文档库 最新最全的文档下载
当前位置:文档库 › 卫星通信天线简介

卫星通信天线简介

卫星通信天线简介
卫星通信天线简介

常用卫星通信天线简介

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。

反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简

单介绍。

1.抛物面天线

抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线

抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放

重量带来的结构不稳定性必须被考虑。

2.卡塞格伦天线

卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的

存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。

卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是

副反射面极其支干会造成一定的遮挡。

图2 卡塞格伦天线

3.格里高利天线

格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重合。格里高利天线的许多特性都与卡塞格伦天线相似,不同的是椭球面的焦点是一个实

焦点,所有波束都汇聚于这一点。

图3格里高利天线

4.环焦天线

对卫星通信天线的总要求是在宽频带内有较低的旁瓣、较高的口面效率及较高的G/T值,当天线的口面较小时,使用环焦天线能较好地同时满足这些要求。

因此,环焦天线特别适用于VSAT地球站。

环焦天线由主反射面、副反射面和馈源喇叭三部分组成,结构如图4所示。主反射面为部分旋转抛物面,副反射面由椭圆弧CB绕主反射面轴线OC旋转一周构成,馈源喇叭位于旋转椭球面的一个焦点M上。由馈源辐射的电波经副反射面反射后汇聚于椭球面的另一焦点M’,M’是抛物面OD的焦点,因此,经主反射面反射后的电波平行射出。由于天线是绕机械轴的旋转体,因此焦点M’构成一个垂直于天线轴的圆环,故称此天线为环焦天线。环焦天线的设计可消除副反射面对对电波的阻挡,也可基本消除副反射面对馈源喇叭的回射,馈源喇叭和副反射面可设计得很近,这样有利于在宽频带内降低天线的旁瓣和驻波比,提高天线效率。缺点是主反射面地利用率低,如图4所示,AA’间的区域没有作

用。

图4环焦天线

5.偏馈型天线

无论是抛物面天线,还是卡塞格伦天线,都有一个缺点,总有一部分电波能量被副反射面阻挡,造成天线增益下降,旁瓣增益增高。可以使用天线偏馈技术

解决这个问题。所谓偏馈天线,就是将馈源和副反射面移出天线主反射面的辐射区,这样就不会遮挡主波束,从而提高天线效率,降低旁瓣电平。偏馈型天线广泛应用于口径较小的地球站。这类天线的几何结构比轴对称天线的结构要复杂得多,特别是双反射面偏馈型天线,其馈源、焦距的调整要复杂得多。

图5偏馈天线

6.双频段天线

如果使用频率选择表面(FSS)作副反射面,就可以构成双频段天线。FSS是一种空间滤波器,通过在空间放置周期性的金属贴片或金属缝隙构成,它在某些频率可让电磁波无衰减的通过,而在另外一些频率将电磁波完全反射。其结构及电磁特性如图6所示,在频率f1电磁波被完全反射,在频率f2电磁波完全通过。如果我们使用这样的FSS作副反射面,并使馈源1工作在f1,馈源2工作在f2,则两个馈源可无干扰地工作在同一副天线上,如图7所示。利用相同地原理,可

制成多频段天线,这种技术已在卫星上得到应用。这种天线地优点是可有效利用

反射面,降低天线重量。

图6 FSS的结构及电磁特性

图7双频段天线

用卫星通信天线介绍(二)

平板天线

寇松江

(爱科迪信息通讯技术有限公司,北京,100070)

E-mail:

1.平板天线介绍

平板天线采用阵列天线技术,将几十上百甚至上千个天线单元集成在一块平板上,以获得较高的增益。平板天线主要应用在雷达方面,近年来平板技术开始出现在卫星通信领域。

平板天线的天线单元种类很多,常用的有微带贴片、波导缝隙、喇叭天线等。平板天线可分为平板、平板相控阵、平板抛物面等类型。

2.平板天线与抛物面的比较

平板天线剖面低,易于小型化设计;平板天线的波束可赋形,可设计为多波束;易进行共形设计;平板相控阵天线更加适合高速载体上的动中通信。

平板天线的增益一般比同口径抛物面天线低,因为它的辐射效率、口径效率较抛物面低。

笔者认为,平板天线更适合于低剖面动中通方向的应用。

3.常见Ku波段平板天线介绍

平板天线的应用频带很宽,本文仅涉及Ku频段的天线。

(1)StealthRay 低抛面相控阵天线

StealthRay系列天线是Ku频段低剖面、双向动中通相控阵天线,是美国Raysat Anten na Systems(RAS)公司的产品。该公司是Raysat集团公司中的一员。Rasat在1997年获得了相控阵技术专利,并将其应用于卫星通信天线的开发之中。

相控阵天线最大的优势是波束方向的改变是电扫,而不是传统的机械扫描。波束方向改变迅速,无惯性。非常适合高速运动载体的通信。

StealthRay系列的最新产品是StealthRay 5000,其外形如图1所示。尺寸为115 L x 90 W x 21 H cm,外观优雅漂亮。跟星性能极为优良。

图1 StealthRay 5000

其内部结构如图2所示,天线面为微带阵列结构,共四片,两片接收,两片发射,采用分片式布局,以压低天线高度。射频方面采用极化自适应和空间波束合成技术。发射增益29dBi,接收增益28dBi。详细信息请参阅 2009年10月29日博客《超低抛面相控阵动中通卫星通信天线StealthRay 3000》。

图2 StealthRay 5000 内部结构

(2)Mijet平板动中通天线

Mijet 系列天线是以色列公司Starling-com的产品,它是Ku频段平板动中通天线。Star ling-com公司最初生产空载动中通卫星通信天线,剖面低,增益高,性能好。Mijet天线装在飞机上的情况如图3所示。天线直径76cm,高度15cm,重量50Kg。

图3 Mijet平板动中通天线

Mijet内部结构如图4所示。采用分片结构,一片发射,两片接收。天线面采用微带阵列结构。EIRP=42dBW,G/T值=11dB/K。

图4 Mijet内部结构

近年来Starling-com推出一款汽车上使用的Ku频段平板动中通天线StarCar,其外形及内部结构如图5所示。但StarCar的销售情况并不好。与StealthRay相比,StarCar在跟星性能方面还有待改进,毕竟空载平台与车辆平台的运动规律有很大不同。

图5 StarCar车载平板天线

(3)Microsat System平板相控阵静中通天线

Microsat 天线是美国Gigasat公司的产品。天线采用微带阵列结构,等效口径0.55m,可工作于X、Ku、Ka频段。外尺寸45×56×25cm,工作于Ku波段时EIRP=49dBw,全重只有17Kg(含充电电池)。被称为真正的手提箱式便携天线。

图6 Microsat System平板

相控阵静中通天线

(4)EL/K 1891机载相控阵动中通天线

这款天线是以色列航空工业集团公司的产品,被使用在阿帕奇直升机上,提供X/Ku频段动中通卫星通信。如图7所示。

图7 EL/K 1891机载相控阵动中通天线

该天线采用波导缝隙结构,收发单元各70~80个。提供低速率数据传输。内部结构如图所示。

图8 EL/K 1891天线内部结构

4.国内卫星通信平板天线的发展

在卫通领域,国内平板天线的发展很滞后,尚未有成熟的产品。石家庄54所尝试采用波导缝隙技术开发Ku频段平板动中通相控阵天线,并于2007年申请了天线面的专利。但直到今天尚未有成熟的产品面市。上海51所,仿照StealthRay 2000,研发了一款低抛面相控阵天线,但仅限于接收。今年的卫星大会及消防器材展会上都有Ku频段平板静中通天线参展,如图9、图10所示。

图9 2009年卫星应用大会展出的平板天线

图10 2009年消防器材大会展出的平板天线

准确地说,这些天线都是半成品,尚未实现极化自适应调整,只能通过旋转天线面来调整极化。

由此可见,中国自己要生产低剖面平板或相控阵动中通天线还有很长的路要走

主流卫星通信天线对比

常用卫星通信天线介绍(一) 原文:寇松江(爱科迪) ★★★★(7020207)添加点图片

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线

抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线 作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线

卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。 图2 卡塞格伦天线 3.格里高利天线 格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重

9米卫星天线技术资料.

9.0米电动卫星通信天线 WTX9.0-6/4(14/12)型 技术说明书 贵州振华天通设备有限公司(4191厂)

1、概述 WTX9-6/4和WTX9-14/12型卫星通信天线是一种具有四口线极化频谱复用 馈源系统的9米改进型卡赛格伦天线系统。当天线朝天时,天线的轮廓尺寸为φ9m×10.3m。整个天线具有效率高、旁瓣低、使用维护方便、抗风能力强、造形 美观,刚性好,精度高的特点。广泛用于C频段和Ku频段卫星通信地球站。 天线的主反射面均为实体铝板结构,主面直径为9m,副面直径为 1.08m。 立柱式座架的设计允许方位连续转动140o,俯仰从5o~90o连续转动。方位轴和俯仰轴由马达驱动,驱动速度为0.03o/秒和0.1o/秒两种。 馈源系统的极化轴也由马达驱动,驱动速度为 1.5o/秒,转动范围为180o。 步进跟踪系统由室内天线控制单元、室外马达控制器、变频器和信标接收机组成。轴角显示分辨率为0.01o,跟踪精度为0.06o,步进跟踪系统能使天线随时准确地对准卫星。 本天线的外型图见图 1.1。

图1.1 2、天线的主要技术参数 天线主要技术参数与性能指标 项目名称 参数指标 WTX9.0-4/6 WTX9.0-12/14 C波段Ku波段 接收发射接收发射 一、电气性能指标 1.工作频率(GHz) 3.625~4.2 5.825~6.425 10.95~12.75 14.00~14.50 2.增益(dB)50.1 53.2 59.2 60.4 3.驻波≤1.25:1 ≤1.25:1 4.波束宽度(-3dB) 0.513°0.359°0.185°0.159° 5.天线噪 声温度(仰角10°) 37°K57°K (仰角20°) 32°K 48°K 6.G/T值(dB/K)(T LNA=60K) 30 38.4dB/K 7.极化方式四端口或二端口线极化 8.馈源插入损耗(dB) 0.2 0.25 0.40 9.收发隔离度(dB) ≥85 10.交叉极化隔离度(dB) ≥35 11.第一旁瓣(dB) -14 12.广角旁瓣符合CCIR-580-4标准 13.功率容量(KW) 5 1 14.馈源接口CPR-229F CPR-137G WR-75 WR-75 二、机械性能指标 天线口径9000 mm 转动范围方位±70°俯仰5°~90° 跟踪速度0.03°/S 跟踪精度0.06°/S 三、环境特性 1.工作风速35m/s 2.不破坏风速55m/s 3.环境温度-50oC—+60oC 4.雨降10cm/h 5.阳光辐射1000kcal/h㎡6.相对温度0%—100% 7.裹冰 2.5cm 8.使用寿命:8年 抗风能力保精度工作稳态风20m/s,阵风27m/s. 降经度工作稳态风25m/s,阵风30m/s,降雨50mm/h. 保全条件阵风55m/s,天线朝天锁定. 天线重量3500

车载卫星通信设备及操作简介

车载卫星通信设备及操作简介 3.1 卫星通信系统开通前应该注意的事项: 3.1.1 环境勘察 1)选择停放场所 ★选择较为平坦、坚实的空地作为停车场地。确保对卫星信号收发、微波信号收发不形成遮挡。 ★车辆上方应无遮挡物,以免阻碍天线桅杆正常升起。 ★应尽量避开高大的障碍物(陡坡、高大建筑、高大树木等),确保对卫星通信、微波通信、无线网桥通信的信号收发不形成遮挡。 ★如果采用市电则车辆停放地距最近的有效市电电源应在60M以内,且能打地桩以接地或能接入其他的接地系统。 ★车辆停放地还要考虑整车噪声对居民或环境的影响。 2)选择市电电源 ★车载系统原则上应尽量考虑采用目的现场的有效市电电源。 ★在车载系统到达现场前,应与提供电源的单位或供电部门做好协商。 3)确定传输方式 ★同相关单位协商拟采用的传输方式,传输方式应遵循方便接入的原则结合停放场所条件综合考虑。若距机房较近,可采用光纤直接连接的方式;否则可采用微波或者无线网桥传输方式;特殊情况可采用卫星传输方式。 ★采用微波或者无线网桥传输方式时,要预先选定好对端微波架设的位置,以最近的机房和视距传输来综合考虑。原则上在车载系统达到目的现场 前,应架设好对端微波天线,以尽量缩短系统开通的时间。 ★采用卫星传输方式时,应根据使用的卫星经度考虑对应方位无遮挡,且 避免使车头朝向卫星方位停放,以方便卫星天线接收。 ★车载卫星系统通过自动对星需要获取的信息:(1)GPS、(2)电子罗盘、(3)AGC(信标机电压)。

3.1.2 数据准备 确定BTS的相关数据 ★根据网络规划,确定车载BTS相关数据,如频点、邻区切换等,必要时,到目的现场测试移动网络的数据,了解频率干扰情况、话务量分配、切换等情况。同时与传输室确认应急车传输的接入基站,并在基站端对通传输电路,同BSC 核对每套应急传输电路所对应小区的关系、核对小区定义的设备数量、设备类型和软件版本等信息,确保BSC的数据定义与应急车安装的硬件完全对应; ★根据现场的网络状况,确定基站天线的覆盖范围和方向。 ★根据网络规划,确定车载BTS系统接入PLMN网的BTS的相关数据。 3.1.3 带卫星的小C车规范开通流程 1、停车、拉手刹 2、打地桩、接工作地、保护地 3、放支撑脚、启动联合供电 4、挂CDMA天线、升天线桅杆、接馈线 5、对星、核对工作频率、极化、标定功率、载波上星 6、开基站、数据下载 7、开通测试、网络优化 3.2 卫星系统概述 3.2.1卫星系统业务需求简介 卫星传输作为小型应急通信车三种传输方式(微波传输、光纤传输、卫星传输)之一的传输手段解决从车载BTS到各省BSC的Abis接口的传输,实现1x 语音数据及EVDO数据业务的传输。 3.2.2卫星系统组成 根据系统设备配置和改装要求,小型应急通信车包括移动通信系统(不同厂商BTS和BSC设备)、传输系统(SDH、PDH、50M无线以太网桥、车载卫星)及天馈线系统(卫星天线、微波天线基站天线、桅杆等),其中卫星子系统主要由以下几种设备组成: 车载卫星天线、GPS天线、天线控制系统、信标接收机、MODEM、LNB、固态高功放。

动中通卫星通信天线系统组成及原理分析

动中通卫星通信天线系统组成及原理分析 摘要:动中通天线系统主要用于移动载体移动条件下实时通信,满足处理突发紧急事件的需求。本文提出惯导跟踪式动中通卫星通信车载天线系统的组成,对工作原理进行了分析。惯导跟踪式的动中通天线系统不依赖于任何外部信号,利用惯性导航系统自身即可完全实现自主对星,在移动载体移动过程中也能够进行实时对星和换星,灵活性高。 关键词:动中通,惯性导航,天线,卫星通信 概述 动中通卫星通信天线系统主要用于车辆等载体在快速移动的条件下,保持对卫星实时跟踪,使车载卫星天线始终对准地球同步通信卫星,在地球同步通信卫星与卫星地面站之间构建双向链路的卫星通信,以达到实时、不间断与其他地面站进行图像、语音、数据的卫星通信双向传输。 动中通卫星通信车应用动中通卫星通信天线系统跟踪卫星,利用卫星通信的无缝覆盖,加上所具备的机动灵活和行进间通信的特点,可以使动中通卫星通信车在任何时间、任何地点开通并投入使用,满足处理紧急突发事件的需求。 动中通卫星通信天线系统是实现动中通车载站的核心,天线面通常采用偏馈或正馈面反射的抛物面天线,外形呈球状,相对于相控阵天线来说,其天线增益较高,旁瓣特性较好,可以跟踪制导系统控制天线的方位和俯仰指向。 1天线系统主要分类 一般来说,动中通卫星通信天线系统主要采用以下两种技术实现对星跟踪: (1)单脉冲跟踪式:利用多个方向上卫星通信信号强弱的和差关系,在短时间内判断出天线指向的偏差,即时调整卫星天线的指向,保持对通信卫星的跟踪。 (2)惯导跟踪式:利用惯性导航系统建立一个坐标基准,通过前馈控制伺服系统,使卫星天线稳定在坐标基准中,不受到车辆载体运动的干扰,始终对准通信卫星。 单脉冲跟踪式动中通卫星通信天线系统由于依赖卫星信号进行对星跟踪,因此存在以下问题: 在卫星信号受到遮挡时容易丢星,如途经隧道、桥梁等情况下,被楼宇、大树等遮挡的情况下,都难以保持正常通信;在没有卫星信号的时候无法进行初始对准卫星,在车辆载体行进中无法进行初始对准卫星;在车辆载体大动态情况下,

用于Ku频段低速卫星通信的阵列天线设计

2017年第4期信息通信2017 (总第172 期)INFORMATION & COMMUNICATIONS (Sum. N o 172) 用于K u频段低速卫星通信的阵列天线设计 徐永杰,高时汉 (广州海格通信集团股份有限公司,广东广州M0663) 摘要:根据装载平台的迫切需求,研制了一种工作在K u频段的、高效率、低剖面、适应于低速卫星通信的阵列天线,该阵 列天线采用角雉喇》八、正交模搞合器和波导功分器组阵的方式,并集成了 BUC和LNB。由该天线阵列构成的动中通系 统不仅满足小型平台机动应用的通信需求,也可对我国现有的中高速卫星通信网形成必要的补充。 关键词:K u频段;低剖面;阵列天线;动中通 中图分类号:TN965 文献标识码:A文章编号:1673-1131(2017)04-0173-04 Des^n of a Array Antenna at Ku-band for satellite commumcations With Low data rate communicatioiis Xu Yongjie, Gao Shihan (GuangZhou Haige Communications Group Incorporated Company,GuangZhou510663) Abstrate :In this paper,a high efficiency,low profile antenna array at Ku-band for satellite communications With Low data rate communications is described,which is based on horn antennas,the Orthomode Transducer and waveguide power divider struc-ture and integrated with LNB and BUC.The Satcom on the Move composed of t he array antenna not only meet the needs of small mobile communications platform,moreover,it is necessary of supplement the existing high date rate satellite communications. Key words :Ku band;low profile;array antenna;Satcom on the Move 〇引言 随着卫星通信的发展,在小型水面舰艇、运输车队以及机 械化部队的装甲车等具有通信需求的装载平台配置用户地球 站时,面临小塑装载平台的限制,急需更小型天线系统的用户 站装备;同时,在原有固定使用模式的基础上,机动武器平台 对用户站进一步具有动中通的通信需求。在此类需求的基础 上,需要对原有型谱中用户站及天线进行更小型化设计,支持 动中通应用的卫星终端站型。 基于以上需求,本文设计了一款K u频段小型化天线阵, 利用该天线阵组成的动中通天线配合卫星终端安装在水面舰 艇上,通过K u频段透明转发器和中心站通信,可实现在卫星 波束覆盖下的低速话音、基于IP协议数据交互、短信交互等功 能;也可以安装在运输车队和机械化部队的装甲车上,不仅满 足小型平台机动应用的通信需求,也可以对我国现有的中高 速卫星通信网形成必要的补充。 1天线组成 天线是用户站等站型设备的重要组成部分。本文设计的 天线阵列集成了平板阵列天线、上变频器(BUC)和下变频器 (LNB)等部分,用于构建无线传输通道。如图1虚线框中所示。 图1用户站设备组成图 2喇叭阵列天线设计 喇机平板阵列天线由于体积小、效率高、低剖面和重量轻,在无线通信系统中得到了广泛的应用。Starling、ERA、Raysat、Trao Star等公司设计的平板阵列天线促进了国内平板天线的发展,但 这些平板天线结构与用户站设备给出的结构形式不匹配。根据 结构要求,本文设计了方形喇叭阵列天线,采用波导喇叭作为天 线的基本辐射单元,利用变形T型结,实现馈电网络的设计,组 成了 3元天线子阵,利用子阵技术,设计出3X20元阵列天线。 天线阵列指标为: 工作频率:RX12.25GHz?12_75 GHz TX 14.0GHz?14.5 GHz 天线口径:等效0.3米; 天线增益:大于30.5dBi; 天线高度:小于60mm; 双端口驻波比:<1.5; 双端口隔离度:>55dB; 极化形式:线极化; 天线带宽:收发双频带带宽均为0.5GHz。 2.1辐射单元设计 喇叭单元是波导阵列天线常用的基本天线单元。喇叭天 线单元剖面如图2所示。 根据图2可得出下列几何关系式[1]: 0 L… cos-= -(1) 2 L+a I= —(£T

常用卫星通信天线介绍

常用卫星通信天线介绍(一) 寇松江 (爱科迪信息通讯技术有限公司,北京,100070) E -mail: 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特 点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段 天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线 作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图 1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于 馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接 收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。

浅谈卫星通信天线系统综合防雷设计

浅谈卫星通信天线系统综合防雷设计 1 概述 卫星通信天线是卫星通信基站的重要组成部分。卫星通信基站的卫星天线一般架设在建筑物楼顶上,相对周围环境而言,目标比较突出,从而导致雷击概率增多,通信基站常常遭受雷害,导致通信设备损坏、系统瘫痪。 雷击的危害主要有四个方面:1、直击雷;2、雷电波侵入;3、感应过电;4、地电位反击。以上四方面中雷电对卫星通信天线系统的危害主要以雷电波侵入、感应过电压与地电位反击三者居多,这三者统称为雷电电磁脉冲。据有关统计资料,直击雷的损坏仅占15%,而雷电电磁脉冲的损坏占85%。因此,对雷电电磁脉冲的防护是防雷系统设计的重点。 2 设备组成 本次卫星通信天线防雷系统的设计以3.0米环焦通信卫星天线为设计对象,卫星通信天线系统包括室外部分设备、室内部分设备、以及室内及室外设备之间的连接电缆。 室内设备包括伺服控制单元(简称ACU)、伺服驱动单元(简称ADU)、信标接收机。 室外设备为卫星天线,包括天线头、天线座、方位俯仰极化电动机、方位俯仰传感器、方位俯仰极化限位开关、倾角仪等。 室内及室外设备之间的连接电缆包括强电电缆及弱电电缆。 3 防雷等级分类计算 卫星通信天线一般架设在建筑物的楼顶,在卫星通信天线系统防雷设计时,首先是要确定建筑物的防雷等级,从而进一步分析确认卫星天线系统的防雷设计的相关指标参数。《建筑物防雷设计规范》(GB50057-97 2000)中,对建筑物防雷等级的划分,除了由建筑物的功能定性外,第二、三类防雷建筑,还取决于建筑物的预计年雷击次数N。 建筑物年预计雷击次数应按下式计算: N = k * Ng * Ae (1) 式中:N ──建筑物年预计雷击次数(次/a); k ──校正系数,在一般情况下取1,在下列情况下取相应数值:位于旷野孤立的建筑物取2;金属屋面的砖木结构建筑物取1.7;位于河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的建筑物,以及特别潮湿的建筑物取1.5; Ng ──建筑物所处地区雷击大地的年平均密度[次/(km2·a)]; Ae──与建筑物截收相同雷击次数的等效面积(km2)。

卫星天线4.5米天线说明书

SCE-450C型4.5米天线安装、使用、维护手册 西安航天恒星科技股份有限公司

手册使用说明 : SCE-450C型天线是实现C波段与Ku波段共用的卫星地球站天线。使用时,只需根据不同的使用情况换上C波段馈源或Ku波段馈源即可。 《SCE-450C型4.5米天线安装、使用、维护手册》针对C波段与Ku波段的使用,除了馈源安装方式(附图13A为C波段馈源,13B为Ku波段馈源)和天线电气特性指标不同外,其余内容全部通用。

安全方面的注意事项 安全声明:以下声明适用于本手册的全过程。 在天线安装前必须仔细阅读本手册,并切实按照规定的步 骤及方法进行操作,以保障人身及设备的安全。 1. 必须严格按照要求制作地基,只有在地基达到预定的强度后,方 可对天线进行安装。 2. 在吊装过程中,应注意人员及设备的安全;保证设备在吊装中平 稳。 3. 在无吊车情况下安装,应特别小心,以确保人身及设备的安全。 4. 在首次运行前,应对所有有润滑要求的部件进行润滑。其中,减 速器用指定的润滑油润滑;方位轴、俯仰轴用稀油注入油杯润滑; 丝杠螺母用润滑脂润滑。 5. 在调整限位器工作时,应特别注意不要使丝杠脱出减速器,尤其 是俯仰丝杠脱出减速器将造成天线严重损坏。在方位、俯仰二丝 杠的左,右(或上,下)极限位置限位器安装完毕后,首先进行试 运行,确保限位器工作无误。 6. 天线具有软件和硬件两重限位保护。为确保天线使用安全,在转动 天线时,应使用ACU,并将软件限位设置在硬件限位之前。 7. 手轮用后应取下,并装上蜗杆轴盖,切勿将手轮套在蜗杆轴上, 以免电动时,发生意外事故。 8. 应注意检查波纹喇叭封口材料是否破损或漏水,尤其是在冰雹或 大雨之后,若波纹喇叭口漏水,将影响系统正常工作,严重时造 成HPA或SSPA损坏。若封口材料破损,应及时更换。 一 第页

一款Ku频段卫星通信车载天线的设计

一款Ku频段卫星通信车载天线的设计 京微 antenna123@https://www.wendangku.net/doc/492150583.html, 1.简介 车载静中通天线在车顶上工作,为了展开、收藏的方便,通常使用偏置型抛物面天线。在静中通产品中,单偏置天线和双偏置天线的使用都比较普遍。 笔者更偏爱双偏置天线。主要原因有: y可以获得更好的交叉极化隔离度 因而可以使用更大的功放,特别适合于SNG的使用。 y结构紧凑,有利于设备的小型化 更适合在小型车辆上使用。 y BUC后置,馈线损耗小 y天馈系统的设计余量大,天线的电性能更好 2.天线设计 本文设计了一款1.2m Ku频段车载天线,天线类型为双偏置型Gregorian天线。工作频率Rx:10.7~12.75GHz,Tx:13.75~14.5GHz。 天线辐射口径1.2m,物理口径1.2m×1.325m。天线长度975mm。如图1所示。 使用以前设计的馈源照射该天线[1]。 图1 双偏置Gregorian天线 3.测试结果

本文给出了发射频段13.75~14.5GHz 的测试结果。(发射频段为入网强制性测试) (1) 天线增益 天线效率68%。 频率(GHz ) 13.75 14.00 14.25 14.50 Gain(dBi) 43.2 43.3 43.5 43.6 (2) 交叉极化 1dB 交叉极化隔离度≥35dB 。 频率(GHz ) 13.75 14.00 14.25 14.50 XPD (dB) (1dB BW ) HP 40.5 41.5 36.1 35.1 VP 40.6 36.0 41 37.5 (3) 旁瓣特性 满足ITU-R S.580-6、Eutelsat EESS502的要求。 图2 14.25GHz HP 方向图

LinkStar卫星通信天线搬迁简要指导

卫星通信天线搬迁简要指导 (具体调整见“LinkStar新建远端站培训文档(通用版)”) 搬站前需要将室内设备卫星路由器(LinkStar)电源拔掉,搬站中注意发射和接收电缆不要硬拉硬拽,不要弯曲,以免折断电缆。搬到固定位置后将卫星路由器上的发射电缆(Tx)端拔掉方可进行对星操作。(注意:天线前方上面大的白色设备为发射设备BUC,对应该室内设备TX接口;天线前方与BUC相连的小设备为接收设备LNB,对应室内RX接口,切误接反!) 注意:该站没有对卫星入网时室内LinkStar路由器设备的IP地址为10.13.40.215入网成功后自动转换为10.181.14.1(这是上网使用的网关地址) 1、把本机IP地址改成:10.13.40.216,子网掩码:255.255.255.0,网关:10.13.40.215 2、在电脑上:开始—运行,输入cmd,在弹出的对话框中输入:telnet 10.3.79.239如图: 3、进入后出现passwrod直接回车,进入操作命令行。 4、输入rep temp 回车,如下图: 5、观察图中的RxPower值,调整俯仰、方位、极化尽可能到-40以上时为最佳效果。同时可以看后面的EsNo值,在 10以上时为最佳效果。

6、当达到最佳效果后,对星工作结束,将发射电缆接到TX端,室外设备用防水胶带缠好。 7、若SAT灯为闪烁状态说明正在入网,需等待一段时间,大约3-5分钟。当ODU灯和SA T灯为长亮时说明设备已经 入网,可以正常使用。 8、此时可以将本机电脑改成10.181.14.X网段进行上网,打电话等操作。 9、搬站工作正式完成。 注意1: ①对星操作推荐在天气晴好条件下进行,因信号在其他天气条件下与在晴好时候相比会有明显差异; ②安装人员还需注意在调节天线的方位或俯仰角度时,每次调节间隔至少10秒。因设备响应会占用部分时间; ③工程人员在调节任何角度之前,其余角度的螺栓必须拧紧,且紧固过程中必须保证信号强度最大。 注意2:

常用卫星通信天线介绍

常用卫星通信天线介绍 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简 单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放 重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是 副反射面极其支干会造成一定的遮挡。

0.6米动中通天线技术指标东方红卫星

0.6米动中通天线技术指标 东方红卫星 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

0.6米Ku波段低高度动中通天线 1.概述 DGTX-600D型0.6米Ku波段动中通卫星通信天线是针对应急移动宽带通信需求,严格按军标标准开发的高性能、低高度的动中通卫星通信天线,天线的低轮廓特性很好地解决了运动载体对天线安装高度的严格限制。天线系统采用三轴陀螺惯导跟踪与卫星信标跟踪相结合的混合跟踪方式,具有抗颠簸能力强、遮挡恢复快、跟踪精度高的优点,最大支持4MHz通信带宽(跟使用卫星有关),天线适用于国内、外全部Ku波段的通信卫星。 2.产品照片

3.技术指标 4.1电性能指标 ●工作频率发射 14~14.5GHz 接收12.25~12.75GHz ●天线增益 发射(14.25GHz)≥ 36.5dBi 接收(12.5GHz)≥ 34.7dBi(20°仰角) 上行馈线损耗≤0.6dB 天线罩损耗≤0.4dB ●G/T值≥ 12.4(12.5 GHz) dB/K (天线仰角≥20°,晴空,LNA噪声温度80°K) ●极化方式线极化,收发正交 ●极化角可调范围≥180° ●电压驻波比(VSWR):≤1.35 ●交叉极化隔离度≥30dB ●收、发端口隔离度≥85dB ●旁瓣特性第一旁瓣≤ -14 dBi(方位) 远旁瓣满足国际电联CCIR-580-4标准 ●功率容量≥100W ●馈源接口收发接口均为BJ-120(WR75) 4.2机械性能 ●天线运动范围 方位: 360°无限 俯仰: 20°~75° ●天线运动速度、加速度 方位:速度≥100°/s ,加速度≥400°/s2 俯仰:速度≥100°/s ,加速度≥400°/s2 ●汽车最大运动速度≤120Km/h ●驱动方式电动

卫星通信地球站设备1

卫星通信地球站设备 一、地球站的分类及组成 1.1地球站的各类 1.1.1卫星通信地球站 可以按安装方式、传输信号特征、天线口径尺寸、设备规模及用途来分类: 1、按安装方式: ●固定站 ●可搬运站 ●移动站 2、按传输信号特征: ●模拟站 ●数字站 3、按业务性质: ●遥测、遥控、跟踪站 ●通信业务站 4、按用途分: ●民用通信站:公用站 专用站 ●军用通信站:战略通信站 战术通信站

●卫星广播业务 ●气象卫星 ●航空、航海、导航 ●科学实验 另外还可以按工作频段、通信卫星类型、多址方式、天线口径等分类。 目前国际上,通常地球站天线口径尺寸及G/T值的大小将地球站分为A、B、C、D、E、F、G、Z等各种类型见下表1: 表1:各类地球站的天线尺寸及性能指标 ●其中A、B、C型站称为标准站,用于国际通信;

E和F又分为E-1、E-2、E-3和F-1、F-2、F-3等类型,主要用于国内通信。 其中E-2、E-3和F-2、F-3又称为中型站。E-1、F-1称为小型站。 1.1.2VSAT地球站的分类 1、按安装方式――固定、可搬、车载、机载、船载、背负式、手提式等 站。 2、按网络结构――星状、网状、星状网状混合结构。 3、按收发方式――单收站、单发站、双向站。 4、按业务性质――固定业务和移动业务。 5、按支持的主要业务类型分――话音VSAT站、数据VSAT站、综合VSAT 站。 其它的还有按工作频段分(L波段、C波段、Ku波段等)、多址方式(FDMA、TDMA、CDMA、SDMA等)。 1.2地球站的组成 一般的卫星通信地球站,尽管对于不同的通信体制,地球站的组成不尽相同。但其基本组成一般包括: 天线分系统、发射分系统、接收分系统、信道终端设备、遥测跟踪、监控分系统、伺服跟踪分系统和电源分系统。 1.2.1VSAT地球站设备组成 VSAT卫星通信网由卫星转发器、主站(中心站)和远端小站三部分

卫星通信的基础知识

卫星通信概述 1.卫星通信的基本概念与特点 定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。卫星通信又是宇宙无线电通信形式之一,而宇宙 (1)宇宙站与地球站之间的通信;(直接通信) (2(直接通信) (3)通过宇宙站转发或反射而进行的地球站间的通信。(间接通信) 第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。 大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。静止卫星是指卫星的运行轨道在赤道平面内。轨道离地面高度约为 35800km(为简单起见,经常称36000km)。 静止卫星通信的特点 (1 a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传 输与距离无关) b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收) c 通信频带宽(带宽为500M d 信号传输质量高,通信线路稳定可靠 e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信) f 可自发自收进行监测 (2 a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。 b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两 c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断 ——(现今可通过处理缩短这种现象)

d 有较大的信号传输时延(发射和接受时间)和回波干扰。 2. 卫星通信系统的组成 (1 通常卫星通信系统是由地球站、通信卫星(前两个为主要组成,负责卫星收发)、跟踪遥测及指令系统和监控管理系统(后两个提供辅助功能,监测卫星、姿态调整等)4大部分组成的,如图所示。 (2 两个地球站通过通信卫星进行通信的卫星通信线路的组成如图所示,是由发端地球站,上、下行无线传输路径和收端地球站组成的。

卫星通信基础知识

卫星通信基础知识

卫星通信基础知识 第一节电磁波常识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X 射线,以及各种可见光,都属于电磁波。 电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E (或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用入表示。波速 是指电磁波在单位时间内传播的距离,通常用v表示。频率f,波长入,和波速v 之间满足如下关系: v=入f 如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,在国际单位制中,波速的单位是m/s(米/ 秒),波长的单位是m(米),频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30 万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000 米除98,000,000Hz ,等于3.06 米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在

3OOGHz(1GHz=101z)以下的波称为无线电波,主要用于广播,电视或其他通讯。频率在3X 1011Hz-4X 1014H Z之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84 X1014HZ-7.69 X 1014H Z之间的波为可见光,它能引起人们的视觉,频率在8X 1014H Z-3X 1017H Z 之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3X 1017H Z- 5X 1019H Z之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018H Z-1022H Z以上的射线,其穿透能力就更强了。 三、波段与频道 由于利用频率可以计算出波长,一个频率范围将对应一个波长范围,所以频段与波段具有同样的意思。两个叫法是对应的,也是通用的,在电视广播领域中,更多使用波段。 微波是指波长在微米级的无线电信号。 按照波长和用途不同,人们把无线电波又分成许多波段,如表1.1所示。 表1.1无线电波波段的划分 频道是指传送一个信号源节目所使用的频率(或波长)范围。通常一个频段(或波段)能够再分成多个频道。

几种天线的比较

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。

卫星天线的介绍

常见卫星电视接收天线介绍 摘要:卫星电视接收天线是有线电视前端的重要组成部分之一,本文重点介绍了常见的卫星电视接收天线的类型及优缺点,用图说明了其工作原理。 关键词:卫星电视接收天线类型工作原理优缺点卫星电视接收天线是有线电视前端重要组成部分,主要用于接收电视节目信号,其原理是利用电波的反射原理,将电波集焦后,辐射到馈源上的高频头,然后通过馈线将信号传送到卫星接收机并解码出电视节目。卫星接收天线形式有多种多样,但最常见的有以下几种: 一、正馈(前馈)抛物面卫星天线 正馈抛物面卫星接收天线类似于太阳灶,由抛物面反射面和馈源组成。它的增益和天线口径成正比,主要用于接收C波段的信号。由于它便于调试,所以广泛的应用于卫星电视接收系统中。它的馈源位于反射面的前方,故人们又称它为前馈天线(如图1所示)。 正馈抛物面卫星天线的缺点是:1、馈源是背向卫星的,反射面对准卫星时,馈源方向指向地面,会使噪声温度提高。 2、馈源的位置在反射面以上,要用较长的馈线,这也会使噪声温度升高。 3、馈源位于反射面的正前方,它对反射面产生一定程度的遮挡,使天线的口径效率会有所降低。优点就是反射面的直径一般为1.2--3M,所以便于安装,而且接

收卫星信号时也比较好调试。 二、卡塞格伦(后馈式抛物面)天线 卡塞格伦是一个法国物理学家和天文学家,他于1672年设计出卡塞格伦反射望远镜。1961年,汉南将卡塞格伦反射器的结构移植到了微波天线上,他采用了几何光学的方法,分析了反射面的形状,并提出了等效抛物面的概念。卡塞格伦天线,它克服了正馈式抛物面天线的缺陷,由一个抛物面主反射面、双曲面副反射面、和馈源构成,是一个双反射面天线,它多用作大口径的卫星信号接收天线或发射天线。抛物面的焦点与双曲面的虚焦点重合,而馈源则位于双曲面的实焦点之处,双曲面汇聚抛物面反射波的能量,再辐射到抛物面后馈源上(如图2所示)。由于卡塞格伦天线的馈源是安装在副反射面的后面,因此人们通常称它为后馈式天线,以区别于前馈天线。

卫星通信系统介绍

1.【卫星通信系统概念】 卫星通信是地球上多个地球站(包括陆地、水面和大气层)利用空中人造通信卫星作为中继站而进行的无线电通信。卫星通信系统是由通信卫星、地球站和跟踪遥测及指令分系统和监控管理分系统。通信卫星由若干个转发器、数副天线与位置和姿态控制、遥测和指令、电源分系统组成,其主要作用是转发各地球站信号。地球站由天线、发射、接受、终端分系统及电源、监控和地面设备组成,主要作用是发射和接受用户信号。跟踪遥测指令站是用来接收卫星发来的信标和各种数据,然后经过分析处理,再向卫星发出指令去控制卫星的位置、姿态及各部分工作状态。监控管理分系统对在轨卫星的通信性能及参数进行业务开道前的监测和业务开通后的例行监测与控制,以便保证通信卫星的正常运行和工作 2.卫星通信体制 所谓通信体制,是指通信系统采用的信号传输方式和信号交换方式。卫星通信系统的体制主要包括基带信号的类型及复用方式、中频(或射频)信号的调制方式、多址联接方式、信道分配方式等四个方面的内容。其中复用方式和调制方式是无线通信中都要涉及到的,而多址联接和多址分配是卫星通信所特有的. 3. 卫星通信地球站 卫星通信系统中设置在地球上(包括大气层中)的通信终端站。用户通过卫星通信地球站接入卫星通信线,进行相互间的通信。主要业务为电话、电报、传真、电传、电视和数据传输。 卫星通信地球站按使用方式分为固定站、可搬运站和移动站(船载、车载、飞机载);按通信性能分为标准站和非标准站。在标准站中又分为A、B、C、D 4 种类型。典型的卫星通信地球站的基本组成包括:天线系统、高功率发射系统、低噪声接收系统、信道终端系统、电源系统、监控系统。为实现用户间通信,还需有地面接口系统、信息传输系统和信息交换中心。 近年来世界各国竞相发展便于移动、便于安装的小型卫星通信地球站,发展了一种非常小口径通信终端(VSAT)地球站,具有广阔的应用前景。 4.卫星通信的线路 (sorry 设计与测试未找到资料) 在一个卫星通信系统中,各地球站经过通信卫星转发器可以组成多条单跳单工或双跳单工卫星通信线路。整个通信系统的全部通信传输工作就是通过这些卫星通信线路完成。在卫星通信线路中,把从发信地球站到卫星这一段线路称为上行线路,从卫星到收信地球站这一段线路称为下行线路,上、下行线路和起来就构成一条最简单的单工卫星通信线路。当两个地球站都有收发设备和上、下行线路,而且这两条线路共用一个通信卫星转发传播相反的信号进行通信,就构成了双工卫星通信线路。 5.卫星信标 卫星信标是由卫星发送用于地球站的信标接收机确定卫星位置的专用信号,自动对准卫星. 因找不到专业的名词解释. 我自己的理解.. 信标接收机是卫星通信地球站中用于天线跟踪卫星的设备,具有L/ C/Ku各频段的信标接收能力,能够完成卫星的信标信号锁定、鉴相,并将其转换成与功率成正比的直流信号送给伺服控制系统,确保天线对准卫星工作,获得最佳天线增益。

相关文档