文档库 最新最全的文档下载
当前位置:文档库 › 基于PCA的人脸识别研究报告

基于PCA的人脸识别研究报告

基于PCA的人脸识别研究报告
基于PCA的人脸识别研究报告

项目名称:基于PCA的人脸识别算法研究

摘要

随着人类社会的进步,以及科技水平的提高,一些传统的身份认证的方法逐渐暴露出各种问题,因此人们需要采用一种更加可靠安全的身份认证方法。毫无疑问人体的生物特征的独一无二的,特别是其不容易丢失及复制的特性很好满足了身份识别的需要。并且随着计算机科学技术和生物医学的发展使得利用生物特征识别成为了可能。因此基于指纹、人脸、视网膜等生物特征的识别方法也越来越多。由于人脸识别的操作快速简单,结果直观,准确可靠,不需要人的配合等优点已成为人们关注的焦点。主成分分析(PCA)法通过提取高维度的人脸图像的主元,使得图像在低维度空间中被处理来降低了图像处理的难度。由于其有效的解决了图像空间维数过高的问题,已经成为人脸识别领域非常重要的理论。此次研究的就是基于PCA的人脸识别算法的实现。

本文按照完整人脸识别流程来分析基于PCA的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能分别选用了Essex人脸数据库和ORL人脸库,并在后期采用了自建的人脸库。接下来是人脸图像预处理方法。由于采用的人脸图像质量较好,而且已经做过相应的预处理,所以本文试验中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。在实验中我们发现基于PCA的人脸识别系统的识别率很高,而且具有一定鲁棒性,所以基于PCA的人脸识别算法的实现的研究还是有意义。

【关键词】人脸识别 PCA算法奇异值分解定理欧几里得距离

ABSTRACT

With the development of science and technology, the progress of human society, the traditional identification is easy to lose, easy to be cracked and it has not play an identifiable role. People need a more secure and reliable identification technology. Biometric is unique, easy to lose and replication characteristics of good meet the needs of the identification. With the development of computer science and technology and biomedical makes use of biometric identification has become possible. In the field of biometric identification, face recognition with the advantages of operation is fast and simple, the results are intuitive, accurate and reliable,do not need co-ordination, has become the focus of attention. The principal component analysis (PCA) to extract high dimensional face image of the main element, making the images are processed in low-dimensional space and it reduces the difficulty of image processing. PCA solves effectively the problem of high dimension image space and it has become a very important theory in face recognition field. This paper is in this context of writing from.

In accordance with the full recognition process to analyze the performance of PCA-based face recognition algorithm. The first to use the method of access to commonly used face images for face images. In order to better analysis is based on the performance of the PCA face recognition system selected Essex face database. Next is the face image preprocessing methods. Essex face image quality is better, and have done the appropriate pretreatment, using only gray-scale processing of this trial. Then use the PCA for face feature extraction using singular value decomposition theorem to calculate the covariance matrix of the eigenvalues and eigenvectors, and use the Euclidean distance of the nearest neighbor classifier to the classification of human face discrimination. In the experiment, we found that a high recognition rate of the PCA-based face recognition system, but with a certain robustness, the PCA-based face recognition algorithm to achieve meaningful. 【Key words】face recognition PCA algorithm SVD Euclidean distance

前言

随着社会和科技的发展,社会步伐的加快,人们对高效可靠的身份识别需求日益强烈。各种技术在科研和实际中都受到了很大的重视和发展。由于生物特征在的稳定性和唯一性使其成为了作为身份识别的理想依据。人脸特征作为典型的生物特征外,还有隐蔽性好,易于被用户接受,不需要人的配合等优点。现已成为了身份识别领域研究的热点。PCA算法通过降低维度,提取主元素,减少了数据冗余,解决了图像纬度太高无法处理或处理很慢的特点,同时保持了原始图像的绝大部分信息。在人脸识别领域,很多先进的识别算法都是在其基础上的改进。所以研究基于PCA的人脸识别算法实现具有重要的理论和使用价值。

本文主要介绍基于PCA的人脸识别算法的实现,先介绍了PCA算法的理论基础,其次介绍了其在数字图像领域的应用,最后结合具体研究详述了研究过程。

第一节 主成分分析基本理论

一、什么是主成分分析?

主成分分析为Principle component analysis [10,11,12]的中文翻译,其英文简写为PCA 。它是一种非常流行和实用的数据分析技术,最重要的应用是对原有数据进行简化。主成分分析可以有效的找出数据中最“主要”的元素和结构,去除噪声和冗余,将原有的复杂数据降维处理,揭示出隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的身影。PCA 被称为应用线形代数最有价值的结果之一。

二、基变换

从线形代数的角度来看,PCA 的目标就是使用另一组基去重新描述得到的数据空间。而新的基要能尽量揭示原有的数据间的关系。在这个例子中,沿着某x 轴上的运动是最重要的。这个维度即 最重要的“主元”。PCA 的目标就是找到这样的“主元”,最大程度的去除冗余和噪音的干扰。

1. 标准正交基

标准正交基表现了数据观测的一般方式。

在线形代数中,这组基表示为行列向量线形无关的单位矩阵。

121

000100

01m b b B I b ???????????

?===??????????

??L L M M M O M L

(4.2) 2. 基变换

从更严格的数学定义上来说,PCA 回答的问题是:如何寻找到另一组正交基,它们是标准正交基的线性组合,而且能够最好的表示数据集?

在PCA 方法中有一个很关键的假设:线性。这是一个非常好的假设,它使问题得到了很大程度的简化,具体表现为数据被限制在一个向量空间中,能被一组基表示,并且还隐含的假设了数据间的连续性关系。

这样一来数据就可以被表示为各种基的线性组合。令X 表示原数据集。X 是一个m*n 的矩

阵,它的每一个列向量都表示一个时间采样点上的数据X u u v

。Y 表示转换以后的新的数据集表示。P 是他们之间的线性转换。它们间的转换关系为

PX Y = (4.3)

有如下定义: p i 表示P 的行向量。 x i 表示X 的列向量。 y i 表示Y 的列向量。

上式(3)在线性代数中,它有如下的含义:

P 是从X 到Y 的转换矩阵。几何上来说,P 对X 进行旋转和拉伸得到Y 。P 的行向量,

(p 1,p 2,…,p m )是一组新的基,而Y 是原数据X 在这组新的基表示下得到的重新表示。 下面是对最后一个含义的说明:

[]11n m p PX x x p ??

??=??????M L (4.4)

1111n m m n p x p x Y p x p x ????

??=???????

L M O

M L

(4.5) 注意到Y 的列向量:

1i i m i p x y p x ???

??=???????

M (4.6) 可见y i 表示的是x i 与P 中对应列的点积,也就是相当于是在对应向量上的投影。所以,P

的行向量事实上就是一组新的基。它对原数据X 进行重新表示。

3. 问题

在线性的假设条件下,问题转化为寻找一组变换后的基,也就是P 的行向量(p 1,p 2,…,p m ),这些向量就是PCA 中所谓的“主元”。问题转化为如下的形式:

怎样才能最好的表示原数据X ? P 的基怎样选择才是最好的?

解决问题的关键是如何体现数据的特征。那么,什么是数据的特征,如何体现呢?

三、协方差衡量

如何选择最优的P 基需要借助协方差来进行衡量和判断:

21

()()1

n i i i AB

a a

b b n σ

---=

-∑ (4.9)

A ,

B 分别表示不同的观测变量所记录的一组值,在统计学中,由协方差的性质可以得到:

2

0AB σ≥,且20AB σ=当且仅当观测变量A ,B 相互独立。22AB B σσ=,当A=B 等价的,将A,B 写

成行向量的形式:

12[,,...,]n A a a a =,12[,,...,]n B b b b =

协方差可以表示为

2

1

1

T AB AB n σ=

- (4.10)

那么,对于一组具有m 个观测变量,n 个采样时间点的采样数据X ,将每个观测变量的值写为行向量,可以得到一个m*n 的矩阵:

1m x X x ??

??=??????

M (4.11) 接下来定义协方差矩阵如下:

1

1

T X C XX n =

- (4.12)

11

12

121

22

11

2

2

22222222m

m

m m m m x

x x x

x x x x

x x

x x X x x x x

x x C σσσσσσσσσ??

??

??

=????????

L L M M

O M L

(4.13) 容易发现协方差矩阵具有如下性质:

1C X 是一个m*m 的平方对称矩阵。 ○

2 C x 对角线上的元素是对应的观测变量的方差。 ○

3 非对角线上的元素是对应的观测变量之间的协方差。 协方差矩阵C X 包含了所有观测变量之间的相关性度量。更重要的是,根据前两部分的说明,这些相关性度量反映了数据的噪音和冗余的程度。

在对角线上的元素越大,表明信号越强,变量的重要性越高;元素越小则表明可能是存在的噪音或是次要变量。

在非对角线上的元素大小则对应于相关观测变量对之间冗余程度的大小。

一般情况下,初始数据的协方差矩阵总是不太好的,表现为信噪比不高且变量间相关度大。PCA 的目标就是通过基变换对协方差矩阵进行优化,找到相关“主元”。那么,如何进行优化?矩阵的那些性质是需要注意的呢?

协防差矩阵的对角化

总结上面的部分可以发现主元分析以及协方差矩阵优化的原则是:1)最小化变量冗余即对应于协方差矩阵的非对角元素要尽量小;2)最大化信号即对应于要使协方差矩阵的对角线上的元素尽可能的大。因为协方差矩阵的每一项都是正值,最小值为0,所以优化的目标矩阵C Y 的非对角元素应该都是0,对应于冗余最小。所以优化的目标矩阵C Y 应该是一个对角阵。即只有对角线上的元素可能是非零值。同时,PCA 假设P 所对应的一组变换基必须是标准正交的,而优化矩阵C Y 对角线上的元素越大,就说明信号的成分越大,换句话就是对应于越重要的“主元”。

对于协方差矩阵进行对角化的方法很多。根据上面的分析,最简单最直接的算法就是在多维空间进行搜索:

1在m 维空间中进行遍历,找到一个方差最大的向量,令作p 1。 ○

2在与p 1垂直的向量空间中进行遍历,找出次大的方差对应的向量记作p 2 ○

3对以上过程循环,直到找出全部m 的向量。它们生成的顺序也就是“主元”的排序。 这个理论上成立的算法说明了PCA 的主要思想和过程。在这中间,牵涉到两个重要的特性:1)转换基是一组标准正交基。这给PCA 的求解带来了很大的好处,它可以运用线性代数的相关理论进行快速有效的分解。这些方法将在后面提到。2)在PCA 的过程中,可以同时得到新的基向量所对应的“主元排序”,利用这个重要性排序可以方便的对数据进行简化处理或是压缩。

四、PCA 求解:特征根分解

在线形代数中,PCA 问题可以描述成以下形式: 寻找一组正交基组成的矩阵P ,有Y=PX ,使得1

1

T Y C YY n ≡-是对角阵。则P 的行向量(也就是一 组正交基),就是数据X 的主元向量。

对Y C 进行推导:

1111

()()()1111

T T T T T T Y C YY PX PX PXX P P XX P n n n n =

===---- (4.14)

1

1

T Y C PAP n =- (4.15)

定义T A XX ≡,则A 是一个对称阵。对A 进行对角化求取特征向量得:

T A EDE = (4.16)

则D 是一个对角阵而E 则是对称阵A 的特征向量排成的矩阵。

这里要提出的一点是,A 是一个m*m 的矩阵,而它将有p(p<=m)个特征向量。其中p 是矩

阵A 的的秩。如果p<=m ,则A 即为退化阵。此时分解出的特征向量不能覆盖整个m 空间。此时只需要在保证基的正交性的前提下,在剩余的空间中任意取得m-p 维正交向量填充E 的空格即可。它们将不对结果造成影响。因为此时对应于这些特征向量的特征值,也就是方差值

为零

求出特征向量矩阵后我们取T P E =,则T A P DP =,由线形代数知识可知矩阵P 有性质

1T P P -=,从而进行如下计算:

111111

()()()()()1111

T T T T T Y C PAP P P DP P PP D PP PP D PP n n n n --====---- (4.17)

1

1

Y C D n =- (4.18)

可知此时的P 就是我们需要求得变换基。至此我们可以得到PCA 的结果: X 的主元即是T XX 的特征向量也就是矩阵P 的行向量。 矩阵Y C 对角线上第i 个元素是数据X 在方向i p 的方差。 我们可以得到PCA 求解的一般步骤:

1采集数据形成m*n 的矩阵。m 为观测变量个数,n 为采样点个数。 ○

2在每个观测变量(矩阵行向量)上减去该观测变量的平均值得到矩阵X 。 ○

3对T XX 进行特征分解,求取特征向量以及所对应的特征根。

五、总结:

PCA 技术的一大好处是对数据进行降维的处理。我们可以对新求出的“主元”向量的重要性进行排序,根据需要取前面最重要的部分,将后面的维数省去,可以达到降维从而简化模型或是对数据进行压缩的效果。同时最大程度的保持了原有数据的信息。

PCA 方法和线形代数中的奇异值分解(SVD)方法有在的联系,一定意义上来说,PCA 的解法是SVD 的一种变形和弱化。对于m*n 的矩阵X ,通过奇异值分解可以直接得到如下形式:

T X U V =∑ (4.19)

其中U 是一个m*m 的矩阵,V 是一个n*n 的矩阵,而∑是m*m 的对角阵。∑形式如下:

1

0=000r

σσ?????????

???

??????∑O O (4.20) 其中12...r σσσ≥≥≥,是原矩阵的奇异值。由简单推导可知,如果对奇异值分解加以约束:U

的向量必须正交,则矩阵U 即为PCA 的特征值分解中的E ,则说明PCA 并不一定需要求取T XX ,也可以直接对原数据矩阵X 进行SVD 奇异值分解即可得到特征向量矩阵,也就是主元向量。

六、在数字图像处理中的应用

PCA 方法是一个具有很高普适性的方法,被广泛应用于多个领域。这里要特别介绍的是它在数字图像处理中的应用,包括如何对图像进行处理以及在人脸识别方面的特别作用。

1. 数据表示

如果要将PCA 方法应用于视觉领域,最基本的问题就是图像的表达。如果是一幅N*N 大小的图像,它的数据将被表达为一个2N 维的向量:

212(,,...,)T N X x x x = (4.21)

在这里图像的结构将被打乱,每一个像素点被看作是一维,最直接的方法就是将图像的

像素一行行的头尾相接成一个一维向量。还必须要注意的是,每一维上的数据对应于对应像素的亮度、灰度或是色彩值,但是需要划归到同一纬度上。

2. 模式识别

假设数据源是一系列的20幅图像,每幅图像都是大小N*N ,那么它们都可以表示为一个

2N 维的向量。 将它们排成一个矩阵:

Im (Im 1,Im 2,,Im 20)agesMatrix ageVec ageVec ageVec =L (4.22)

然后对它们进行PCA 处理,找出主元。

为什么这样做呢?据人脸识别的例子来说,数据源是20幅不同的人脸图像,PCA 方法的

实质是寻找这些图像中的相似的维度,因为人脸的结构有极大的相似性(特别是同一个人的人脸图像),则使用PCA 方法就可以很容易的提取出人脸的在结构,也就是所谓的“模式”,如果有新的图像需要与原有图像比较,就可以在变换后的主元维度上进行比较,衡量新图与原有数据集的相似度如何。对这样的一组人脸图像进行处理,提取其中最重要的主元,可以大致描述人脸的结构信息,称作“特征脸”(EigenFace)。这就是人脸识别中的重要方法“特征脸方法”的理论根据。近些年来,基于对一般PCA 方法的改进,结合ICA 、kernel-PCA 等方法,在主元分析中加入关于人脸图像的先验知识,则能得到更好的效果。

3. 图像信息压缩

使用PCA 方法进行图像压缩,又被称为Karhunen and Leove(KL)变换。这是视觉领域图像处理的经典算法之一。具体算法与上述过程相同,使用PCA 方法处理一个图像序列,提取其中的主元。然后根据主元的排序去除其中次要的分量,然后变换回原空间,则图像序列因为维数降低得到很大的压缩。例如上例中取出次要的5个维度,则图像就被压缩了1/4。但是这种有损的压缩方法同时又保持了其中最“重要”的信息,是一种非常重要且有效的算法。

第二节人脸识别流程

人脸识别系统处理流程

一、人脸图像采集

采集人脸图像是通过传感器采集人脸图像,并将其转换为计算机可以处理的数字信号。这是人脸识别的第一步。在采集人脸图像时,要注意用户人脸姿态,脸部有无遮挡,周围光照是否满足要求及设备采集图像的质量是否能满足要求。

二、预处理

预处理是为了除去噪声和对测量仪器或其他因素对人脸图像造成退化现象进行复原。从传感器采集到图像除了包含人脸特征信息,还包含背景信息,所以必须从原始人脸图像分割出我们要处理的部分。如何分割就需要定位和分割算法。他们一般以人脸图像在图像结构和人脸信号分布的先验知识为依据。常用的人脸预处理有人脸图像灰度化,人脸图像二值化,人脸图像归一化,直方图修正,图像滤波和图像锐化。

三、特征提取

特征提取就是计算机通过提取人脸图像中能够凸显个性化差异的的本质特征,进而来实现身份识别。本文讲解如何使用PCA算法提取人脸特征,进而实现人脸识别。特征主要包括三种类型:物理特征,结构特征和数学特征。由于物理特征和结构特征容易被察觉,触觉以及其

他感觉器官所感知,所以人类常常是利用这些特征来对对象进行识别。对于计算机而言,模拟人类的感觉器官是很难实现的,但计算机在处理数学特征的能力上要比人类强得多,因此我们通过诸如协方差矩阵,统计平均值和相关系数等数学特征来构建人脸识别系统。特征提取和选择的根本任务就是从许多特征中找出那些最有效的特征。在样本数不是很多的情况下,可以利用这些特征进行分类器的设计,但是在大多数情况下,由于测量空间的维数很高,不能直接进行分类器的设计。因此,如何把高维测量空间压缩到低维特征空间,以便有效的设计分类器,便成为了一个值得思考的问题。

为了获得有效的特征,一般需要经过特征形成,特征提取和特征选择等步骤。

1.特征形成

特征形成是根据被识别对象产生出一组基本特征的过程,当被识别的对象是波形或数字图像时,这些特征可以通过计算得来;当被识别对象是实物或某种过程时,这些特征可以用仪表或传感器测量来得到。通过上面方法获得特征被称为原始特征。

2.特征提取

原始数据组成的空间被称为测量空间。由于测量空间的维数一般都很高,不易设计分类器,所以在分类器设计之前,需要从测量空间变换到维数很少的特征空间,由特征向量表示。通过映射或变换方法用低纬空间来表示样本的过程被称为特征提取。映射后的特征称为二次特征,它们是原始特征的某种组合,通常是线性组合。

3.特征选择

从一组特征中挑出一些最有效的特征从而达到降低特征空间维数目的的过程称为特征选择。由于在许多实际问题中常常不容易找到那些最重要的特征,或者由于条件限制而不能对这些重要特征进行测量。从而使得特征选择和特征提取的任务复杂化。

特征提取和特征选择在有些情况下并不是截然分开的,因为从一定意义上来讲,二者都是要达到对数据进行降维的目的,只是实现的途径不同。特征提取是通过某种变换的方法组合原有的高维特征,从而得到一组低维的特征。而特征选择是根据专家的检验知识或评价准则来挑选对分类最有影响的特征。比如可以先将原始特征空间映射到维数较低的空间,在这个空间中在进一步选择特征来进一步降低维度;也可以先去除那些明显不含有分类信息的特征,而后再进行映射以降低维度。

四、特征匹配

特征匹配是计算两个人脸图像特征样本的特征模块间的相似度即将采集到的人脸图像的特征模版与系统中已存储的特征模版进行比对,并输出最佳匹配对象。在本文主要讲解使用最近邻法分类器欧几里得距离来判别人脸图像,在实际广泛使用的还有基于SVM即支持向量机,

基于神经网络和图匹配的方法。

第三节基于PCA人脸识别算法的实现

主成分分析为一种统计学中特征提取方法,在实际中应用的非常广泛。PCA是通过提取原始数据的主元来减少数据的冗余,使数据在低维度的空间中被处理,同时它还能很好保持了原始数据的绝大部分信息,有效的解决了由于空间维数过高而导致的一系列问题。如下将详细介绍如何使用PCA算法进行人脸识别。

主函数(

main.m)

创建数据库

(CreatDatabase.m)

1

计算特征脸

(EigenFaceCore.m)

人脸识别

(Recognition.m)

T m,A,EigenFaces

2

3

输入测试图

3

OutputName

1

显示测试图像

和匹配图像

一、创建数据库

在本环节中主要分为两个阶段,分别为:

1.读入系统人脸数据库,并将图像变换为相应的灰度图像

(a) (b)

图 (a)图像为系统人脸数据库中的原始人脸图像,(b)图像为经过灰度转换后的人脸图像

2. 同时将变换后的二维人脸灰度图像变换为一维人脸向量矩阵

一个大小为M*N 的二维人脸图像可以看成长度为MN 的人脸图像列向量。为了将二维人脸图像变为以为列向量,我们采取的措施为:首先计算出人脸图像的大小,然后将人脸图像经行转置,最后按列依次取出取出所有灰度值形成大小为MN 的一维向量,其实整个阶段的效果相当于将图像的灰度值按行取出依次连接成一维图像向量。

本环节完成后将会产生由一维图像向量组成的矩阵T 。

二、计算特征脸

本环节主要包括三个阶段,分别为:

1. 对图像矩阵T 进行规化

首先计算出图像矩阵中一维列向量的平均值m ,然后对图像矩阵的每一列都减去平均值形成规化的图像矩阵A 。

2. 计算特征脸

人脸训练图像的协方差矩阵为T C=AA ,其中人脸训练样本为1[,...,]P A =ΦΦ,维度为

M N P ??,则协方差矩阵C 的维度为2MN ()。这就出现问题,C 的维度过高,在实际中直接计算它的特征值和特征向量非常困难。因此,本文使用奇异值分解定理来解决这个问题。

奇异值分解定理:

假设B 为n m ?维秩为p 的矩阵,则存在两个正交矩阵和一个对角矩阵: 正交矩阵为

22

12[,,...,]n n p U u u u R ?=∈ (4.23)

12[,,...,]m m p V v v v R ?=∈ (4.24)

其中

T U U I = (4.25)

T V V I = (4.26)

对角矩阵为

12[,,...,]m m

p diag R λλλ?∧=∈

12...p

λλλ≥≥

则可以得到1

2

T B U V =∧,而且T BB 和T B B 有共同的非零特征值,i u 和i v

分别为T BB 和

T B B 对应特征值的正交特征向量。

由上述定理可以得到

12

U BV -

=∧ (4.27)

则可以由协方差矩阵T C AA =,构造出矩阵T m m

L A A R ?=∈,从而容易求出L 的特征值和

特征向量,再根据上述(4-27)式可以求得协方差C 的特征值和特征向量。

实际上我们并不需要协方差所有的特征值和特征向量, m 个(m

在本环节,本文通过直接构造T m m

L A A R ?=∈,来计算出L 的特征值,再挑选L 特征值大

于100的作为C 的特征值,最后通过C 的特征值计算出它的特征向量,从而形成特征脸。

三、人脸识别

人脸识别过程分为训练和测试两个阶段。在训练阶段,主要是提取数据库人脸图像的特征,并形成特征库。在测试阶段,主要是提取待识别图像的特征和计算提取的特征和特征库中特征之间的距离测度,并输出最小距离测度对应的人脸图像作为结果。

具体步骤如下:

1. 训练阶段

将规化的图像矩阵A 中的每一列向量投影到特征子空间,形成特征库。

2. 测试阶段

1假设测试人脸图像为Y ,在人脸识别前,先对其进行标准化,即Y Φ=-ψ。 ○

2把标准化后的人脸图像向特征子空间进行投影得到向量T

U Ω=Φ。 ○3本文使用最近邻法分类器欧几里德距离[14,15]进行判决分类。测试图像与每个人脸图像间

的距离为k k R R ε=- (k=1,2,…,P),并将最小距离对应的训练图像作为测试图像的匹配图像。

可以看出,在人脸姿态、表情有略微变化的情况下依旧可以成功识别出正确的人脸。

人脸姿态发生变化下的人脸识别结果

人脸表情变化下的人脸识别结果

之后我们利用ORL人脸库和自建人脸库分别进行了测试。

在ORL人脸库的识别过程中,我们选取了20个人,每人4照片作为训练样本。并对这20个人每人另取了一照片作为测试样本。每个人测试后最终统计成功识别17个人,识别失败3人。因为我们采用的是最近邻法分类器欧几里德距离进行判决分类,因此对于识别失败的人同样会显示与其距离最小的照片。为了解决这个问题,我们决定在该判决分类的基础上加上阈值限制,当最小欧几里德距离高于某个值时,不再显示最近邻的照片,而是显示“无法识别”的提示。

成功识别如下:

当用训练集以外的人的图像进行测试时,欧几里德距离大于阈值,显示无法识别。

接下来我们对欧几里得距离的阈值进行了一定的选取测试。

如下图所示当阈值选取较大时(阈值取9*10^15),图像可以更好的识别出来,

但是此时不可避免的就是降低人脸识别的准确率,因此个别测试图像因为不标准而与训练库中某些图像的距离更小,就造成了识别错误。如下图所示,此时由于两幅图像的欧几里得距离更小,因而系统显示识别正确,其实是错误的。以测试图像3.jpg为例。

而当阈值设定比较小时(阈值取4.5*10^15),可以看到上面的测试图像3.jpg无法再识别成功,因为没有足够近距离的训练样本。尽管17.jpg训练样本与3.jpg测试图像欧几里得距离最小,但因不在阈值围故表明不是匹配的图像。

同样当阈值减小后,之前成功识别的11.jpg图像无法再成功识别出来。

综上所述,再选定欧几里得最近距离判定距离时要考虑不能选取过大,降低成功率。因此我认为在建立人脸库时,尽量使所有的图像在相同的背景下进行采样,这样可以时每个人的测试图像和训练图像间的欧几里得距离均处在较小的围,可以提高准确率。

此外,我们尝试用稍微侧斜和表情夸的样本照片进行人脸识别。当侧脸和表情夸照片作为测试样本时,程序依旧可以成功识别出对应的人脸照片,然而当这些侧脸和表情夸的照片作为训练样本中的图像时,可能会影响其他测试图像的识别成功率,因为我们没有对侧脸进行研究,因此将问题放在后续工作中解决。

结论

本文研究的是基于PCA的人脸识别算法的实现。在试验中采用的人脸数据库为Essex faces94人脸数据库和自建的人脸数据库,人脸特征提取算法为PCA算法,分类方法采用的是最小距离分类法。通过实验发现在无光照变换,正面姿态,少量遮挡情况下,基于PCA的人脸识别系统的识别率很高,而且反应很迅速。当然也存在着一些问题,例如本文对图像的光照变化,其他姿态没有进行考虑,但实际中这是无法忽略的问题,有可能会导致人脸识别识别率减小。

为了进一步提高基于PCA的人脸识别系统的性能和适应性,我们可以通过以下几个方面进行改进:

改进图像获取方法:我们可以通过使用人脸检测和跟踪算法,在图像获取的时候,动态跟踪和检测人脸,只采集最佳姿态下的人脸图像。这在一定程度可以解决姿态所引起的问题,但也同时对系统的检测和跟踪人脸的反应时间提出较严格的要求。如果反应时间较长,对于快速移动的人脸可能错过采集最佳姿态的图像,而导致系统无法识别人脸。

改进人脸识别特征提取算法:基于PCA的人脸识别虽考虑了人脸图像间的差异,但是不能区分这种差异是由光照,发型变更或背景导致,还是人脸的在差异,因此特征脸的识别方法在理论上存在一定的缺陷。究其原因是人脸图像中所有像素都处于同等地位,在角度,光照,尺寸和表情变换可能会导致性能急剧恶化。采用同一个人的训练样本的平均来计算人脸图像类间散布矩阵可在一定程度上补偿这个缺点。同时也可以对输入的人脸图像做规化处理,主要包括对人脸图像做均值方差归一化,人脸尺寸归一化。另外还可以在计算特征脸的同时利用K-L 变换计算特征眼睛和特征嘴,然后将这些局部特征向量加权进行匹配,也可以将人脸图像分块进行PCA算法的比较,使各块的欧几里得距离都小于一定阈值时方可以成功识别人脸,这样可能会得到更好的结果。我们也可以将人脸进行差异化分类,可分为脸间差异和脸差异。脸差异表示同一个人脸的各种可能变形。脸间差异表示不同人的本质差异。在实际中,人脸图像的差异为两者之和。若脸差异大于脸间差异,则认为两个人脸图像属于一个人的可能性较大。

改进人脸识别的分类器:最近邻法分类器属于一种线性分类器。在实际中可以利用神经网络这类学习能力强的非线性分类器对高维人脸识别可能会取得更好的效果。

综合不同的人脸识别方法:在目前,仅仅单独采用一种现有的人脸识别方法一般都不会取得很好的识别效果。各种技术和方法都有自己不同的适应环境和各自的特点。如果我们想进一步提高人脸识别系统的识别率,可以考虑使用数据融合理论,将不同的方法综合起来,相互补充,来取得很好的人脸识别效果。这也是为人脸识别的研究趋势之一。

参考文献

[1]翠平,光大.人脸识别技术综述[J].中国图像图形学报,2000,5 (11):56-58.

[2]龚勋.PCA与人脸识别即其理论基础[J] .微计算机信息,2007,32(15):1-7.

[3]程自龙,雷秀玉.基于K-L变换(PCA)的特征脸人脸识别方法综述[J].中国图像图形学报,2010,20(22):

15-18.

[4]倪世贵,白宝刚.基于PCA的人脸识别研究[J].现代计算机,2011,23(42):20-22.

[5]徐飞.Matlab应用图像处理[M]. :电子科技大学,2005.

[6]王映辉.人脸识别:原理,方法与技术[M]. :科学,2010.

[7]高晓兴,仁睦,王文佳.基于人脸分类和K-L变换的人脸识别新方法[J].微计算机信息,2010,26(3):

3-6.

[8]田印中,董志学,黄建伟.基于PCA的人脸识别算法研究及实现[J].科技与经济,2010,4(208):15-18.

[9]学胜.基于PCA和SVM算法的人脸识别[J].计算机与数字工程,2011,14(3):56-58.

[10]盛骤,式千,承毅.概率论与数理统计[M].:高等教育,2008.

[11]惠明.图像欧氏距离在人脸识别中的应用研究[J].计算机工程与设计,2008,3(14):22-25.

人脸识别实验报告

人脸识别——特征脸方法 贾东亚12346046 一、实验目的 1、学会使用PCA主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab的使用。 二、原理介绍 1、PCA(主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用x1(i)表示飞行员i的 飞行技能,x2(i)表示飞行员i喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些 非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性x1(i)和x2(i)相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢?由图中的点的分布可知,如果我们找到一个方向的U,所有的数据点在U的方向上的投影之 和最大,那么该U就能表示数据的大致走向。而在垂直于U的方向,各个数据点在该方向的投影相对于在U上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这样我们就把二维的数据转化成了在U方向上的一维数据。 为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而XT u 就是投影的距离。故我们要求下式的最大值: 1 m ∑(x(i)T u)2=u T( 1 m ∑x(i)x(i)T m i=1 ) m i=1 u 按照u是单位向量来最大化上式,就是求1 m ∑x(i)x(i)T m i=1的特征向量。而此式是数据集的 协方差矩阵。

人工智能YOLO V2 图像识别实验报告材料

第一章前言部分 1.1课程项目背景与意义 1.1.1课程项目背景 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。利用这些图像信息的一种重要方法就是图像目标定位识别技术。不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深度置信网络提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

基于PCA算法的人脸识别毕业设计论文

太原科技大学 毕业设计(论文) 设计(论文)题目:基于PCA算法的人脸识别

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期: Ⅰ

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 Ⅰ

人脸识别实验报告解读

人脸识别——特征脸方法 贾东亚12346046 一、实验目的 1、学会使用PCA主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab的使用。 二、原理介绍 1、PCA(主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用表示飞行员i的 飞行技能,表示飞行员i喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些 非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性和相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢?由图中的点的分布可知,如果我们找到一个方向的U,所有的数据点在U的方向上的投影之和最大,那么该U就能表示数据的大致走向。而在垂直于U的方向,各个数据点在该方向 的投影相对于在U上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这 样我们就把二维的数据转化成了在U方向上的一维数据。 为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而X T u 就是投影的距离。故我们要求下式的最大值: 按照u是单位向量来最大化上式,就是求的特征向量。而此式是数据集的协方差矩阵。

在实际应用中,我们不止面临二维的数据。因此不能使用几何的形式呈现,但原理也是一样。就是找到一组相互正交的单位向量,然后根据贡献率考虑选择其中的部分作为考量的维数,这也就实现了数据的降维。 三、实验步骤 1、将库里的400张照片分成两组。一组作为训练,一组作为库。每个人的前五张照片作为 训练,后五张作为库。训练的照片按照顺序的数字重命名。库的照片名字不变。 2、库照片处理。 ①将每一张库的照片转化成N维的向量。(库里的照片是112*92,故将转化成的矩阵按列或行展开,就是个10304维的向量)我们稍后要对如此多维的向量用PCA进行降维。然后把这些向量存入一个矩阵里。而我是将这200个向量以列的形式存在了矩阵里。 即 ,,, ②将这200个向量的每个元素相加起来求出平均值。再用Z里的每一个向量减去这个平均值得到每个的偏差。 平均值,每个向量的偏差 即最后 ,,, ③接下来我们就要针对这些预处理后的数据进行降维。我们要求的N个相互正交的向量就是协方差矩阵的特征向量,而对应的特征值就是各个向量所占的比重。但是Z是个10304*200的矩阵,那么就是个10304*10304的矩阵。使用matlab直接求其特征值与特征向量不太实际。 所以我们考虑一个简单的运算方法: 协方差矩阵的秩受到训练图像的限制:如果有N个训练样本,则最多有N? 1 个对应非零特征值的特征向量,其他的特征向量对应的特征值都是0。如果训练样本的数目比图像的维数低,则可以通过如下方法简化主成份的计算。 设 Z是预处理图像的矩阵,每一列对应一个减去均值图像之后的图像。则,协方差矩阵为,并且对S的特征值分解为

KL变换应用于人脸识别

基于K-L 变换的人脸识别 一、基本要求 从网上下载人脸图像,构建人脸训练数据库和测试数据库,采用K-L 变换进行特征脸提取,并实现人脸识别。通过K-L 变换在人脸识别中的应用,加深对所学内容的理解和感性认识。 1、或者从网上下载其它数据库,编程实现K-L 变换。 2、课堂报告、并提交实验报告及相应程序。 二、实验原理 1、K-L 变换:就是以样本特征向量在特征空间分布为原始数据,通过变换,找 到维数较少的组合特征,达到降维的目的。 K-L 变换是一种正交变换,即将一个向量X ,在某一种坐标系统中的描述,转换成用另一种基向量组成的坐标系表示。这组基向量是正交的,其中每个坐标 基向量用j u 表示,∞=,2,1 , j ,因此,一个向量X 可表示成 ∑∞ == 1 j j j u c X 如果我们将由上式表示的无限多维基向量坐标系统改成有限维坐 标系近似,即 ∑=∧ =d j j j u c X 1 表示X 的近似值或估计量,我们希望在同样维数条件下,使向量X 的估计量误差最小。确切地说是使所引起的均方误差: )]?()?[(X X X X E T --=ξ 为最小。K-L 变换可以实现这个目的。 因为 ?? ?≠==i j i j u u i T j 0 1

将 ∑∞ +=∧ = -1 d j j j u c X X 带入到)]?()?[(X X X X E T --=ξ中可得到 ][ 1 2 ∑∞ ==j j c E ξ 容易看到 X u c T j j = 因此 ][ 1 ∑∞ +=d j T T j u XX u E ξ 由于j u 是确定性向量,因此上式可改写为 [] ∑∞ +== 1 d j j T T j u XX E u ξ 令 [] T XX E =ψ 则 ∑∞ +== 1 d j j T j u u ψξ 用拉格朗日乘子法,可以求出在满足正交条件下,ξ取极值的坐标系统,即用函数 ∑∑∞ +=∞ +=-- =1 1 ]1[d j j T j j d j j T j j u u u u u g λψ) ( 对j u ,∞+=,,1 d j 求导数,因此有 ∞+==,,1,0- d j u I j j )(λψ 我们令0=d ,从而可得到以下的结论: 以矩阵ψ的本征向量座位坐标轴来展开X 时,其截断均方误差具有极值性质,且当取d 个d j u j ,,2,1 =,来逼近X 时,其均方误差 ∑∞ +== 1 d j j λ ξ 式中j λ是矩阵ψ的相应本征值。 可以证明,当取d 个与矩阵ψ的d 个最大本征值对应的本征向量来展开X

基于PCA的人脸识别系统设计

1 HUNAN UNIVERSITY 毕业设计(论文) 设计论文题目基于PCA的人脸 识别系统 学生姓名李涛 学生学号20080810410 专业班级08级计科四班 学院名称信息科学与工程学院 指导老师潘华伟 学院院长章兢 20012 年 5 月18 日

摘要 随着计算机视觉技术的发展,以及社会的各个领域的需要,根据人固有的生物特征对人进行身份验证的课题吸引了一批研究人员,比较常见的有语音识别,指纹识别,人脸识别等技术。其中人脸识别因为识别率高、主动性强、使用方便等因素,在身份验证的各类方法中有独特的优势及相关的应用,成为了人体特征识别中的比较热门的研究课题。 本文首先阐述了人脸识别研究的历史,现状以及发展趋势,并说明了人脸识别的优势和难点。然后详细地说明人脸识别的两个部分:人脸检测和人脸识别。在人脸检测部分,本文主要介绍了基于haar分类器的检测方法,并详细说明了haar分类器的训练过程,讲述了分类器检测人脸的原理。在人脸识别部分,首先获取人的个人信息的,对人脸图像的采集并进行灰度化、归一化等预处理,然后采用PCA(主成分分析法)对采集到的图像进行特征提取,并存储相关的特征信息,最后对待识别的图像进行特征提取和分析,与训练的人脸图像数据计算欧式距离,最终识别出人的身份。在本文的最后,对实现的系统各项功能进行实验,对影响识别率的维数、采集图像数因素进行实验分析,并提出了主成分分析法人脸识别的优点和缺点。最后总结毕业设计中的不足,自己的心得体会,并对未来学习进行展望。 关键词:人脸检测,haar分类器,PCA,人脸识别

Abstract With the development of computer vision technology, and social needs in many areas, the subject of authentication according to the inherent biological characteristics attracted a group of researchers ,Voice recognition, fingerprint recognition, face recognition technology are common。Face recognition with the recognition rate, motivated, easy to use and other factors,has unique advantages in all kinds of authentication methods and related applications,has become a popular research topic in the human feature recognition。 This paper first describes the history, current situation and development trend of face recognition research, and describes the advantages and difficulties of face recognition。And then detail the recognition of two parts: face detection and face recognition。In the face detection part, the paper mainly describes the detection method based on haar classifier, and details of haar classifier training process, about the principle of the classification of the detected face。In face recognition part, it first obtains personal information the acquisition of face images and graying, owned by a pretreatment。And then using PCA (Principal Component Analysis) collected image feature extraction, and storage characteristics of information,int the last ,identifiable image feature extraction and analysis, and training of the face image data to calculate the Euclidean distance, and ultimately identify the identity of the person。In the last experiment, the dimension of the recognition rate, number of images collected factors experimental analysis, and the advantages and disadvantages of the principal component analysis for face recognition system implemented various functions. The final summary of graduate design deficiencies, and their own feelings and experiences and future learning prospects。 Keywords: face detection, Haar classifier, PCA, face recognition

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

人脸识别实验报告

人脸识别——特征脸方法 贾东亚 一、 实验目的 1、学会使用PCA 主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab 的使用。 二、 原理介绍 1、 PCA (主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用x 1(i ) 表示飞行员i 的 飞行技能,x 2(i )表示飞行员i 喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性x 1(i )和x 2(i )相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢由图中的点的分布可知,如果我们找到一个方向的U ,所有的数据点在U 的方向上的投影之和最大,那么该U 就能表示数据的大致走向。而在垂直于U 的方向,各个数据点在该方向的投影相对于在U 上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这样我们就把二维的数据转化成了在U 方向上的一维数据。

为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而X T u 就是投影的距离。故我们要求下式的最大值: 1 m ∑(x(i)T u)2=u T( 1 m ∑x(i)x(i)T m i=1 ) m i=1 u 按照u是单位向量来最大化上式,就是求1 m ∑x(i)x(i)T m i=1 的特征向量。而此式是数据集 的协方差矩阵。 在实际应用中,我们不止面临二维的数据。因此不能使用几何的形式呈现,但原理也是一样。就是找到一组相互正交的单位向量u k,然后根据贡献率考虑选择其中的部分作为考量的维数,这也就实现了数据的降维。 三、实验步骤 1、将库里的400张照片分成两组。一组作为训练,一组作为库。每个人的前五张照片作为 训练,后五张作为库。训练的照片按照顺序的数字重命名。库的照片名字不变。 2、库照片处理。 ①将每一张库的照片转化成N维的向量。(库里的照片是112*92,故将转化成的矩阵按列或行展开,就是个10304维的向量)我们稍后要对如此多维的向量用PCA进行降维。然后把这些向量存入一个矩阵里。而我是将这200个向量以列的形式存在了矩阵里。 即 Z={Γ1,Γ2,Γ3,Γ4 (200)

基于PCA的人脸识别算法实现毕业论文

基于PCA的人脸识别算法实现毕业论文 目录 前言 (1) 第一章人脸识别系统概述 (2) 第一节人脸识别的研究概况 (2) 第二节人脸识别的发展趋势 (3) 一、多数据融合与方法综合 (4) 二、动态跟踪人脸识别系统 (4) 三、基于小波神经网络的人脸识别 (4) 四、三维人脸识别 (4) 五、适应各种复杂背景的人脸分割技术 (4) 六、全自动人脸识别技术 (4) 第三节人脸识别技术的主要难点 (4) 一、复杂条件下人脸的检测和关键点定位 (5) 二、光照问题 (5) 三、资态问题 (5) 四、表情问题 (5) 五、遮挡问题 (5) 第四节人脸识别流程 (5) 一、人脸图像采集 (6) 二、预处理 (6) 三、特征提取 (6) 第五节本章小结 (7) 第二章人脸图像的获取 (9) 第一节人脸图像获取 (9) 第二节人脸分割 (9) 第三节人脸数据库 (10) 第四节本章小结 (11) 第三章人脸图像的预处理 (12)

第一节人脸图像格式 (12) 一、JPEG格式 (12) 二、JPEG2000格式 (12) 三、BMP格式 (13) 四、GIF格式 (13) 五、PNG格式 (13) 第二节人脸图像常用预处理方法 (14) 一、灰度变化 (14) 二、二值化 (15) 三、直方图均衡 (15) 四、图像滤波 (15) 五、图像锐化 (17) 六、图像归一化 (18) 第三节本章小结 (19) 第四章人脸识别 (20) 第一节主成分分析基本理论 (20) 一、什么是主成分分析? (20) 二、例子 (20) 三、基变换 (21) 四、方差 (23) 五、PCA求解:特征根分解 (27) 六、PCA的假设 (28) 七、总结: (28) 八、在计算机视觉领域的应用 (30) 第二节基于PCA人脸识别算法的实现 (31) 一、创建数据库 (32) 二、计算特征脸 (32) 三、人脸识别 (34) 第三节本章小结 (36) 结论 (37) 致谢 (38) 参考文献 (39) 附录 (40) 一、英文原文 (40) 二、英文翻译 (53)

面部表情识别实验报告分析

面部表情识别实验 实验报告 小组成员: 面部表情识别实验 西南大学重庆 400715

摘要:情绪认知是一种复杂的过程,它包含观察、分析、判断、推理等,是借助于许多线索,特别是借助面部那些活动性更大的肌肉群的运动而实现的。所以,情绪认知的准确度受多种因素的影响。 当我们与他人相互交往的时候,不管是不是面对面。我们都正在不断的表达着情绪,同时又正在观察,解释着的对方做出的表情,在人际交往过程中,情绪的表达和认知是十分的迅速和及时,那么人是借助于哪些表情来认知他人的情绪的呢?情绪识别实际上并不是针对表情本身的,而是针对这它背后的意义。例如:皱眉可能是一种情绪的表现,我们见到这种面部表情就试图解释潜在于它背后的情绪。尖锐,短促,声音嘶哑可能是一种情绪表现,我们听到这种语言表情就试图解释潜在于它背后的情绪捶胸,顿足可能是一种情绪的表现,我们见到这种动作表情就是试图解释潜在于它背后的情绪。对于这个复杂的问题,心理学家曾经做过许多的研究。 面部表情认知的研究可分为两个步骤:第一步是面部表情刺激物的制作或选择,这可以用专门拍摄(录像)或图示来描画,也可以用完全装扮出的活生生的表情或自发的表情等。第二步时对表情进行识别评定。也可以用多种方法,如自由评定法,即让被试自由地对表情给出情绪词汇;或限制评定法,即向被试提供各种提供各种情绪词汇或情绪情境,要求被试只能根据所提供的情绪词汇或者情绪情境进行分类或者匹配等;或参照自由评定法,即向被试提供参考线索(如情境,人格特征等),让其说出所表达的情绪的词汇等。 关键词:情绪表情认知线索

1 前言 传统心理学把情绪列为心理现象的三大方面之一。情绪也是心理学理论体系中一个不可缺少的研究环节。情绪(emotion)是体验,又是反应;是冲动,又是行为;它是有机体的一种复合状态。情绪的表现有和缓的和激动的,细微的和强烈的,轻松的和紧张的等诸多形式,广泛地同其他心理过程相联系。自古以来,科学家们十分注意探讨情绪之奥妙,但与情绪的重要性不相适应的是,长期以来情绪研究一直是心理学尤其是实验心理学研究中的一个薄弱环节。造成这一现象的最主要原因是情绪所特有的复杂性以及由此衍生出来的情绪研究方法学上的困难。我国心理学家孟昭兰(1987)将理论认为面部表情是传递具体信息的外显行为面部表情是提供人们在感情上互相了解的鲜明标记。情绪过程既包括情绪体验,也包括情绪表现,而表情既是情绪的外部表现,也是情绪体验的发生机制;既是最敏锐的情绪发生器,也是最有效的情绪显示器。这就从机制上说明了以面部肌肉运动模式作为情绪标志的根据。 面部表情(facial expression_r)的发生是有其客观的物质基础的:表情按面部不同部位的肌肉运动而模式化,面部反应模式携带着心理学的意义,那就是或快乐、或悲伤等具体情绪。但是,对表情进行测量的原则在于:所要测量的是面孔各部位的肌肉运动本身,而不是面部所给予观察者的情绪信息。该实验将14名被试分为两组进行表情认知的实验,实验目的在于通过实验了解面部表情认知的基本

基于PCA的人脸识别

基于PCA的人脸识别 哲盼 (华北电力大学自动化系, 071003) 摘要:人脸识别技术,作为目前模式识别领域研究的热点也是难点之一,其最早提出可以追溯到1888年[1]。然而,到目前为止,由于人脸识别问题自身的复杂性,使得虽然有众多科学研究人员潜心研究多年,也做出了许多的成果,但离彻底解决并达到实用,仍旧有很多关键性的问题需要解决。本文结合研究生阶段参与教研室的科研项目,对人脸识别做了一定的研究。论文首先介绍了人脸识别的背景、研究围以及方法,对人脸识别领域的一些理论方法作了总体的介绍。本文中所采用的人脸识别方法是比较经典的PCA(Principle Component Analysis,主成分分析)[2-6]。 关键词:人脸识别,主成分分析,PCA,特征脸 PCA-based face recognition CHEN Zhe-pan (Department of Automation North China Electric Power University, Baoding 071003 China) Abstract:Techniques for face recognition were proposed by Francis Galton as early as 1888[1]In recent years considerable progress has been made in the area of face recognition:Through the development of techniques like Eigenfaces computers can now outperform humans in many face recognition tasks,particularly those in which large databases of faces must be searched.Whilst these methods performs extremely well under constrained conditions,the problem of face recognition under gross variations remains largely unsolved.This thesis details the PCA(Principle Component Analysis)algorithm and the development of a real-time face recognition system aimed to operate in constrained environments Keywords:face recognition,principle component analysis,PCA, Eigenfaces 0 引言 随着社会的不断发展进步以及各方面对快速有效的身份识别技术的迫切需求,生物特征识别技术在最近十年中得到了很快的发展。生物特征识别技术是为了验证身份而采用自动测量技术对身体的特征或个人行为特点进行采集处理,并将采集的特征或特点与模板进行比较,从而完成身份验证的一种解决方案。由于生物特征识别技术利用人本身所具有的特征(如指纹、虹膜、人脸等)进行身份认证,因而它比传统的根据人所携带物品(如)和你所记忆的容(如账号和密码)更加安全和可靠。我们有理由相信生物特征识别技术将使人们的生活方式产生重大的变化[7]。 人脸识别是生物特征识别技术的一种,它也是人们生活中最常用的一种身份认证手段,同时它也是当前最热门的模式识别研究课题之一。通过人脸我们可以判定许多信息:性别、种族、大致年龄及表情等。与其它的生物特征识别技术相比,人脸识别在采

基于PCA的人脸识别研究报告

项目名称:基于PCA的人脸识别算法研究

摘要 随着人类社会的进步,以及科技水平的提高,一些传统的身份认证的方法逐渐暴露出各种问题,因此人们需要采用一种更加可靠安全的身份认证方法。毫无疑问人体的生物特征的独一无二的,特别是其不容易丢失及复制的特性很好满足了身份识别的需要。并且随着计算机科学技术和生物医学的发展使得利用生物特征识别成为了可能。因此基于指纹、人脸、视网膜等生物特征的识别方法也越来越多。由于人脸识别的操作快速简单,结果直观,准确可靠,不需要人的配合等优点已成为人们关注的焦点。主成分分析(PCA)法通过提取高维度的人脸图像的主元,使得图像在低维度空间中被处理来降低了图像处理的难度。由于其有效的解决了图像空间维数过高的问题,已经成为人脸识别领域非常重要的理论。此次研究的就是基于PCA的人脸识别算法的实现。 本文按照完整人脸识别流程来分析基于PCA的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能分别选用了Essex人脸数据库和ORL人脸库,并在后期采用了自建的人脸库。接下来是人脸图像预处理方法。由于采用的人脸图像质量较好,而且已经做过相应的预处理,所以本文试验中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。在实验中我们发现基于PCA的人脸识别系统的识别率很高,而且具有一定鲁棒性,所以基于PCA的人脸识别算法的实现的研究还是有意义。 【关键词】人脸识别 PCA算法奇异值分解定理欧几里得距离

中科院模式识别大作业——人脸识别

人脸识别实验报告 ---- 基于PCA 和欧氏距离相似性测度 一、理论知识 1、PCA 原理 主成分分析(PCA) 是一种基于代数特征的人脸识别方法,是一种基于全局特征的人脸识别方法,它基于K-L 分解。基于主成分分析的人脸识别方法首次将人脸看作一个整体,特征提取由手工定义到利用统计学习自动获取是人脸识别方法的一个重要转变[1]。简单的说,它的 原理就是将一高维的向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表示为一个低维向量,并不会损失任何信息。即通过低维向量和特征向量矩阵,可以完全重构出所对应的原来高维向量。特征脸方法就是将包含人脸的图像区域看作是一种随机向量,因此,可以采用K-L 变换获得其正交K-L 基底。对应其中较大特征值的基底具有与人脸相似的形状,因此又称为特征脸。利用这些基底的线性组合可以描述、表达和逼近人脸图像,因此可以进行人脸识别与合成。识别过程就是将人脸图像映射到由特征脸张成的子空间上,比较其与己知人脸在特征空间中的位置,从而进行判别。 2、基于PCA 的人脸识别方法 2.1 计算特征脸 设人脸图像f(x,y)为二维N×M 灰度图像,用NM 维向量R 表示。人脸图像训练集为{}|1,2,...,i R i P =,其中P 为训练集中图像总数。这P 幅图像的平均向量为: _ 11P i i R R P ==∑ 对训练样本规范化,即每个人脸i R 与平均人脸_ R 的差值向量: i A =i R -_R (i= 1,2,…,P) 其中列向量i A 表示一个训练样本。 训练图像由协方差矩阵可表示为: T C AA = 其中训练样本NM ×P 维矩阵12[,,...,]P A A A A = 特征脸由协方差矩阵C 的正交特征向量组成。对于NM 人脸图像,协方差矩

人脸识别PCA算法matlab实现及详细步骤讲解

% FaceRec.m % PCA 人脸识别修订版,识别率88% % calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5 a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); % imshow(a); b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上 到下,从左到右 b=double(b); allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数 据代表一张图片,其中M=200 end end samplemean=mean(allsamples); % 平均图片,1 × N for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片” end; % 获取特征值及特征向量 sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d); % 按特征值大小以降序排列 dsort = flipud(d1); vsort = fliplr(v); %以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0; while( dsum_extract/dsum < 0.9) p = p + 1; dsum_extract = sum(dsort(1:p)); end i=1; % (训练阶段)计算特征脸形成的坐标系 base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2)); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1) % 详见《基于PCA 的人脸识别算法研究》p31 % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程 %while (i<=p && dsort(i)>0) % base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2) 是对人脸图像的标准化(使其方差为1) % 详见《基于PCA 的人脸识别算法研究》p31 % i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特 征向量转换的过程 %end % 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数, accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别

人机交互实验报告

中北大学软件学院实验报告 专业:软件工程 方向:电子商务 课程名称:人机交互基础教程 班级:1021010C01 学号: 姓名: 辅导教师:李玉蓉 2012年2月制

成绩: 实验时间年月日时至时学时数 1.实验名称 最新人机交互技术 2.实验目的 了解最新人机交互的研究内容 3.实验内容 通过网络查询最新人机交互相关知识。 1、在百度中找到“最新人机交互视频”的相关网页,查看视频。 2、什么是eTable 。 3、人机交互技术在各个领域的应用 4. 实验原理及流程图

成绩: 5.实验过程或源代码 Etable是一种多功能电脑桌,集时尚、实用、经济于一“桌”,无论是居家卧室,还是出差旅途,都可以提供一个舒适、惬意的网上时光,部件有:多角度调节桌面、2个风扇、1个USB插口、1个活动USB插头、鼠标垫、桌腿可调节长度。 人机交互技术的发展极大地促进了计算机的快速发展和普及,已经在制造业、教育、娱乐、军事和日常生活等领域得到 广泛应用。在制造业用于产品设计、装配仿真等各个环节;在 教育中用于研发沉浸式的虚拟世界系统,供学者学习;在军事 方面头显示器等的出现给军事训练提供了极大地方便;在娱乐 中3d和4d电影的拍摄都应用到此技术;体育方面用于体育训 练和报道等;生活中,触屏手机,人脸识别技术等都用到人机 交互技术。 6.实验结论及心得 通过在网上查阅有关近期最新人机交互的视频和网页,我对人机交互的发展及在各方面的应用有了初步了解和认识

实验时间年月日时至时学时数1.实验名称 立体视觉 2.实验目的 掌握立体视觉的原理 3.实验内容 通过网络查询立体视觉相关知识。 1. 在虚拟环境是如何实现立体视觉? 2. 3D和4D电影的工作原理。 4.实验原理及流程图

人脸识别系统-开放实验报告范文

开放性实验报告《人脸识别系统》 小组成员: 姓名李宏利 学号 109021075 指导老师:彭艳斌2011 年12 月

【实验名称】人脸识别系统 【实验目的】 1.对人脸识别系统的图像预处理有一定的掌握; 2.对后续操作只简单了解; 3.通过功能模块实现人脸识别系统。 【实验内容】 1.系统需求分析; 2.系统设计; 3.系统实现。 【实验步骤】 一、系统需求分析 1、目的与背景 当前社会上频繁出现的入室偷盗、抢劫、伤人等案件的不断发生,鉴于此种原因,防盗门开始走进千家万户,给家庭带来安宁;然而,随着社会的发展,技术的进步,生活节奏的加速,消费水平的提高,人们对于家居的期望也越来越高,对便捷的要求也越来越迫切,基于传统的纯粹机械设计的防盗门,除了坚固耐用外,很难快速满足这些新兴的需求:便捷,开门记录等功能。 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。

人脸识别 生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。人脸识别主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是最佳的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别

DIP - 基于MATLAB的人脸识别算法课程设计报告

数字图像处理实验报告 院系:计算机科学学院 班级:计科11303 小组成员:张世柳、邓伟养、兰洋、冯威 成员学号: 201510049 实验名称:基于MATLAB的人脸识别算法 实验时间: 2015.10.01 - 2015.10.19 实验地点:东4教2号机房

目录 一、绪论 (2) 二、实验设计 (2) (一)实验题目 (2) (二)实验目的 (2) 三、实验准备 (2) (一)环境准备 (2) (二)知识准备 (3) 四、算法设计 (3) (一)问题描述 (3) 1. 主成分的一般定义 (3) 2. 主成分的性质 (4) 3. 主成分的数目的选取 (4) (二)PCA算法的功能实现 (5) 1. 人脸空间的建立 (5) 2. 特征向量的选取 (5) 3. 人脸识别 (5) 4. 识别流程 (6) 五、程序实现 (6) (一)人脸识别程序 (6) 1. 用户界面 (6) 2. 选择图片 (6) 3. 图片选择后 (6) 4. 查找后 (6) (二)测试及结果分析 (6) 六、实验总结 (7) 七、参考文献 (10)

一、绪论 随着科技的发展,人类社会的进步,传统身份识别由于容易遗失,容易被破解已不能起到身份识别作用。人们需要更加安全可靠的身份识别技术。而生物特征的独一无二,不易丢失和被复制的特性很好满足了身份识别的需要。同时随着计算机科学技术和生物医学的发展使得利用生物特征识别成为了可能。在生物特征识别领域,由于人脸识别的操作快速简单,结果直观,准确可靠,不需要人的配合等优点已成为人们关注的焦点。主成分分析(PCA)通过提取高维度的人脸图像的主元,使得图像在低维度空间中被处理来降低了图像处理的难度。由于其有效的解决了图像空间维数过高的问题,已经成为人脸识别领域非常重要的理论,本实验研究的是基于MATLAB人脸识别算法的实现。 二、实验设计 (一)实验题目 机器人视觉——基于MATLAB的人脸识别算法 (二)实验目的 1. 初步了解人脸识别的特征法; 2. 学会使用主成分分析算法(PCA); 3. 通过功能模块实现人脸识别系统; 4. 完成数字图像处理课程的作业要求。 三、实验准备 (一)环境准备 MATLAB 7.0

相关文档
相关文档 最新文档