文档库 最新最全的文档下载
当前位置:文档库 › (定价策略)期权定价中的蒙特卡洛模拟方法

(定价策略)期权定价中的蒙特卡洛模拟方法

(定价策略)期权定价中的蒙特卡洛模拟方法
(定价策略)期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法

期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。

蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。

§1. 预备知识

◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。

大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov 强大数定律:

设12,,ξξL 为独立同分布的随机变量序列,若

[],1,2,k E k ξμ=<∞=L 则有1

1(lim )1n

k n k p n ξμ→∞===∑ 显然,若12,,,n ξξξL 是由同一总体中得到的抽样,那么由

此大数定律可知样本均值1

1n

k k n ξ=∑当

n 很大时以概率1收敛于

总体均值μ。

中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。

设12,,ξξL 为独立同分布的随机变量序列,若

2

[],[],1,2,k k E D k ξμξσ=<∞=<∞=L

(0,1)n

k

d n N ξ

μ

-??→∑

其等价形式为2

1

1lim

()exp(),2n

x

k k n t n P x dt x ξμσ

=→∞

-∞

-≤=

--∞<<∞∑?。

◆Black-Scholes 期权定价模型 模型的假设条件:

1、标的证券的价格遵循几何布朗运动

dS

dt dW S μσ=+

其中,标的资产的价格S 是时间t 的函数,μ为标的资产

的瞬时期望收益率,σ为标的资产的波动率,dW 是维纳过程。

2、证券允许卖空、证券交易连续和证券高度可分。

3、不考虑交易费用或税收等交易成本。

4、在衍生证券的存续期内不支付红利。

5、市场上不存在无风险的套利机会。

6、无风险利率r 为一个固定的常数。

下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

伊藤Ito 公式:设(,)V V S t =,V 是二元可微函数,若随机过程S 满足如下的随机微分方程

(,)(,)dS

S t dt S t dW S

μσ=+

则有

2

2221((,)(,))(,)2V V V V dV S t S S t S dt S t S dW t S S S

μσσ????=+++????

根据伊藤公式,当标的资产的运动规律服从假设条件中的几何布朗运动时,期权的价值(,)V V S t =的微分形式为

2222

1()2V V V V dV S S dt S dW t S S S

σμσ????=+++????

现在构造无风险资产组合V V S S

?∏=-?,即有d r dt ∏=∏,

经整理后得到

2222102V V V

S rS rV t S S σ???++-=???

这个表达式就是表示期权价格变化的Black-Scholes 偏微分方程。它同时适合欧式看涨期权、欧式看跌期权、美式看涨期权和美式看跌期权,只是它们的终值条件和边界条件不同,其价值也不相同。

欧式看涨期权的终边值条件分别为

{}

(,)max 0,T V S T S K =-,

00

(,)S V S T S S →?=?

→∞? 通过求解带有终边值条件的偏微分方程,得出欧式看涨期权

的的解析解:

()12(,)()()

r T t V S t SN d Ke N d --=-

其中,

2

2

()x d

N d e

dx

-

-∞

=

,21d =

21d d =-T 为期权的执行日期,K 为期权的执行价格。

欧式看跌期权的终边值条件分别为

{}

(,)max 0,T V S T K S =-,

(,)0K S V S T S →?=?

→∞? 此外,美式看涨期权的终值条件为(,)max{0,}V S t S K ≥-,美式看跌期权的终值条件为(,)max{0,}V S t K S ≥-。然而,美式期权的价值没有解析解,我们一般可通过数值方法(蒙特卡洛模拟、有限差分法等)求得其近似解。

◆风险中性期权定价模型

如果期权的标的资产价格服从几何布朗运动

dS

rdt dW S σ=+

即标的资产的瞬时期望收益率μ取为无风险利率r 。同理,根据伊藤公式可以得到

2

ln ()2

d S r dt dW

σσ=-

+

2

2

2ln ln ()()()~(()(),())

2

2

T t T t S S r T t W W N r T t T t σσσσ-=-

-+--

--

2

exp(()()())

2

T t T t S S r T t W W σσ=-

-+-

对数正态分布的概率密度函数:设2~(,)N ξμσ,e ξ

η=,则

η的密度函数为

2

2

(ln ))0()200x x P x x η

μσ-- > = ≤ ?

根据上述公式,得到标的资产T S 的密度函数如下

2

2

2

(ln()())

2

)0 ()

2()

00

t

x

r T t

S

x

P x

T t

x

σ

σ

?

---

?

- >

=

-

? ≤

?

在风险中性概率测度下,欧式看涨期权定价为:

(,)exp(())[max{0,}]

Q

T

V S t r T t E S K

=---

(

)

()

2

2

2

2

2

2

(ln()())

2

[max{0,}])

2

(ln()())

2)

2

Q

T K

K

x

r T t

S

E S K dx

T t

x

r T t

S dx

T t

σ

σ

σ

σ

+∞

+∞

---

-=-

-

---

--

-

?

?

接下来,求解以上风险中性期望。首先,对上式的右边第一个广义积分分别作变量替换

2

ln()()

x

r T t

y

σ

---

=

和u y=-,可以得到

(

)

2

22

2

2

2

2

ln()()

()()()

22

1 ln()()

(ln()())

2)

2

() K

S

r T t

u u

r T t r T t r T t

K

r T t

x

r T t

S dx

T t

Se du Se du Se N d

σ

σ

σ

σ

+∞

++-

+∞--

---

-+-

---

-

-

===

?

?

再对等式的右边的第二个无穷积分,令

2

ln ln()()

x S r T t

u

σ

----

=

,可求得

2

22

2

2

2

2

ln ln()()

2

22

2 ln ln()(

2

(ln()())

2)

2()

() K

S K r T t

u u

K S r T t

x

r T t

S dx

T t

K du K du KN d

σ

σ

σ

σ

+∞

-+--

+∞--

----

---

-

-

===

?

?

将以上的计算结果代入期望等式中,得到欧式看涨期权的价格公式为:

()()12(,)[max{0,}]()()

r T t Q r T t T V S t e E S K SN d Ke N d ----=-=-

其中,2

1ln ()()

S r T t d σ++-=

,21d d =-。

可以看出,对于欧式看涨期权的风险中性定价方法的结果与基于资产复制的偏微分方程定价方法的结果是一致的。基于风险中性的期权定价原理在于:任何资产在风险中性概率测度下,对于持有者来说都是风险偏好中性的,便可用风险中性概率求取期权的期望回报再将其进行无风险折现便是初始时刻的期权价值。蒙特卡洛模拟方法就是一种基于风险中性原理的期权数值定价方法。

§2. 蒙特卡洛模拟方法及其效率

假设所求量θ是随机变量η的数学期望[]E η,那么近似确定θ的蒙特卡洛方法是对η进行n 次重复抽样,产生独立同分布的随机变量序列12,,,n ηηηL ,并计算样本均值

1

1n

n k k n ηη==∑。那么根据Kolmogorov 强大数定律有

(lim )1n n p ηθ→∞

==。因此,当n 充分大时,可用n η作为所求

量θ的估计值。

由中心极限定理可得到估计的误差。设随机变量η的方

差2[]D ησ=<∞,对于标准正态分布的上2δ分位数Z δ,有

2

2

(exp()12Z n Z t p Z dt δ

δδηθδ--<≈

-=-?

这表明,置信水平1δ-对应的渐近置信区间是

n Z δη±。实际上,由此可确定蒙特卡洛方法的概率

化误差边界,其误差为Z δ,误差收敛速度是12()O n -。

不难看出,蒙特卡洛方法的误差是由σ

和决定的。在对同一个η进行抽样的前提下,若想将精度提高一位数字,要么固定σ,将n 增大100倍;要么固定n 将σ减小10倍。若两个随机变量12,ηη的数学期望12[][]E E ηηθ==,

12σσ≠,那么无论从1η或2η中抽样均可得到θ的蒙特卡洛估

计值。比较其误差,设获得i η的一个抽样所需的机时为i t ,

那么在时间T 内生成的抽样数i i

T n t =

,若使

<,则需使1122t t σσ<。因而,若要提高蒙特卡罗方法的效率,不能单纯考虑增加模拟的次数n 或是减小方差2

σ,应当在减小方差的同时兼顾抽取一个样本所耗费的机时,使方差2

σ与机时t 的乘积尽量的小。

§3. 蒙特卡洛模拟方法为期权定价的实现步骤

期权定价的蒙特卡洛方法的理论依据是风险中性定价原理:在风险中性测度下,期权价格能够表示为其到期回报

的贴现的期望值,即12[exp()(,,,)]Q

T P E rT f S S S =-L ,其中

的Q

E 表示风险中性期望,r 为无风险利率,T 为期权的到期执行时刻,12(,,,)T f S S S L 是关于标的资产价格路径的预期收益。

由此可知,计算期权价格即就是计算一个期望值,蒙特卡洛方法便是用于估计期望值,因此可以得到期权定价的蒙特卡洛方法。一般地,期权定价的蒙特卡洛模拟方法包含以下几步(以欧式看涨期权为例):

(l)在风险中性测度下模拟标的资产的价格路径 将时间区间[0,]T 分成n 个子区间0120n t t t t T =<<<<=L ,标

的资产价格过程的离散形式是

211

()()2

1()()i i i

r t t j

j

i i S t S t e

σσ

+--++=,~(0,1)i z N

(2)计算在这条路径下期权的到期回报,并根据无风险利率求得回报的贴现

{}exp()max 0,j j T C rT S K =--

(3)重复前两步,得到大量期权回报贴现值的抽样样本 (4)求样本均值,得到期权价格的蒙特卡洛模拟值

{}

1

1

exp()max 0,1

exp()m

j T m

j j MC

j rT S K C rT C m m

==--=-=∑∑

另外,我们还可以得到蒙特卡洛模拟值与真值的概率化误差边界,这也是蒙特卡洛方法为期权定价的优势之一。 由于{}exp()max 0,j j T C rT S K =--,m 条路径的收益均值为

1

1m j

mean

i C C m ==∑,m 条路径的方差为2

var

1

1()1m j mean i C C C m ==--∑,则可

得95%

的置信区间为[mean mean C C -+。

例1:假设无红利的股票A ,初始价格为¥6,价格过程服从几何布朗运动,年预期收益率为10%,收益率的波动率为每年25%,时间步长为0.01年(1年为100时间步),给定数据,06,0.1,0.25S μσ===,以及d =100,用蒙特卡洛方法模拟资产的价格路径如下:

21

(0.10.25)0.012

()()i

A S t t S t e

δ-++=

Period

P ri c e

(1)

5.2

5.4

5.65.86

6.2

6.4

6.6Period

P ri c e

(2)

图(1)蒙特卡洛方法模拟股票A 价格路径,图(2)蒙特卡洛方法模拟股票B 价格路径。

若无红利的股票B 、C 、D ,其价格均为¥6,股票B 的期望收益率为0.1,波动率为0.6;股票C 的期望收益率为0.5,波动率为0.25;股票D 的期望收益率为0.5,波动率为0.6,分别用蒙特卡洛方法模拟该三种股票在一年内的价格路径如下:

21

(0.10.6)0.012

()()i

B S t t S t e

δ-++=

21

(0.50.25)0.012

()()i

C S t t S t e

δ-++=

21

(0.50.6)0.012

()()i

D S t t S t e

δ-++=

Period

P r i c e

(3)

Period

P r i c e

(4)

图(3)蒙特卡洛方法模拟股票C 价格路径,图(4)蒙特卡洛方法模拟股票D 价格路径。

从图中可以看出,股票C 和股票D 的价格上升速度较快,而股票B 和股票D 的价格波动比较大。这是与股票C 和股票D 价格的期望收益率较高,股票B 和股票D 价格的波动率较高相对应的。

欧式看涨期权06,2,0.1,0.25,1S K r T σ=====,通过Black-Scholes 公式计算得的精确值为 4.1903C =,蒙特卡洛模拟的价格为 4.1787C =,其蒙特卡洛模拟图如下:

E s t i m a t i o n

log(N)

(5)

上述同样的条件,路径由100逐渐增加到1000000条,对应地分别得到的期权价值的模拟值和置信区间,结果如下表所示:

各种路径下蒙特卡洛方法模拟的95%置信区间

§4. 蒙特卡洛模拟方法为我国权证定价

权证是一种合同,权证投资者在约定时间内有权按约定价格向发行人购入或者出售合同规定的标的证券。权证发行人可以是标的证券的发行人或其之外的第三方。权证主要具有价格发现和风险管理的功能,它是一种有效的风险管理和资源配置工具。

现选取我国认股权证中的五粮YGC1、马钢CWB1、伊

利CWB1为例,以2006年的价格作为样本区间模拟认股权证的价值,并将这些权证的蒙特卡洛模拟价值和由wind 数据库给出的理论值进行比较。本例采用一年期短期利率2.52%作为无风险利率,用这些权证的正股股票价格序列来计算波动率。

现实中用等时间间隔观测股票价格序列(0,1,2,)i S i n =L ,股票投资的连续复利收益率1ln(/)i i i u S S -=,(1,2,i n =L ),则i

u

的样本标准差σ=。如果用日数据计算波动率,则年度波动率按下式计算:

年度波动率=日波动率*(每年的交易日数)1/2 将时间区间取为2006年12月1日-2006年12月29日,则由蒙特卡洛方法模拟的认股权证价格与Black-Scholes 模型的精确值和市场价格比较的结果如下:

蒙特卡洛方法对五粮YGC1认股权证的模拟(51.15%σ=)

σ=)蒙特卡洛方法对马钢CWB1认股权证的模拟(53.91%

σ=)蒙特卡洛方法对伊利CWB1认股权证的模拟(62.03%

从表可看出,由蒙特卡洛方法模拟的认购权证价格的模拟值比由Black-Scholes公式计算的理论值更接近实际值。为了更直观的比较,由蒙特卡洛方法模拟的认股权证价格与Black-Scholes模型的精确值和市场价格比较的结果如下图。

其中SJ代表实际值,MC代表蒙特卡洛方法求得的模拟值,BS代表由Black-Scholes公式计算出的理论值。

五粮YGC1价格模拟比较图

马钢CWB1价格模拟比较图

伊利CWB1价格模拟比较图

从图中明显看出,五粮YGC1和伊利CWB1的模拟结果比较好,蒙特卡洛模拟值和Black-Scholes模型的理论值均与实际值吻合;而马钢CWB1的实证结果不理想,但是三种结果的走势图有共同的趋势。从比较分析中发现蒙特卡洛方法模拟的价格比Black-Scholes模型更接近实际价格。对于这些认股权证价格的模拟结果的好坏,受诸多因素影响,

主要与选取的波动率和中国权证市场的发展特点有关等等。

◆隐含波动率及其数值计算方法

隐含波动率是一个在市场上无法观察到的波动率,是通过Black-Scholes 期权定价公式计算出来的波动率。由于我们无法给出它的解析解,因此,只能借助于数值计算给出近似解。下面介绍牛顿迭代法计算隐含波动率。

牛顿迭代法是牛顿在17世纪提出的一种在实数域上近似求解方程根的方法。

步骤1. 将函数()f x 在点0x 附近展开成泰勒级数

200000()

()()()()()2!

f x f x f x f x x x x x '''=+-+

-+L

步骤2. 取泰勒级数的前两项作为000()()()()f x f x f x x x '≈+-

假设0()0f x '≠,求解方程000()()()()0f x f x f x x x '=

+-=,并令其解为

1x ,得0100()()

f x x x f x =-',这样得到迭代公式1()

()n n n n f x x x f x +=-',经

过n 次迭代后,可以求出()0f x =的近似解。

根据牛顿迭代法,隐含波动率的计算步骤如下: 1. 假设其他变量保持不变,认为函数

()12()()()r T t Mar f SN d Ke N d C σ--=--是隐含波动率σ的一元函

数,其中的Mar C 是市场上观察到的期权价格。

2. 求函数()f σ

的导数2

12

()d C f σσ

-?'==?

3. 由迭代公式1()

()

i i i i f f σσσσ+=-'计算波动率,直至()i f σε<

(ε是期望达到的精度)。

此外,为了计算隐含波动率,经济学家和理财专家曾做过种种努力试图寻找一个计算波动率的公式。如Brenner 和Subrahmanyam 于1988年,Chance 于1993年分别提出计算隐含波动率的公式,虽然这些公式对于持有平价期权的波动率的计算还算准确,但是基础资产的价格一旦偏离期权的执行价格的现值,其准确性就会丧失。1996年,Corrado 和Miller 在前人研究的基础上建立了如下公式,大大提高了隐含波动率的计算的准确性:

(2rT S Ke C σ--=-+

§5. 服从跳扩散过程的无形资产期权定价问题及其蒙特卡洛模拟分析

◆服从跳扩散过程的期权定价方法

正常的波动用几何布朗运动(Brown)来描述—由供需不平衡、利率变动或整个经济的波动等因素引起的。不正常的波动用泊松过程(Poisson)来描述—由未预料到的重要信息的出现引起的。这些信息在不连续的时间点出现,而且出现的时间点不确定,是否会出现也不确定。

带跳跃项的伊藤Ito 公式:设(,)V V S t =,V 是二元可微函

数,若随机过程t S 服从随机微分方程

dS

adt dW dJ S σ=++

其中,dW 是标准维纳过程,dJ 表示不可预测的跳跃,且

[]0E J ?=。则带跳跃项的伊藤

Ito 公式为

222

1

1

1(,)[((,)(,))]2[(,)(,)][((,)(,))]k

t i i V

i k

V t i i i V V V

dV S t V S a t V S t p dt dS dJ t S S dJ V S t V S t V S a t V S t p dt

λσλ=-

=???=++-+++???=--+-∑∑

其中,

lim t s s t

S S -

-→=。

上式是对跳跃项作如下假定得出的:

1、在两个跳跃之间t J 保持不变,而在跳跃时间(1,2,)j j τ=L 是离散和随机的;

2、有k 种跳跃类型,跳跃尺度为{,1,2,,}

i a i k =L ,跳跃尺度

为i a 的概率为i p ,跳跃的发生强度t λ依赖于t S 的最终观测值,

跳跃类型和尺度都是独立随机的。 则在时间区间(,]t t t +?内,增量J ?为

1[()]

k

t t t i i i J N t a p λ=?=?-?∑

这里t N 表示的是至时间t 发生的跳跃大小的总和,t t λ?表示跳

跃发生的概率,

1

k

i i

i a p

=∑为跳跃的期望值,则J ?是不可预测的。

漂移参数a 可看作两个漂移的和

1

()

k

t t t i i i a a p μλ==+∑

这里t μ表示t S 中连续运动的维纳过程部分,第二项为纯跳跃

部分。

将Poisson 过程引入到期权定价模型中,得到标的资产

价格价格的跳扩散方程如下

()(1)dS

dt dW Y dN S μλνσ=-++-

其中,

1

1dt dN dt

λλ?=?

-?,标的资产价格的变化比率为Y ,

(1)E Y ν=-,且Y 与dN 相互独立。

令ln F S =,根据带跳跃项的伊藤公式可得其微分形式为

222

21(())()((,)(,))21

()ln 2F F F dF dt Sdt SdW SdW F YS t F S t dN t S S

dt dW YdN

μλνσσμσλνσ???=+-+++-???=--++

整理上式,得到标的资产价格公式为

()

201

1exp ()()2N t t i

i S S t W t Y μσλνσ=??

=--+????∏

在标的资产价格遵循跳扩散过程的假设下,根据上述带跳伊藤公式可得期权价值(,)V V S t =的微分形式如下

22221(())((,)(,))2V V V V dV S S dt S dW V YS t V S t dN

t S S S

μλνσσ????=+-+++-????

构造期权与标的资产的无套利资产组合V V S S

?'∏=-?,其微分

形式为

2222

1()((,)(,))(1)2V V V V

d dV dS S dt V YS t V S t dN Y S dN S t S S σ????'∏=-=++---????

则该无套利资产组合微分形式的期望如下式

22222222

1()()[((,)(,))][(1)]

21[[(,)(,)]]2V V V

E d S dt E V YS t V S t dN E Y S dN t S S V V V S E V YS t V S t S dt t S S σσλλν???'∏=++---??????=++--???

由于资产组合V V S S

?'∏=-?为无风险组合,因此有如下等式成

()()V

E d r dt r V S dt S ?''∏=∏=-

?

两式联立并化简得到标的资产价格遵从跳扩散过程的定价

公式如下:

22221()[(,)(,)]02V V V r S S rV E V YS t V S t t S S λνσλ???+-+-+-=???

若没有发生跳跃事件,则0λ=,将其代入上式所得结果与Black-Scholes 微分方程完全一致。当期权分别为欧式看涨、欧式看跌、美式看涨和美式看跌期权时,其边界条件和终值条件与本章第一节的终边值条件相同。

Merton

假设标的资产价格跳跃高度服从1

000i i Y i =?=?

≠?,

从而推导出欧式看涨期权的定价公式为:

()()

2()()01()(,)[((,,,,))]()!N t N t N t i

N t i e V S E W S Ye K r N t λτλντ

λτττσ-+∞

-===∑∏

其中,

212(,,,,)()()

r W S K r S d Ke d ττσ-=Φ-Φ,T t τ=-。

另外,Harworth 假设跳跃高度Y 服从对数正态分布

2

ln ~(,)

Y Y Y N μσ,则欧式看涨期权的解析解为

()2

()0()(,)(,,,,)

()!N t N t e V S W S K r N t λτλτττσ-+∞

==∑%

%%%

其中,

21

exp()

2

Y Y λλμσ=+%,22

1()1(exp()1)()

22Y Y Y Y N t r r λμσμστ=-+-++%,

2

1

()

Y N t σσστ=+%。

例2. 标的资产价格遵从跳扩散过程如下

()(1)dS

dt dW Y dN S

μλνσ=-++- 1.5(0)20, 2.5%,20%,0.5,1,500,0.004,0.8S t v Y n t Y μσλ=====-=?==

用蒙特卡洛模拟的资产价格路径如下图所示:

◆无形资产——专利池的期权定价模问题

专利池的市场价值V 依赖于企业使用专利池技术前后生产产品所获得的收益S 和成本C 及时间t ,这三个变量均可用跳扩散模型:

()(1)dX

dt dW

Y dN X

μλνσ=-++-

通过构造由V 和它所依赖的两个变量S 、C 组成的资产组合,利用带跳的伊藤引理获得V 与S 、C 所遵循的带跳的随机微分方程,并根据实际情况在一些假设条件下给出该方程的终边值条件,最终获得V 的求解公式。

构造无风险资产组合S S C V V S V C ∏=--

一方面V

∏的微分的期望为:()()V S C E d r V V S V C dt ∏=--

另一方面,

2222

11()()22

((,,)(,,))S t S SS C CC S C SC S S S S S E d V S V C V SCV dt

E V Y S C t V S C t dt v V Sdt

σσσσλλ?∏=+

+++-- 新产品发明专利池的市场价值V 所遵循的方程为

蒙特卡洛期权定价程序

欧式期权蒙特卡洛模拟程序 function [eucall,varprice,ci]=blsmc(S0,K,r,T,sigma,N) % 输入参数 %S0 初使资产价格T 到期时间 % K敲定价格 % r无风险利率 % sigma 波动率 % N 模拟次数 %%%%%%%% %输出参数 %eucall 欧式期权价格 %varprice 方差 % ci 95%置信区间 randn('seed',0); randT=randn(N,1); nuT=(r-sigma^2/2)*T; siT=sigma*sqrt(T); dispayoff=exp(-r*T)*max(0,S0*exp(nuT+siT*randT)-K); [eucall,varprice,ci]=normfit(dispayoff); 蒙特卡洛模拟亚式期权 %Asianmc.m function [p,aux,ci]=Asianmc(S0,K,r,T,sigma,NRteps,NRepl) % 蒙特卡洛模拟亚式期权 % 输入参数 %S0 初使资产价格 % T 到期时间 % K敲定价格 % r无风险利率 % sigma 波动率 % NSteps 时间离散数目 % NRepl 模拟次数 %%%%%%%% %输出参数 %p 权价格 %varprice 方差 % ci 95%置信区间 dt=T/NRteps; nudt=(r-.5*sigma^2)*dt; sidt=sigma*sqrt(dt); randn('seed',0);

randt=randn(NRepl,NRteps); rand1=nudt+sidt*randt; rand2=cumsum(rand1,2);%按列求和 path=S0*exp(rand2); payoff=zeros(NRepl,1); for i=1:NRepl payoff(i)=exp(-r*T)*max(0,mean(path(i,:))-K); end [p,aux,ci]=normfit(payoff);

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

(定价策略)期权定价中的蒙特卡洛模拟方法

(定价策略)期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法 期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。 蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。 §1. 预备知识 ◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。 大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov强大数定律: 设为独立同分布的随机变量序列,若 则有 显然,若是由同一总体中得到的抽样,那么由此大数定律可知样本均值当n很大时以概率1收敛于总体均值。

中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。 设为独立同分布的随机变量序列,若 则有 其等价形式为。 ◆Black-Scholes期权定价模型 模型的假设条件: 1、标的证券的价格遵循几何布朗运动 其中,标的资产的价格是时间的函数,为标的资产的瞬时期望收益率,为标的资产的波动率,是维纳过程。 2、证券允许卖空、证券交易连续和证券高度可分。 3、不考虑交易费用或税收等交易成本。 4、在衍生证券的存续期内不支付红利。 5、市场上不存在无风险的套利机会。 6、无风险利率为一个固定的常数。 下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。 伊藤Ito公式:设,是二元可微函数,若随机过程满足如下的随机微分方程

蒙特卡罗模拟与欧式期权定价

蒙特卡罗模拟与欧式期权定价 蒙特卡罗模拟进行期权定价的核心在于生成股票价格的随机过程。9.2节中,在期权到期的T 时刻,标的股票价格的随机方程为: )exp()exp(T T T T S Y S S εσμ+== 其中,随机变量ε服从标准正态分布,即服从N(0,1),随机变量T Y 服从正态分布,其均值为T T )5.0(2σμμ-=,方差为T T σσ=,μ为股票的收益率,σ为股票的波动率。期权的收益依赖于T S 在风险中性世界里的期望值,因此对于风险中性定价,股票的收益率(μ)可以用无风险利率r 减去连续红利收益率q 代替,也就是(r-q )。于是风险中性定价的T S 随机方程为: ] )5.0exp[(2T T q r S S T εσσ+--= 其中ε服从标准正态分布。上式中的股价运动过程与前面二叉树定价中的一样。 蒙特卡罗模拟随机产生一组股价终值T S 的样本值,即模拟试验。然后为每一个样本值计算期权收益并记录下来。产生足够多的样本值后,就可以得到期权收益的分布,通常需要计算分布的均值和标准差。模拟试验的代数平均值常用来估计期权收益分布的期望值,然后用无风险利率对其折现来得到看涨期权的价格。 图1中欧式期权的有效期是六个月,其标的资产是连续红利收益率为3%的股票。表中有36个期权收益的模拟试验,用它们可以估计出期权收益期望值的折现。 Using Monte Carlo Simulation to Value BS Call Option : 利用蒙特卡罗模拟来为布莱克-舒尔斯看涨期权定价

图1 期权信息及5个(从36个模拟数据得到)期权收益模拟结果 每个模拟试验产生一个终值股价(T S 的一个样本值)和一个期权收益值。在B 列中用Excel 的RAND 函数来产生服从均匀分布的随机数,然后在C 列用标准正态分布函数NORMSINV 将其转换成随机样本。RAND 函数产生[0,1]间服从均匀分布的随机数。将其作为累积概率值(值在0到1之间),用NORMSINV 即可得到服从标准正态分布的随机变量值,其结果大部分处在-3与3之间。例如,第一次模拟试验C22中的公式为: =NORMSINV(B22) 其输入值为0.1032(大约10%),产生的标准正态变量的值则为-1.2634。 得到随机样本值(ε),就可以用下面公式计算期权到期日的股票价格: ] )5.0exp[(2T T q r S S T εσσ+--= 为了将其转换为单元格公式的形式,有必要先计算出T 时刻的风险中性漂移项和波动率, 也就是T q r )5.0(2σ--和T εσ(分别处于B16和B17中)。因此,E22中的公式为: =$B$4*EXP($B$16+C22*$B$17) 相应的期权收益为(H22): =MAX($E$4*(E22-$B$5),0) E4中存放的是参数iopt ,它用来区分看涨期权和看跌期权。 计算模拟出的36个期权收益的平均值,然后折现即可得到看涨期权价值的估计量(E9)。用于折现的风险中性因子(exp(-rT))放在B18中。 图1显示,期权价格的蒙特卡罗估计值(12.85)与布莱克-舒尔斯期权价格有较大的差异。E10中,期权价值估计值的标准差(模拟期权收益的标准差除以模拟次数的平方

R软件 蒙特卡罗模拟

R使用指南 打开R 下图是R软件的主窗口,R软件的界面与Windows的其他编程软件类似,由一些菜单和快捷按钮组成。快捷按钮下面的窗口便是命令输入窗口,它也是部分运算结果的输出窗口,有些运算结果则会在新建的窗口中输出。 当一个R 程序需要你输入命令时,它会显示命令提示符。默认的提示符是>。技术上来说,R 是一种语法非常简单的表达式语言(expression language)。它大小写敏感,因此A 和a 是不同的符号且指向不同的变量。可以在R 环境下使用的命名字符集依赖于R 所运行的系统和国家(就是系统的locale 设置)。通常,数字,字母,. 和都是允许的(在一些国家还包括重音字母)。不过,一个命名必须以. 或者字母开头,并且以. 开头时第二个字符不允许是数字。基本命令要么是表达式(expressions)要么就是赋值(assignments)。如果一条命令是表达式,那么它将会被解析(evaluate),并将结果显示在屏幕上,同时清空该命令所占内存。赋值同样会解析表达式并且把值传给变量但结果不会自动显示在屏幕上。命令可以被(;)隔开,或者另起一行。基本命令可以通过大括弧(f和g) 放在一起构成一个复合表达式(compound expression)。注释几乎可以放在任何地方7。一行中,从井号(#)开始到句子收尾之间的语句就是注释。如果一条命令在一行结束的时候在语法上还不完整,R 会给出一个不同的提示符,默认是+。该提示符会出现在第二行和随后的行中,它持续等待输入直到一条命令在语法上是完整的。该提示符可以被用户修改。在后面的文档中,我们常常省略延续提示符(continuation prompt),以简单的缩进表示这种延续。 R的帮助

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本和固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。表1概率型量本利分析参数 项目概率数值 单位销售价格0.3 40 0.4 43 0.3 45 单位变动成本0.4 16 0.2 18 0.4 20 固定成本0.6 28000 0.4 30000

(定价策略)期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法 期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。 蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。 §1. 预备知识 ◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。 大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov 强大数定律: 设12,,ξξL 为独立同分布的随机变量序列,若 [],1,2,k E k ξμ=<∞=L 则有1 1(lim )1n k n k p n ξμ→∞===∑ 显然,若12,,,n ξξξL 是由同一总体中得到的抽样,那么由 此大数定律可知样本均值1 1n k k n ξ=∑当 n 很大时以概率1收敛于

总体均值μ。 中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。 设12,,ξξL 为独立同分布的随机变量序列,若 2 [],[],1,2,k k E D k ξμξσ=<∞=<∞=L (0,1)n k d n N ξ μ -??→∑ 其等价形式为2 1 1lim ()exp(),2n x k k n t n P x dt x ξμσ =→∞ -∞ -≤= --∞<<∞∑?。 ◆Black-Scholes 期权定价模型 模型的假设条件: 1、标的证券的价格遵循几何布朗运动 dS dt dW S μσ=+ 其中,标的资产的价格S 是时间t 的函数,μ为标的资产 的瞬时期望收益率,σ为标的资产的波动率,dW 是维纳过程。 2、证券允许卖空、证券交易连续和证券高度可分。 3、不考虑交易费用或税收等交易成本。 4、在衍生证券的存续期内不支付红利。 5、市场上不存在无风险的套利机会。 6、无风险利率r 为一个固定的常数。 下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析 蒙特卡罗模拟由著名的摩纳哥赌城而得名,他是一种非常强有力的方法学。对专业人员来说,这种模拟为方便的解决困难而复杂的实际问题开启了一扇大门。估计蒙特卡罗模拟最著名的早期使用是诺贝尔奖物理学家Enrico Fermi(有时也说是原子弹之父)在1930年的应用,那时他用一种随机方法来计算刚发现的中子的性质。蒙特卡罗模拟是曼哈顿计划所用到的模拟的核心部分,在20世纪50年代蒙特卡罗模拟就用在Los Alamos国家实验室发展氢弹的早期工作中,并流行于物理学和运筹学研究领域。兰德公司和美国空军是这个时期主要的两个负责资助和传播蒙特卡罗方法的组织,今天蒙特卡罗模拟也被广泛应用于不同的领域,包括工程,物理学,研发,商业和金融。 简而言之,蒙特卡罗模拟创造了一种假设的未来,它是通过产生数以千计甚至成千上万的样本结果并分析他们的共性实现的。在实践中,蒙特卡罗模拟法用于风险分析,风险鉴定,敏感度分析和预测。模拟的一个替代方法是极其复杂的随机闭合数学模型。对一个公司的分析,使用研究生层次的高等数学和统计学显然不合逻辑和实际。一个出色的分析家会使用所有他或她可得的工具以最简单和最实际的方式去得到相同的结果。任何情况下,建模正确时,蒙特卡罗模拟可以提供与更完美的数学方法相似的答案。此外,有许多实际生活应用中不存在闭合模型并且唯一的途径就是应用模拟法。那么,到底什么是蒙特卡罗模拟以及它是怎么工作的? 什么是蒙特卡罗模拟? 今天,高速计算机使许多过去看来棘手的复杂计算成为可能。对科学家,工程师,统计学家,管理者,商业分析家和其他人来说,计算机使创建一个模拟现实的模型成为可能,这有助于做出预测,其中一种方法应用于模拟真实系统,它通过调查数以百计甚至数以千计的可能情况来解释随机性和未来不确定性。结果通过编译后用于决策。这就是蒙特卡罗模拟的全部内容。 形式最简单的蒙特卡罗模拟是一个随机数字生成器,它对预测,估计和风险分析都很有用。一个模拟计算模型的许多情况,这通过反复地从预先定义的特定变量概率分布中采集数据并将之应用于模型来实现。因为所有的情况都产生相应的结果,每种情况都可以蕴含一种预测。预测的是你定义为重要模型结果的事项(通常含有公式或函数)。 将蒙特卡罗模拟法想象为从一个大篮子里可放回的反复拿出高尔夫球。拦在的大小和形

5蒙特卡洛方法模拟期权定价

材料五:蒙特卡洛方法模拟期权定价 1.蒙特卡洛方法模拟欧式期权定价 利用风险中性的方法计算期权定价: ?()rt T f e E f -= 其中,f 是期权价格,T f 是到期日T 的现金流,?E 是风险中性测度 如果标的资产服从几何布朗运动: dS Sdt sdW μσ=+ 则在风险中性测度下,标的资产运动方程为: 2 0exp[()]2T S S r T σ=-+ 对于欧式看涨期权,到期日欧式看涨期权现金流如下: 2 (/2)max{0,(0)}r T S e K σ-+- 其中,K 是执行价,r 是无风险利率,σ是标准差, ε是正态分布的随机变量。 对到期日的现金流用无风险利率贴现,就可知道期权价格。 例1 假设股票价格服从几何布朗运动,股票现在价格为50,欧式期权执行价格为52,无风险利率为0.1,股票波动标准差为0.4,期权的到期日为5个月,试用蒙特卡洛模拟方法计算该期权价格。 下面用MA TLAB 编写一个子程序进行计算: function eucall=blsmc(s0,K,r,T,sigma,Nu) %蒙特卡洛方法计算欧式看涨期权的价格 %输入参数 %s0 股票价格 %K 执行价 %r 无风险利率 %T 期权的到期日 %sigma 股票波动标准差 %Nu 模拟的次数 %输出参数 %eucall 欧式看涨期权价格 %varprice 模拟期权价格的方差 %ci 95%概率保证的期权价格区间

randn('seed',0); %定义随机数发生器种子是0, %这样保证每次模拟的结果相同 nuT=(r-0.5*sigma^2)*T sit=sigma*sqrt(T) discpayoff=exp(-r*T)*max(0,s0*exp(nuT+sit*randn(Nu,1))-K) %期权到期时的现金流 [eucall,varprice,ci]=normfit(discpayoff) %在命令窗口输入:blsmc(50,52,0.1,12/5,0.4,1000) 2. 蒙特卡洛方法模拟障碍期权定价 障碍期权,就是确定一个障碍值b S ,在期权的存续期内有可能超过该价格,也可能低于该价格,对于敲出期权而言,如果在期权的存续期内标的资产价格触及障碍值时,期权合同可以提前终止执行;相反,对于敲入价格,如果标的资产价格触及障碍值时,期权合同开始生效。 当障碍值b S 高于现在资产价格0S ,称上涨期权,反之称下跌期权。 对于下跌敲出看跌期权,该期权首先是看跌期权,股票价格是0S ,执行价格是K ,买入看跌期权就首先保证以执行价K 卖掉股票,下跌敲出障碍期权相当于在看跌期权的基础上附加提前终止执行的条款,内容是当股票价格触及障碍值b S 时看跌期权就提前终止执行。因为该期权对于卖方有利,所以其价格应低于看跌期权的价格。 对于下跌敲出看跌期权,该期权首先是看跌期权,股票价格是0S ,执行价格是K ,买入看跌期权就首先保证以执行价K 卖掉股票,下跌敲出障碍期权相当于在看跌期权的基础上附加提前终止执行的条款,内容是当股票价格触及障碍值b S 时看跌期权就提前终止执行。因为该期权对于卖方有利,所以其价格应低于看跌期权的价格。 对于下跌敲入看跌期权,该期权首先是看跌期权,下跌敲出障碍期权相当于在看跌期权的基础上附加提前何时生效的条款,内容是当股票价格触及障碍值b S 时看跌期权开始生效。 当障碍值b S 确定时,障碍期权存在解: 4275{()()[()()]}rT P Ke N d N d a N d N d -=--- 03186{()()[()()]}S N d N d b N d N d ---- 其中 212/0()r b S a S σ-+=, 212/0()r b S b S σ+=, 2 1d =

谈谈期权的蒙特卡洛定价法

谈谈期权的蒙特卡洛定价法 蒙特卡洛方法又称随机抽样或统计试验方法,属于计算数学的一个分支,最早应用于20世纪40年代中期的原子能领域。 蒙特卡洛方法是以概率和统计理论方法为基础的一种计算方法,利用随机数(实际应用中通常为伪随机数)来产生随机的基于一定分布假设的数字序列,进而解决各种计算问题。通过对问题的结果分布进行假设和拟合,利用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡洛命名。 从理论上来说,蒙特卡洛方法需要大量的实验。实验次数越多,得到的结果才越精确。计算机技术的发展使得蒙特卡洛方法得到快速普及。 现代的蒙特卡洛方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用。 借助计算机技术,蒙特卡洛方法兼具了两大优点:一是简单,省却了繁复的数学推导和演算过程,使得一般人也能够理解和掌握;二是快速,简单和快速是蒙特卡洛方法在现代项目管理中获得应用的技术基础。 在实际应用中,蒙特卡洛方法通过执行统计抽样实验来解决各种数学问题,提供了近似的解决方案。在金融行业数量化工具的设计和定价中蒙特卡洛方法被广泛运用,如为一些难以求出解析解的奇异期权进行定价。 有些投资者不太清楚蒙特卡洛方法在期权定价领域里面的必要性,事实上产生这样的疑惑和国内期权市场发展情况息息相关。国内期权市场发展落后于欧美发达国家,场内期权数量屈指可数,相关的指数和资产管理产品寥寥无几,同时场外期权主要交易的品种也以简单的香草期权(vanilla options)为主,夹杂少量特殊定制的奇异期权。 由于接触的大多是已经有解释解,或者说期权交易和对冲中的希腊字母相对容易计算的期权品种,无论是投资者还是大量金融机构的从业人员对相对复杂的期权品种的定价以及希腊字母的计算方式还是比较陌生的。 实际上在交易者频繁交易各种奇异期权的国外市场,蒙特卡洛方法是相当常用而且具有实战意义的定价方式。下面我们以最为简单的美式期权展开讨论: 美式期权与欧式期权相对应,其持有者有权利在期权续存期内的任意时间行权。在国外成熟的交易市场,绝大部分交易的期权合约都是美式的。相比而言,欧式期权的定价更加容易,实际情况中,交易者会考虑利用相似的欧式期权的价格对美式期权价格进行推导。

23(蒙特卡罗模拟)

专题5 蒙特卡罗模拟的有关问题 大家知道,只有当经典回归模型满足所有的假定条件时,参数的估计量才具有最佳线性无偏特性,即有限样本特性,同时也具有渐近特性。当假定条件不成立时(比如存在异方差、自相关等),所采用的广义最小二乘法,以及对联立方程模型的估计,动态分布滞后模型的估计,向量自回归模型的估计所得参数的估计量只具有渐近特性。也就是说,只有当样本容量相当大时,渐近特性才起作用。而当样本容量不是很大,甚至很小时,仍然不知道估计量的有限样本分布特征。 另外通过对非平稳过程的研究知单位根检验式和非平稳变量之间回归参数和t统计量不服从正态分布。他们都是渐近地服从Wiener过程函数的分布。参数估计量和统计量的有限样本特性不能用解析的方法求解。 对于上述两种情形,若要研究这些估计量和统计量的有限样本分布特征,通常采用两种方法。一种为数值计算法。也称为有限样本近似法(finite-sample approximation)。这种方法要用到许多数学知识,专业性很强,使没有受过专门训练的人员运用此方法受到限制。(2)蒙特卡罗模拟方法。又称随机模拟法。Boot strap 1.蒙特卡罗(Monte Carlo)模拟和自举(Boost trap)发展过程 这是一种通过设定随机过程(数据生成系统),反复生成时间序列,并计算参数估计量和统计量,进而研究其分布特征的方法。蒙特卡罗在欧洲的摩那哥,以著名赌城而得名。据说这个术语是Metropolis 在1949年提出的。若再晚些时候,蒙特卡罗模拟也许就称作Las Vegas(在美国的Nevada州,著名赌城)模拟方法了。 自举模拟与蒙特卡罗模拟既有联系,又不相同。自举(Boost trap,亦称靴襻)这个名词是Efron在1979年提出的。“自举”一词来源于儿童故事。指一个人落水时,试图用自提鞋扣儿的方法自救。20世纪80,90年代发展很快。自举,即采用从总体中反复抽取样本的方法计算参数估计量的值,置信区间或相应统计量的值并估计这些量的分布。这里介绍的远不是自举模拟的全貌,而是参数估计方面的应用。 因为这些方法的实现是以高容量和高速度的计算机为前提条件,所以只是在近年才得到广泛推广。 2.蒙特卡罗模拟和自举模拟原理 进行蒙特卡罗模拟和自举模拟首先要设定数据生成系统。而设定数据生成系统的关键是要产生大量的随机数。例如模拟样本为100的随机趋势过程的DF统计量的分布,若试验1万次,则需要生成200万个随机数。 计算机所生成的随机数并不是“纯随机数”,而是具有某种相同统计性质的随机数。计量经济学中蒙特卡罗模拟和自举模拟所用到的随机数一般是服从N(0,1)分布的随机数。计算机生成的随机数称作“伪随机数”(pseudo-random number)。生成的随机数的程序称作“伪随机数生成系统”。实际上计算机不可能生成纯随机数。 在进行蒙特卡罗模拟时一般要给定多种条件。例如样本容量要选择50,100,200等多种。有时模型形式也要选择多种。从而研究参数估计量和统计量在各种条件下的分布特征。当只需要这几个特定条件下的模拟结果时,把结果纪录下来就可以了。当需要很多条件下的模拟结果时,一般采用估计响应面函数(response surface function)的方法研究之。例如Dicky-Fuller的DF检验表中只给出了样本容量为25,50,100,250,500几个点的DF分布特征。显然对25至500间每个样本容量都进行DF分布模拟是不实际的,也是无必要的。

第八章--蒙特卡洛期权定价方法

第八章蒙特卡洛期权定价方法 在金融计算中蒙特卡洛模拟是一种重要的工具:可以用来评估投资组合管理规则、为期权定价、模拟套期保值交易策略、估计风险价值。蒙特卡洛方法主要的优势在于对大多数情况都适用、易于使用、灵活。它把随机波动性和奇异期权的很多复杂特性都考虑进去了,更倾向于使用处理高维问题,而网格和PDF分析框架却不适用。蒙特卡洛模拟潜在的劣势在于它的计算量大。多次的重复需要完善我们所关注的置信区间的估计。利用方差缩减技术和低差异序列可以部分的解决这个问题。本章的目的是解释这些技术在一些例子上的应用,包括一些路径依赖型期权。这章是第四章的延伸,在第四章里我们讨论了蒙特卡洛积分。需要强调的是蒙特卡洛方法是概念上的一个数字积分工具,即使我们适用更多的“模拟”或“抽样”。在使用低差异序列而不是伪随机生成时这需要牢记。 如果可能,我们可以把模拟的结果和分析公式进行比较。很明显我们这样做的目标是一个纯粹的教学。如果你要计算一个矩形房间的面积,你只需要用房间的长度乘以房间的宽度即可,而不必要计算有多少次一块标准砖与这个表面相匹配。尽管如此,你还是应该学会在一些简单案例中首先适用模拟的方法,在这些简单的例子中我们可以检验答案的一致性;更进一步,我们也要看为达到方差减小的目的分析公式可用于的模拟期权可能更有力的控制变量。 蒙特卡洛应用的出发点是生成样本路径,这个生成的样本路径给予一个描述价格(或利率)动态的随机微分方程。在8.1节我们解释几何布朗运动的路径生成;

在一个具体例子中模拟两个对冲策略,我们也会讨论布朗桥,它是适时推进模拟样本的一个替代方案。在8.2节将讨论交换期权,它被用作为一个如何将这种方法推广到多维过程的一个简单实例。在8.3节我们考虑一个弱路径依赖型期权的例子,这是个下跌敲出看跌期权;我们加入了有条件的蒙特卡洛和为减小方差抽样的重要性。在8.4节将讨论到强路径依赖型期权,同时我们证明了运用控制变量和低差异序列为算术平均亚式期权定价。我们以概述由蒙特卡洛抽样产生的估计期权敏感性的基本问题来结束本章;在8.5节我们考虑一个普通的看涨期权A的简单案例。在第10.4节将讨论到随机模拟期权定价的另一个应用,它应用于美式期权;而一个简单的模拟方法在早期的应用中不可实行,并且这个问题在随机动态优化的框架里被强制转换。 8.1 路径生成 蒙特卡洛期权定价方法的应用的出发点是对样本基本因素路径的产生。对于一般的期权就像在第四章里面一样不需要产生路径:只需要关注标的资产到期日的价格。但是如果路径依赖型期权,我们就需要整条路径或者至少需要在给定时刻的一系列价值。如果服从几何布朗运动,情况的处理就非常简单。事实上,必须认识到在路径生成中有两个误差源:样本误差、离散误差。 样本错误时因为蒙特卡洛方法的随机性,这个问题可以通过减小方差的办法得到缓解。为了理解什么是离散错误,我们考虑一个典型的离散连续时间模型,例如:伊藤随机微分方程:

蒙特卡罗算法与matlab(精品教程)

第一章:Monte Carlo方法概述 讲课人:Xaero Chang | 课程主页: https://www.wendangku.net/doc/493652306.html,/notes/intro2mc 本章主要概述Monte Carlo的一些基础知识,另外包括一个最简单的用Monte Carlo方法计算数值积分的例子。 一、Monte Carlo历史渊源 Monte Carlo方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法,基本思想是基于概率和体积间的相似性。它和Simulation有细微区别。单独的Simulation只是模拟一些随机的运动,其结果是不确定的;Monte Carlo 在计算的中间过程中出现的数是随机的,但是它要解决的问题的结果却是确定的。 历史上有记载的Monte Carlo试验始于十八世纪末期(约1777年),当时布丰(Buffon)为了计算圆周率,设计了一个“投针试验”。(后文会给出一个更加简单的计算圆周率的例子)。虽然方法已经存在了200多年,此方法命名为Monte Carlo则是在二十世纪四十年,美国原子弹计划的一个子项目需要使用Monte Carlo方法模拟中子对某种特殊材料的穿透作用。出于保密缘故,每个项目都要一个代号,传闻命名代号时,项目负责人之一von Neumann灵犀一点选择摩洛哥著名赌城蒙特卡洛作为该项目名称,自此这种方法也就被命名为Monte Carlo方法广为流传。 十一、Monte Carlo方法适用用途 (一)数值积分 计算一个定积分,如,如果我们能够得到f(x)的原函数F(x),那么直接由表达式: F(x1)-F(x0)可以得到该定积分的值。但是,很多情况下,由于f(x)太复杂,我们无法计算得到原函数F(x)的显示解,这时我们就只能用数值积分的办法。如下是一个简单的数值积分的例子。 数值积分简单示例 如图,数值积分的基本原理是在自变量x的区间上取多个离散的点,用单个点的值来代替该小段上函数f(x)值。 常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来,用这个面积来近似函数f(x)(蓝色曲线)与x轴围成的面积。这样做

蒙特卡洛模拟金融衍生产品定价

第8章蒙特卡洛模拟金融衍生产品定价 本章介绍蒙特卡洛模拟期权定价的内容,要求读者掌握随机数生成方式,了解蒙特卡洛定价就是模拟风险中性测度下标的资产的运动过程,学会蒙特卡洛方法模拟欧式期权定价,掌握提高模拟精度的常用方法。 §随机模拟基本原理 1977年,菲力埔·伯耶勒(Phelim Boyle)提出了模拟方法求解金融资产定价问题,其想法是假设资产价格分布是随机波动,如果知道了这个波动过程,就可以通过随机模拟不同的路径,每做完一次模拟,就产生了一个最终资产价值,再进行若干次这样的过程,那么所得到的结果就是一个最终的资产价值分布,从这个分布中我们可以得到期望的资产价格。 随机数生成函数 1.均匀分布随机数生成函数 MATLAB中的unidrnd函数可以生成1到N的均匀分布随机数。 调用方式 R=unidrnd(N); R=unidrnd(N,m); R=unirnd(N,m,n); 其中,N所要生成的随机数个数,m确定输出随机矩阵R的行数,n确定输出随机矩阵R的列数 2.生成服从连续均匀分布的随机数 如果需要生成服从连续分布的随机数,则需调用unifrnd函数,其调用格式为调用方式1 R=unifrnd(A,B)生成位于A、B之间的一个随机数。 调用方式2 R=unifrnd(A,B,m)生成位于A、B之间的随机数。m=[m1,m2]表示行数列数。 调用方式3 R=unifrnd(A,B,m,n),m,n分别表示行数、列数 unifrnd(1,2,[5,6]),unifrnd(1,2,5,6) 8.1.2 生成正态分布随机数 调用方式 R=normrnd(mu,sigma) R=normrnd(mu,sigma,m) R=normrnd(mu,sigma,m,n) 8.1.3 特定分布随机数发生器 MATLAB中有统一格式的随机数发生器,函数名称为random,可生成许多服从不同分布的随机数。 y=random('name',A1,A2,A3,m,n) 表生成特定分布的随机数函数参数表 beta分布:beta,二项分布:bino,卡方:chi2,指数分布:exp,F-分布:f, Gamma:gam Lognormal:logn, uniform:unif;Poisson:poiss,T:t;Normal->norm; Noncentral F ->ncf, Noncentral->nct

蒙特卡洛模拟法及其Matlab案例

一蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 二蒙特卡洛模拟法求解步骤 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。 解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。 三蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 四资产组合模拟 假设有五种资产,其日收益率(%)分别为 0.0246 0.0189 0.0273 0.0141 0.0311 标准差分别为 0.9509 1.4259, 1.5227, 1.1062, 1.0877 相关系数矩阵为 1.0000 0.4403 0.4735 0.4334 0.6855 0.4403 1.0000 0.7597 0.7809 0.4343 0.4735 0.7597 1.0000 0.6978 0.4926 0.4334 0.7809 0.6978 1.0000 0.4289 0.6855 0.4343 0.4926 0.4289 1.0000 假设初始价格都为100,模拟天数为504天,模拟线程为2,程序如下 %run.m ExpReturn = [0.0246 0.0189 0.0273 0.0141 0.0311]/100; %期望收益

蒙特卡洛期权定价方法

第八章蒙特卡洛期权定价方法在金融计算中蒙特卡洛模拟是一种重要的工具:可以用来评估投资组合管理规则、为期权定价、模拟套期保值交易策略、估计风险价值。蒙特卡洛方法主要的优势在于对大多数情况都适用、易于使用、灵活。它把随机波动性和奇异期权的很多复杂特性都考虑进去了,更倾向于使用处理高维问题,而网格和PDF分析框架却不适用。蒙特卡洛模拟潜在的劣势在于它的计算量大。多次的重复需要完善我们所关注的置信区间的估计。利用方差缩减技术和低差异序列可以部分的解决这个问题。本章的目的是解释这些技术在一些例子上的应用,包括一些路径依赖型期权。这章是第四章的延伸,在第四章里我们讨论了蒙特卡洛积分。需要强调的是蒙特卡洛方法是概念上的一个数字积分工具,即使我们适用更多的“模拟”或“抽样”。在使用低差异序列而不是伪随机生成时这需要牢记。 如果可能,我们可以把模拟的结果和分析公式进行比较。很明显我们这样做的目标是一个纯粹的教学。如果你要计算一个矩形房间的面积,你只需要用房间的长度乘以房间的宽度即可,而不必要计算有多少次一块标准砖与这个表面相匹配。尽管如此,你还是应该学会在一些简单案例中首先适用模拟的方法,在这些简单的例子中我们可以检验答案的一致性;更进一步,我们也要看为达到方差减小的目的分析公式可用于的模拟期权可能更有力的控制变量。 蒙特卡洛应用的出发点是生成样本路径,这个生成的样本路径给予一个描述价格(或利率)动态的随机微分方程。在8.1节我们解释几何布朗运动的路径生成;在一个具体例子中模拟两个对冲策略,我们也会讨论布朗桥,它是适时推进模拟样本的一个替代方案。在8.2节将讨论交换期权,它被用作为一个如何将这种方法推广到多维过程的一个简单实例。在8.3节我们考虑一个弱路径依赖型期权的例子,这是个下跌敲出看跌期权;我们加入了有条件的蒙特卡洛和为减小方差抽样的重要性。在

蒙特卡罗算法与matlab(精品教程)

第一章:Monte Carlo 方法概述
讲课人:Xaero Chang | 课程主页: https://www.wendangku.net/doc/493652306.html,/notes/intro2mc 本章主要概述 Monte Carlo 的一些基础知识,另外包括一个最简单的用 Monte Carlo 方法计算数值积分的例子。
一、Monte Carlo 历史渊源
Monte Carlo 方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法, 基本思想是基于概率和体积间的相似性。它和 Simulation 有细微区别。单独的 Simulation 只 是模拟一些随机的运动,其结果是不确定的;Monte Carlo 在计算的中间过程中出现的数是 随机的,但是它要解决的问题的结果却是确定的。 历史上有记载的 Monte Carlo 试验始于十八世纪末期 (约 1777 年) 当时布丰 , (Buffon) 为了计算圆周率,设计了一个“投针试验”。(后文会给出一个更加简单的计算圆周率的例 子)。虽然方法已经存在了 200 多年,此方法命名为 Monte Carlo 则是在二十世纪四十年, 美国原子弹计划的一个子项目需要使用 Monte Carlo 方法模拟中子对某种特殊材料的穿透作 用。 出于保密缘故, 每个项目都要一个代号, 传闻命名代号时, 项目负责人之一 von Neumann 灵犀一点选择摩洛哥著名赌城蒙特卡洛作为该项目名称, 自此这种方法也就被命名为 Monte Carlo 方法广为流传。
十一、Monte Carlo 方法适用用途 (一)数值积分
计算一个定积分,如 ,如果我们能够得到 f(x)的原函数 F(x),那么直接由表 达式: F(x1)-F(x0)可以得到该定积分的值。但是,很多情况下,由于 f(x)太复杂,我们无法 计算得到原函数 F(x)的显示解, 这时我们就只能用数值积分的办法。 如下是一个简单的数值 积分的例子。 数值积分简单示例
如图, 数值积分的基本原理是在自变量 x 的区间上取多个离散的点, 用单个点的值来代 替该小段上函数 f(x)值。 常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来, 用这个面积来近似函数 f(x)(蓝色曲线)与 x 轴围成的面积。这样做当然是不精确的,但是 随着分段数量增加,误差将减小,近似面积将逐渐逼近真实的面积。

相关文档
相关文档 最新文档