指导 三、分析现象,认识地震的成因

地震灾害模拟体验实验报告

地震灾害模拟体验实验报告 吴丽红人文学院历本101班 10020126 一、实验目的 了解地震灾害的成因、分类、危害以及地震的防灾措施等。 二、实验内容 体验模拟地震的震动状况、观看关于地震的影片,了解地震灾害的特征、危害、分布等基本知识以及防灾减灾的对策。 三、实验原理简述 当今人类面临着地震灾害的严重威胁,给各国人民造成了难以估计的生命与财产的巨大损失。目前,预防地震灾害,减轻地震灾害带来的损失已经成为各国政府的重要工作之一。与此同时,认识了解地震灾害发生以及发展的规律,对地震灾害进行科学的评估,以期有朝一日对地震灾害进行准确的预报,制定减轻地震灾害的防御对策等已成为广大科学家们重要的研究课题。 (https://www.wendangku.net/doc/4817384528.html,/i?word=%B5%D8%D5%F0%B4%F8&opt-image=on&cl=2& lm=-1&ct=201326592&ie=gbk) 1、地震灾害的相关概念 大地或地壳的突然震动就是地震。震源是地球内部直接发生震动的地方,震中是震源在地面上垂直投影。震源深度是指震源到地面的垂直距离。震中距是在地面上从震中到任一点的距离。 震级是指地震的大小,是以地震仪测定的每次地震活动释放的能量多少来确定

的。中国目前使用的震级标准,是国际上通用的里氏分级表,共分9个等级,在实际测量中,震级则是根据地震仪多地震波所作的记录计算出来的。地震越大,震级的数字越大,震级每差一级,通过地震被释放的能量相差约32倍。地震按震级大小四类:震级小于3级的地震称为弱震;震级等于或大于3级且小于或等于4.5级的地震称为有感地震;震级大于4.5级且小于6级的地震称为中强震;震级等于或大于6级的地震称为强震,其中震级大于或等于8级的地震又可称为巨大地震。 烈度表示地面受到地震的影响和破坏的程度,它用“度”来表示。一般而言,震级越大,烈度就越高。同一次地震,震中距不一样的地方烈度就不一样。 2、地震波的传播 地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部氛围地壳、地幔和地核三个圈层。地震波按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5-7千米/秒,传播速度较快,可以通过固体、液体和气体传播,又称为P波,它使地面上下振动,破坏性较弱。横波是剪切波,在地壳中的传播速度为3.2-4千米/秒,又称为S波,只能通过固体传播,它使地面发生前后、左右抖动,破坏性较强。面波又称为L波,是由纵波与横伯伯哦字地表相遇后激发产生的混合波,波长大,只能沿地表面传播,是造成建筑物强烈破坏的主要原因。 3、地震的成因及分类 地震的成因到目前为止,仍然是一个有争议性的问题。但是地震的发生大致可以分为人为和自然两方面,其中绝大多数的地震是由自然引起的,成为天然地震,其中天然地震又可以分为构造地震、火山地震和塌陷地震。构造地震是由于地壳深处岩层错动、破裂所造成的地震策划能够为构造地震。这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。火山地震是由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。塌陷地震是由于地下溶洞或矿井顶部塌陷而引起的地震称为塌陷地震。这类地震的规模比较小,影响范围小,不会造成大的破坏。认为地震可分为人工地震和诱发地震两种。人工地震是由于某些人为的原因,如工业爆破,矿山开采,核爆炸等,也能引起地面剧烈振动,但是影响范围小,不会造成大的破坏。 4、地震的分布 世界地震带分布主要包括四个带: 环太平洋地震带:全世界地震释放总能量的80%来自这个带,大约80%的浅源地震和90%的中深源地震都集中在这个地区。 地中海-喜马拉雅山地震带:这个带以浅源地震为主,多位于大陆部分,分布范围较广。 大洋中脊带:地震活动性较弱,均为浅源地震。 东非裂谷带:地震活动较强,均为浅源地震。

地震记录簿数值模拟的褶积模型法

本科生实验报告 实验课程数值模型模拟 学院名称地球物理学院 专业名称勘测技术与工程 学生 学生学号 指导教师熊高君 实验地点5417 实验成绩 2015年5月

理工大学 《地震数值模拟》实验报告

实验报告 一、实验题目: 地震记录数值模拟的褶积模型法 二、实验目的: 掌握褶积模型基本理论、实现方法与程序编制,由褶积模型初步分析地震信号的分辨率问题。 三、原理公式 1、褶积原理 地震勘探的震源往往是带宽很宽的脉冲,在地下传播、反射、绕射到测线,传播经过中高频衰减,能量被吸收。吸收过程可以看成滤波的过程,滤波可以用褶积完成。在滤波中,反射系数与震源强弱关联,吸收作用与子波关联。最简单的地震记录数值模拟,可以看成反射系数与子波的褶积。通常,反射系数是脉冲,子波取雷克子波。 (1)雷克子波: wave(t)=cos(2ft)* (2)反射系数: (3)褶积公式: 数值模拟地震记录trace(t): trace(t) =rflct(t)*wave(t); 反射系数的参数由 z 变成了 t,怎么实现?在简单水平层介质,分垂直和非垂直入射两种实现,分别如图 1 和图 2 所示。

图1 图2 1)垂直入射: t=2h/v; 2)非垂直入射: t= 2、褶积方法 (1)离散化(数值化) 计算机数值模拟要求首先必须针对连续信号离散化处理。反射系数在空间模型中存在,不同深度反射系数不同,是深度的函数。子波是在时间记录上一延续定时间的信号,是时间的概念。在离散化时,通过深度采样完成反射系数的离散化,通过时间采样完成子波的离散化。如果记录是 Trace(t),则记录是时间的函数,以时间采样离散化。时间采样间距以Δt 表示,深度采样间距以Δz 表示。在做多道的数值模拟时,还有横向Δx 的概念,横向采样间隔以Δx 表示。 离散化的实现:t=It×Δt;x=Ix×Δx;z=Iz×Δz; 或:It=t/Δt; Ix=x/Δx; Iz=z/Δz (2)离散序列的褶积 trace(It)= 四、实验容 1、垂直入射地震记录数值模拟的褶积模型; 2、非垂直入射地震记录数值模拟的褶积模型。 五、方法路线

-地震勘探实验报告

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连 接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

时程分析中地震波选取浅析

时程分析中地震波选取浅析 通过介绍时程分析法中输入地震波的选择原则、地震动幅值和频率特性等一系列问题,使初学者对输入地震波的选择有初步认识和了解,为以后更深层次的研究打下基础。 标签:时程分析法;地震波选择 1、引言 随着社会、经济和科技的不断发展以及人口数量的迅速膨胀,高层、超高层以及复杂形状的建筑的数量定会快速增长。抗震设计规范规定,对于此类重要、复杂并超过规定高度的建筑,其抗震设计中的地震作用计算都要通过时程分析法进行补充验证。而在时程分析法的计算过程中最重要,最影响地震作用计算结果的莫过于地震波的选取。所以,本文将从地震波选取原则、地震动幅值、频谱特性、持续时间、地震波数量、地震波转动分量等多个方面对地震波的选取进行浅析。 2、地震波的选取原则 时程分析中的地震波如何选取的问题,一直是时程分析法中的一个难点。在选择地震波输入时,要满足两点要求: 1)首先要使选择输入的地震波的某些参数和建筑物所在地的条件相一致。参数主要包括:场地的土壤类别、地震烈度、地震强度参数、卓越周期和反应谱等。 2)其次还要满足地震活动三要素的要求。即频谱特性、地震加速度时程曲线持续时间和幅值,选取的地震波中的这三者,要满足相关规定。相关规定要求:选用数字化的地震波应按照建筑场地类别和设计地震分组进行选取,选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱分析法所采用的地震影响系数曲线在统计意义上相符。在统计意义上相符是指:其平均地震影响曲线与振型分解反应谱法所用到的地震影响系数曲线相比,在各个周期点上相差不大于20%。弹性时程分析时,每条时程曲线计算所得的结构底部剪力不应小于阵型分解反应谱法计算结果的65%。多条时程曲线计算结果的结构底部剪力平均值不应小于振型分解反应谱计算结果的80%[1]。 3、地震动幅值 地震动幅值有两种意义,即可以指地震加速度、位移和速度中的任何一种的最大值,又可以指在某种意义下的等代值。在一定程度上,地震波的峰值能够反应并代表地震波的强度,所以,建筑物所在地的设防烈度所要求的多遇地震或罕

模拟地震

【探究缘由】2004年12月26日的印度洋海域地震并引发的海啸,让全世界为之震惊。面对这样的自然灾害,人类的力量实在渺小。人地关系的和谐发展是我们追求的目标,先让我们进行一次地震模拟实验吧!【活动目的】地震是一种常见的、突发的自然灾害。在学习有关专题后,我们用实验模拟地震,以正确理解震级和烈度的关系,强化学生防灾减灾自我救护的意识。【知识整合】结合物理学中有关机械波的知识。【活动准备】地震模拟实验所需的基本材料有:一个高大中空的讲台、一把榔头、一堆木制积木、一堆乐高(有咬合口)积木等。【活动过程】1.在讲台上用普通的木制积木搭建一建筑物(表示建筑物抗震性能一般),榔头敲击讲台四周,模拟地震的发生。2.改变敲击力度,模拟震级升高,烈度加大,建筑物毁坏。3.改变震中距、震源深浅等地震要素,烈度随之改变。4.在讲台上用普通的木制积木搭建两个不同结构的建筑物,使之位于不同位置(如一位于桌角,另一位于桌中央),敲击讲台,观察结果。5.采用乐高积木(表示建筑物抗震性能良好)继续重复上述步骤,模拟实验。(填写表格略)【分析结论】改变震级、震中距、震源深浅、地质构造、地貌特点、地面建筑物的结构等要素,可理解地震、烈度与灾度的区别与联系,即每次地震只有一个震级,却有不同的烈度。【拓展建议】1.能否设计出更精准的实验敲击力度,使实验更具有可观测性和比较性。2.能否将两种积木结合,尝试搭建框架结构或钢筋混凝土结构建筑物,继续实验。【知识链接】震级·烈度·灾度一个地方发生了地震,它的强度有多大?破坏程度如何?灾损如何?这一切,都需要有一个衡量和界定的标准。这个标准,就是“震级”“烈度”和“灾度”。“震级”指的是地震的强度,它跟地震释放的能量有关。一次地震,只有一个震级。释放能量相同的地震,它们的震级相同。释放的能量越大,震级也越大。震级是根据台、站地震图上记录的最大振幅的地动位移及与之相应的周期,并考虑到地震波按震中距离而产生的衰减,按一定公式计算出来的。地震与所释放的地震波能量有固定的函数关系。震级每增大1级,其释放能量约增30~32倍。按震级定义和计算公式,震级没有上限。不过,到目前为止,世界上有记录可查的最大地震,是1933年3月2日的日本大地震和1960年5月22日的智利大地震,其震级为8.9级。[!--empirenews.page--]“烈度”是用来反映地震中地面受到的影响和破坏程度的一个概念。是用以表达地震强度的一种方式,是衡量地震在一定地域产生或可能造成的破坏程度的一种“尺度”。烈度的大小,主要是根据在一定地点地震对地面建筑物和地形的破坏程度,以及人的直觉反应等等来界定的。我国和世界上多数国家都把地震烈度划为12度:1度最轻,12度最强烈。●小于3度:人无感受,仅仪器能记录到;●3度:夜深人静时人有感受;●4~5度:睡觉的人惊醒,吊灯摆动;●6度:器皿倾倒、房屋轻微损坏;●6~8度:房屋破坏,地面裂缝;●9~10度:房倒屋塌,地面破坏严重;●10~12度:毁灭性的破坏。一次地震,震级只能是一个,但烈度则会因地而异。因为烈度不仅与震级的强弱有关,而且还与震源的深浅、距离震中的远近,以及地震波通过地段的“介质条件”等有关。一般地说,如果震级相同,震源浅的地震往往要比震源深的地震对地表的破坏程度大,烈度也高。“灾度”是指地震区所受到的灾害严重程度。不仅包括地表形态和地貌的被扭曲、断裂、陷落和崩塌程度,同时也包括各种建筑物、人员及经济的损害程度。灾度的大小不仅取决于震级的大小和烈度的高低,而且还与发震区的人口密度和经济发达程度密切相关。此外,与地震发生的时刻(白昼和黑夜),以及防灾救灾的具体措施是否得当等,也有很大的关系。

5上科学实验报告单

实验名称:种子萌发的条件 实验器材:菜豆或黄豆10-12粒,玻璃小瓶或培养皿两个。 实验过程: 1,在两个瓶中分别放入同样的卫生纸或棉花,并在两个瓶中放入5-6粒菜豆的种子。 2,保持1号瓶内的种子干燥;经常向2号瓶中洒一些水,使纸或棉花始终保持潮湿状态,但不要让种子浸没在水里。 3,将两个瓶子同时放在相同的室温中,并保持光照的情况相同。 对实验现象的解释:。实验结论:

实验名称:渗水比赛 实验器材:同样大小的透明塑料瓶3个,纱布,同样大小的烧杯3个,沙质土、黏质土、壤土三种土壤样品。 实验过程: 1,取三个同样大小的透明塑料瓶,去掉瓶底,用纱布蒙住瓶口,扎好,倒立在支架上,并在瓶口下面个放一只同样大小的烧杯。 2,向三个瓶中分别装入同样多的沙质土、黏质土、壤土,并同时倒入同样多的水。 实验结论: 三种土壤渗水能力由高到低依次是: 1 2 3 土壤的保水能力由高到低依次是: 1 2 3 。

实验名称:研究影响植物生长的条件 实验器材:8株豆苗(或4株生长情况相似的其他植物)、硬纸盒或黑色纸袋、线绳。 实验过程: 1,将植物分成实验组和对照组,每组的植物数量相同,生长情况相似。然后想办法让实验组的植物生长在光线充足的地方,让对照组的植物生长在黑暗的地方。 实验结论: 第小组实验报告单年月日 实验名称:研究根的作用。 实验器材:瓶子,水,带根的植物一株,油,直尺 实验过程: 1,拔一株水稻,将泥土洗净后放入装有水的瓶子里。在水面滴层油防止水分的蒸发。 2,每天傍晚用直尺量出水面的高度并记录 实验结论: 根的作用是: 。

实验名称:研究茎的作用 实验器材:烧杯,芹菜,红墨水 实验过程: 1,把芹菜插入滴有两滴红墨水的瓶中,过一段时间(大约10分钟)观察并记录芹菜茎和叶的变化。 2,将芹菜茎横切,观察茎的横切面。 实验结论: 第小组实验报告单年月日 实验名称:植物的向光性和植物的定向运动 实验器材:豆苗,纸盒,剪刀 实验过程: 1,选两株大小相同、生长情况相近的豆苗。 2,将盒子一侧的上方剪出约2厘米的窗口。 3,将植物同时放在向阳处,其中一株扣上侧面有窗口的盒子。 4,几天后,将盒子取走,观察两株豆苗的生长情况有啥不同。 实验结论: 第小组实验报告单年月日 实验名称:测量水温的变化 实验器材:400毫升烧杯、100毫升锥形瓶、2支温度计、热水、冷水、铁架台、纸板 实验过程: 1,向烧杯中加入280毫升热水(80℃左右),向锥形瓶中加入80毫升冷水。 2,将锥形瓶放入烧杯中,用纸板盖住杯口,在纸板上打两个小孔。 3,将两支温度计分别放入热水和冷水中。 实验结论:

地震记录数值模拟的褶积模型法

实验课程数值模型模拟 学院名称地球物理学院 专业名称勘测技术与工程 学生姓名 学生学号 指导教师熊高君 实验地点 5417 实验成绩 2015年5月

成都理工大学 地震数值模拟》实验报告

实验报告 实验题目: 地震记录数值模拟的褶积模型法 二、实验目的: 掌握褶积模型基本理论、实现方法与程序编制,由褶积模型初步分析地震信号的分辨率问题。 三、原理公式 1、褶积原理 地震勘探的震源往往是带宽很宽的脉冲,在地下传播、反射、绕射到测线,传播经过中高频衰减,能量被吸收。吸收过程可以看成滤波的过程,滤波可以用褶积完成。在滤波中,反射系数与震源强弱关联,吸收作用与子波关联。最简单的地震记录数值模拟,可以看成反射系数与子波的褶积。通常,反射系数是脉冲,子波取雷克子波。 (1)雷克子波: wave(t)=cos(2 ft)* (2)反射系数: (3)褶积公式: 数值模拟地震记录trace(t): trace(t) =rflct(t)*wave(t); 反射系数的参数由 z 变成了 t,怎么实现?在简单水平层介质,分垂直和非垂直

图1 图 2 1) 垂直入射: t=2h/v ; 2)非垂直入射: t= 2 、褶积方法 (1) 离散化(数值化) 计算机数值模拟要求首先必须针对连续信号离散化处理。反射系数在空间模 型中存在,不同深度反射系数不同,是深度的函数。子波是在时间记录上一延续 定时间的信号,是时间的概念。在离散化时,通过深度采样完成反射系数的离散 化,通过时间采样完成子波的离散化。如果记录是 Trace (t ),则记录是时间的 函数,以时间采样离散化。时间采样间距以Δt 表示,深度采样间距以Δz 表示。 在做多道的数值模拟时,还有横向Δx 的概念,横向采样间隔以Δx 表示。 离散化的实现:t=It×Δt;x=Ix×Δx;z=Iz×Δz; 或:I t=t/Δt; Ix=x/Δx; Iz=z/Δz (2) 离散序列的褶积 trace(It)=

地震波的选取方法 (MIDAS内部技术资料)

地震波的选取方法(MIDAS内部技术资料) (GB50011-2001)的 5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg 值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5(1) 有效峰值速度EPV=Sv/2.5(2) 特征周期Tg=2*EPV/EPA(3)

1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数,将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟

地震勘探实验报告记录

地震勘探实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB 口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

折射波勘探实验报告全解

《浅层折射波勘探》实验报告

《浅层折射波勘探》实验成绩评定表班级姓名学号

一、实验名称:浅层折射波勘探 二、实验目的 加深对地震勘探基本概念的理解,巩固已学的理论知识,了解数字地震仪的使用和仪器工作参数的选择;了解地震勘探人工震源激发,检波器的安置条件;地震折射波法野外资料的采集技术及方法,并进行资料的整理与解释;了解地震勘探野外工作施工的过程以及组织管理工作。 三、实验原理 1、折射波法基本原理 以水平界面的两层介质进行简要的说明,假设地下深度为h ,有一个水平的速度分界面R ,上、下两层的速度分别为V 1和V 2,且V 2>V 1。 如图1所示。从激发点O 至地面某一接收点D 的距离为X ,折射波旅行的路程为OK 、KE 、ED 之和,则它的旅行时t 为: 图1 水平两层介质折射波时距曲线 1 21V ED V KE V OK t ++= 式1 为了简便起见,先作如下证明:从O ,D 两点分别作界面R 的垂线,则OA =DG =h ,再自A 、G 分别作OK ,ED 的垂线,几何上不难证明∠BAK =∠EGF =i ,因

已知2 1 sin V V i = ,所以: 2 1 V V EG EF AK BK == 式2 即 21V AK V BK = 和 2 1V EG V EF = 式3 上式说明,波以速度V 1旅行BK (或EF )路程与以速度V 2旅行AK (或EC )路程所需的时间是相等的。将式3的关系和式1作等效置换,并经变换后可得: 2 121222122cos 2V V V V h V x V i h V x t -+=+= 式4 这就是水平两层介质的折射波时距曲线方程。它表示时距曲线是一条直线,若令x =0,则可得时距曲线的截距时间t 0(时距曲线延长与t 轴相交处的时间值) 2 12122102cos 2V V V V h V i h t -== 式5 式5表示出界面深度h 和截距时间t0之间的关系,当已知V 1和V 2时,可以求出界面的深度h 。 2、折射波分层解释的t 0法 折射波t 0解释法是常用的地震折射波解释方法,它是针相遇时距曲线观测系统采集发展起来的解释方法。 t 0法解释的主要原理与方法如下: t 0法又称为t 0差数时距曲线法,是解释折射波相遇时距曲线最常用的方法之一。当折射界面的曲率半径比其埋深大得很多的情况下,t 0法通常能取得很好的效果,且具有简便快速的优点。 如图2所示,设有折射波相遇的时距曲线S 1和S 2,两者的激发点分别是O 1 和O 2,

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期 Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以 地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值丨a(t)丨>k*g的时间总和,k常取为0.05 ;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3?0.5。不论实际的强震记录还是人工模拟波形,一般 持续时间取结构基本周期的5?10倍。 说明: 有效峰值加速度EPA = Sa/2.5 (1) 有效峰值速度EPV = Sv/2.5 (2) 特征周期Tg = 2n *EPV/EPA (3) 1978年美国ATC- 3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5 为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV, 1990年的《中国地震烈度区划图》采 用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中 同时做岀绝对加速度反应谱和拟速度反应谱,找岀加速度反应谱平台段的起始周期T0和结束周 期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期 T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2 之间的谱值求平均得Sv (注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱 在平台段的放大系数采用 2.5,按公式(1)、(2)、(3)求得EPA EPV Tg。 在MIDAS!序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具〉地震 波数据生成器,生成后保存为SG敦件),用户可利用保存的SG文件(文本格式文件)根据上面所 述方法计算Sv、Sa、Tg= Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表,将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范,采用时!分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时!曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDASS序中,可选取两组实际强震记录生成两个SG敦件(调整Sa后的),然后将一组人 工模拟的加速度时程曲线也保存为SG或件,将三个SG敦件的数值取平均后与振型分解反应谱 法所采用的地震影响系数曲线相比较看是否满足“在统计意义上相符”,由此也可判断选取的地震波是否合适。 另外,弹性时程分析时,每条时程曲线计算所得到的结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80%。

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

91-杨志勇、王雁昆等-弹性及弹塑性时程分析地震波有效选取方法

弹性及弹塑性时程分析地震波有效选取方法 杨志勇,王雁昆,黄吉锋 (中国建筑科学研究院建研科技股份有限公司PKPM设计软件事业部北京100013) [摘要] 以工程实例说明弹性及弹塑性时程分析地震波选取的重要性;从“统计意义上相符”和“基底剪力的下限要求”等角度探讨了弹性时程分析选择地震波的基本原则和实际工程应用注意事项;通过基本理论分析和工程实例说明了如何利用位移谱在进行弹塑性时程分析时有效选取地震波。 [关键词] 弹性时程分析,弹塑性时程分析,地震波选取,反应谱,位移谱 1引言 正确选取地震波是保障建筑结构弹性、弹塑性时程分析有效性的重要因素,但设计人员在实际选取地震波时往往具有很大的随意性,甚至存在刻意筛选响应较小地震波的现象。本文将从提高结构抗震安全性角度探讨地震波正确选取方法,以避免弹性、弹塑性时程分析流于形式,并为地震波的正确选取提供一些理论参考。 2弹性及弹塑性时程分析在结构设计中的必要性 对于“小震”弹性阶段抗震设计而言,振型分解反应谱方法是现阶段的主流方法。该方法依据规范规定的反应谱,在结构模态空间内得到各振型所对应的地震响应,进而采用CQC等组合方法进行振型叠加得到结构的最终地震响应。其中规范所规定的反应谱是由数百条地震波通过概率平均化和平滑化后得到,且CQC振型组合方法也是基于平稳随机过程的概率保证方法,所以振型分解反应谱方法可以从概率意义上保证大多数结构地震响应计算足够保守。但对于复杂高层建筑结构等一些特殊情况,该方法可能出现计算结果偏于不安全的个别现象,所以要选取多条实际或人造地震波进行附加弹性时程分析,以进一步保证结构的安全。 对于“大震”弹塑性阶段抗震分析而言,由于非线性问题的特殊性,目前阶段尚无法找到一种类似于弹性阶段振型分解反应谱方法的,基于概率的,可以应用振型解耦和叠加原理的,漂亮且简化的分析方法。虽然学术界近年来在基于性能设计的PushOver方法等方面有所进展,但选取多条地震波进行弹塑性时程分析仍然是目前阶段保证结构“大震不倒”的主流分析方法。 从图1、图2可以看出,无论是弹性阶段还是弹塑性阶段,结构在不同地震波(指峰值相同、特征周期相同但波形不同的地震波)作用下的响应差别很大,因此正确地选取地震波对于保证结构安全十分重要。 作者简介:杨志勇(1974—), 男, 博士, 研究员

-地震勘探实验报告

中国地 质大学 (武汉) 地空学 院 地震实 验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师: 张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器与高速过采样技术达到了24位地震仪的精度。频带从1、75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4、1公斤,用12V的外接电池可以连续工作10个小时。(如下图) 2、主要操作功能键及快捷键

注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的就是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须就是英语(美国)。 三、实验内容 1、浅层地震装备认识及地震波认识:第一周上午主要就是老师介绍检波器、地震仪以及实验装备,认识设备后进行采集装置的连接,全班同学轮流当做指挥员与爆破员; 2、浅层地震数据采集实验:隔一周之后的上午全体同学使用地震仪进行浅层地震数据的采集及简单的分析,并对干扰波进行识别。

叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

《地震数值模拟》实验报告 一、实验题目 叠加地震记录的相移波动方程正演模拟

二、实验目的 1.掌握各向同性介质任意构造、水平层状速度结构地质模型的相移波动方程正演模拟基本理论 2.实现方法与程序编制 3.由正演记录初步分析地震信号的分辨率。 三、实验原理 1、地震波传播的波动方程 设(x,z)为空间坐标,t为时间,地震波传播速度为v(x,z),则二位介质中任意位置、任意时刻的地震波场为p(z,x,t):压缩波——纵波。则二维各向同性均匀介质中地震波传播的遵循声波方程为 2、傅里叶变换的微分性质 p(t)与其傅里叶变换的P(w)的关系: 3、地震波传播的相移外推公式 令速度v不随x变化,只随z变化,则利用傅里叶变换微分性质把波动方程(变换到频率-波数域,得: 4、初始条件和边界条件 按照爆炸界面理论,反射界面震源在t=0时刻同时起爆,此时刻的波场就是震源。根据不同情况,可直接使用反射系数脉冲或子波作震源。如果直接使用反射系数作震源脉冲,则初始条件可表示为: 5、边界处理

(1)边界反射问题 把实际无穷空间区域中求解波场的问题化为有穷区域求解时,左右两边使用零边界条件。物理上假设探区距Xmin与Xmax两个端点很远,在两个端点上收到的反射波很弱。但是,上述条件在实际中不能成立,造成零边界条件反而成为绝对阻止波通过的强反射面。在正演模拟的剖面上出现了边界假反射干涉正常界面的反射。 (2)边界强反射的处理 镶边法、削波法、吸收边界都能有效消除边界强反射。 削波法就是在波场延拓过程中,没延拓一次,在其两侧均匀衰减到零,从而消除边界强反射的影响。假设横向总长度为NX,以两边Lx道吸波为例,有以下吸波公式: 四、实验内容

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

相关文档